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Introduction

Cervical cancer continues to be one of the leading female
genital cancers worldwide [1]. The cervical cancer bur-
den in Taiwan is still heavy with the incidence of invasive
cancer being 24.5/100,000, ranking it the fifth leading
cause of cancer death for women [2]. In addition to
the causal link of human papillomavirus to cervical
cancer [3–7], what other cofactors exist in the process

of carcinogenesis and contribute to the resulting dif-
ferent cell types? Additionally, why do patients with
adenocarcinoma of the cervix have poor outcomes?
Genetic insults, such as chromosome abnormalities,
altered expression of growth factors or their receptors,
disturbances in tumor suppressor gene function or
amplification of cellular oncogenes, may lead to cervical
carcinogenesis [8].

Primary radiation therapy is the treatment modality
of choice in early stage cervical cancer, depending mainly
on the availability of appropriate expertise [8]. In cases
of locally advanced cervical cancer, concurrent chemora-
diation has emerged as the recommended treatment
[9]. Radiation provides humans with lifesaving tech-
nologies; but, at the same time, it causes DNA damage
that initiates a plethora of overlapping physiologic
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SUMMARY

Cervical cancer is one of the leading female cancers in Taiwan and ranks as the fifth cause of cancer death in the
female population. Human papillomavirus has been established as the causative agent for cervical neoplasia
and cervical cancer. However, the tumor biology involved in the prognoses of different cell types in early cancers
and tumor responses to radiation in advanced cancers remain largely unknown. The introduction of microarray
technologies in the 1990s has provided genome-wide strategies for searching tens of thousands of genes simul-
taneously. In this review, we first summarize the two types of microarrays: oligonucleotides microarray and cDNA
microarray. Then, we review the studies of functional genomics in cervical cancer. Gene expression studies that
involved cervical cancer cell lines, cervical cells of cancer versus normal ectocervix, cancer tissues of different his-
tology, radioresistant versus radiosensitive patients, and the combinatorial gene expression associated with chro-
mosomal amplifications are discussed. In particular, CEACAM5, TACSTD1, S100P, and MSLN have shown to be
upregulated in adenocarcinoma, and increased expression levels of CEACAM5 and TACSTD1 were significantly
correlated with poorer patient outcomes. On the other hand, 35 genes, including apoptotic genes (e.g. BIK, TEGT,
SSI-3), hypoxia-inducible genes (e.g. HIF1A, CA12), and tumor cell invasion and metastasis genes (e.g. CTSL,
CTSB, PLAU, CD44), have been noted to echo the hypothesis that increased tumor hypoxia leads to radiation
resistance in cervical cancer during radiation. [Taiwan J Obstet Gynecol 2007;46(4):363–373]
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responses responsible for maintaining cellular homeo-
stasis and promoting interactions with adjacent cells
[10]. These responses include induction of cell cycle
checkpoints, senescence, and apoptosis. Therefore, the
cellular responses of patients who undergo radiation
alone or a combined radiation and chemotherapy treat-
ment (the dual-modality treatment) warrant further
investigation.

Functional genomics focuses on genome-wide pat-
terns of gene expression and the mechanisms by which
gene expression are coordinated. The use of microar-
rays has spread rapidly throughout the research com-
munity since the 1990s when it was first introduced
[11–13]. The completion of the human genome project
as well as the current availability of high-throughput
technologies have enabled us to move from the study
of single molecules to the simultaneous analysis of
24,000 human genes in the complex biological systems
of human life.

Cancer, a complex and prevalent disease, has become
a prime target for the application of novel technologies
of genomics, proteomics, and functional genomics,
since intensive research may help in the development
of a predictive, individualized approach to cancer care
and can facilitate the selection of the best treatment
method for each individual patient [14]. Microarrays
give researchers the opportunity to analyze tens of
thousands of genes on one assay, allowing scientists to
perform experiments at a previously unimaginable scale.
In this review article, we first provide a summary of
oligonucleotides microarray and cDNA microarray,
experimental designs, gene expression analysis, and veri-
fication of microarray data. Next, we review the studies
of functional genomics in cervical cancer.

Overview of Microarray Analysis of 
Gene Expression (MAGE)

A microarray or DNA chip is an orderly arrangement of
DNA molecules that have been chemically bonded to a
fine grid of surfaces [15]. The purpose of MAGE is to
analyze the expression states of genes in complemen-
tary DNA (cDNA) prepared from mRNA in which the
hybridization takes place on the array via the Watson–
Crick duplex formation method. A “probe” is the teth-
ered nucleic acid of known sequence on the fine grid
surface, whereas a “target” is the free nucleic acid in the
biological samples to be determined [16]. The power
of a microarray is its large-scale ability to analyze the
expression of thousands of genes simultaneously.

The two basic types of DNA microarrays are oligonu-
cleotide microarrays and cDNA microarrays, although

variations are being developed. For the majority of
oligonucleotide microarrays, the oligonucleotides are
directly synthesized and arrayed in a discrete regular
grid on silicon or glass chip surfaces. For some oligonu-
cleotide microarrays, the oligonucleotides that are first
synthesized are spotted onto the slides. cDNA microar-
rays are previously prepared DNA clones (usually a
polymerase chain reaction [PCR] product of longer than
100 nucleotides) which are immobilized to a glass slide.

In the late 1980s, Stephen Fodor and his col-
leagues adopted the process of photolithography to
make microarrays with chemically synthesized oligonu-
cleotides [11,12]. Affymetrix microarrays contain
between 11 and 20 pairs of oligonucleotide probes for
each target RNA, in which one of the pair is the reverse
complement to a unique 25-mer in the RNA and the
other contains a mutated middle base pair and serves as
a measure of stray signal (http://www.affymetrix.com/
index.affx). The chip is arrayed with oligonucleotides
that are individually synthesized directly on the chip by
automatic procedures until four nucleotides occupy
the place. This cycle of reproduction and addition of a
nucleotide is repeated until the array carries oligonu-
cleotides that are 20–25 nucleotides in length. In recent
years, investigators have developed additional methods
for constructing microarrays by synthesizing oligonu-
cleotides in situ. In one approach, Agilent Technologies
(http://www.chem.agilent.com) uses ink-jet printer to
prepare nucleotides for each DNA synthesis step on a
glass slide. In a different approach, NimbleGen Systems
(http://www.nimblegen.com) uses “maskless synthesis”
photolithography that employs digital light processing
to generate ultra-high density microarrays on slides,
with longer oligonucleotides of 50–70 nucleotides.

In the mid-1990s, Pat Brown and his colleagues
developed the “dot blot” microarray. The array is made
in three steps: (1) preparing the plasmid cDNA 
clones to be put on the array, using PCRs to amplify
the cDNA inserts; large sets of these clones are available
from the expressed sequence tag and cDNA sequenc-
ing is begun early in the human genome project; (2)
spotting the DNA onto the glass surface of the array
with a spotting robot; and (3) postspotting processing
of the glass slide [13]. During gene expression analysis
with cDNA microarrays, four steps are involved: (1)
sample preparation and labeling, (2) hybridization,
(3) washing, and (4) image acquisition. With these
two-color arrays, two different sets of mRNA samples
are used, each labeled separately with different fluo-
rescent tags, usually Cy3 (green) or Cy5 (red). One is
the control mRNA sample, and the other is the test
sample for which the gene expression pattern is to be
determined. The two labeled samples are mixed together
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and competitively hybridized to the glass slide containing
cDNA clones. The scanner output is usually two mono-
chrome images, one for each of the two lasers in the
scanner. A detector measures the ratio of hybridization
signals of the two labels. These are combined to create
the red–green color images of microarrays. The images
are usually stored as tagged image files. The array data
are stored in 16 bits [15]. cDNA microarrays can also
be produced as home-spotted arrays, like the Genomic
Medicine Research Core Laboratory’s (GMRCL) Human
15K set, version 2, which has been deposited in the
Gene Expression Omnibus repository with the accession
number GPL5354 [17].

Design of microarray expression experiments
Three questions are specifically associated with microar-
ray experiments when choosing the arrangement of
samples [15,18,19]: (1) Are Affymetrix arrays or a two-
color array system more effective? (2) If a two-color
array system is used, what is the reference sample? (3)
If a two-color array system is used, what is the best
arrangement of samples on the slides? Although there
are no standard answers to these questions, there are

some statistical reasons why some of these designs are
better than others.

In an example of study of cervical cancer using
MAGE, samples were obtained from diseased and cor-
responding control tissues from 30 patients suffering
from cervical cancer (Figure) [6]. Five different experi-
mental designs could be used for this experiment [15].
In Design 1, sixty two-color microarrays were used. Every
control and tumor sample was prepared with Cy5. 
A reference sample of relevant cell lines was labeled
with Cy3. Each array was hybridized with a cervical
sample labeled in Cy5 and the reference sample in
Cy3. In Design 2, sixty single-color Affymetrix arrays
were used. Each array was hybridized with a different
sample. In Design 3, thirty two-color, cDNA microar-
rays were used. On each array, the control sample was
labeled with Cy3 and the tumor sample from the same
patient was labeled with Cy5. In Design 4, thirty two-
color cDNA microarrays were used. On fifteen arrays,
the control sample was labeled with Cy3 and the tumor
sample was labeled with Cy5. On the other fifteen
arrays, the control sample was labeled with Cy5 and
the tumor sample was labeled with Cy3. In Design 5,
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Figure. Choice of microarray platforms and various experimental designs for microarray analyses of gene expression. Figure
adapted from Stekel et al [15].



sixty two-color cDNA microarrays were used in this dye-
swapping design. Each pair of the control and tumor
samples was analyzed twice. Control and tumor sam-
ples from each patient were hybridized to two arrays,
once with Cy3 to label the control and Cy5 for the
tumor, and once with Cy5 on the control and Cy3 on
the tumor.

In the above example, since the two samples from
each patient were obviously related to each other, it
was more suitable to use a two-color array in which
the two samples from each patient were hybridized to
the same array. There are several levels of variability 
in the measured gene expression of the microarray
experiments [15]. The four levels of variability are: (1)
between replicate features on the same array spots;
(2) between two separately labeled samples hybridized
to the same array; (3) between samples hybridized to
different arrays (inter-sample); and (4) between differ-
ent individuals in a population hybridized to different
arrays (inter-individual). Since the variability between
arrays is higher than the variability between signals on
the same array, this experiment was better performed
on two-color arrays so that the two samples from each
patient could be hybridized to the same array rather
than on different arrays, which would be the case with
Affymetrix arrays. Experimental design 5 was a full-
factorial design, because each patient had each sample
hybridized twice, once with each Cy dye. There are two
main advantages to this method. Firstly, there are two
measurements of log ratio for each patient, both using
the same number of arrays in experimental design 1.
Secondly, the data can be analyzed with a t test or boot-
strap t test, whereas Design 4 would require ANOVA
analysis. The only disadvantage of Design 5 is that it
requires twice as many arrays as Design 4 and twice as
many labeling reactions as any of the other designs.

Another example is the study of cervical cancer in
patients undergoing concurrent chemoradiation viewed
in time series [20]. Peripheral blood samples were taken
at four time points: twice before treatment and twice
after treatment. We were interested in identifying genes
that were overexpressed but showed similar profiles
throughout the time course. The patient samples were
collected at four time points and a common reference
was prepared. About 10 healthy control samples were
pooled and used as the common reference. The samples
and the common reference were then analyzed in a
dye-swapping fashion. With this design, each sample
is compared to the common reference. The hypothesis
is that, if an array is particularly bright, it will be bright
for both the sample and the reference, so the log ratio
will be free from this artifact. The data from a failed array
can be omitted, and data of other time points are still

usable for analyzing the overall change of gene expres-
sion in patients during concurrent chemoradiation.

Image analysis
The image of the microarray generated by the scanner is
the raw data of a microarray [21,22]. Feature extraction
software converts the image into numerical data that
quantify gene expression by using the positions of the
features on the microarray (such as the pixels on the
image that are part of the features and the nearby pix-
els that will be used for background calculation) to
calculate the numerical information of the intensity 
of the feature, the intensity of the background, and
quality control information. The spot and background
intensities can be acquired with GenePix Pro 4.1 (Axon
Instruments Inc., Union City, CA, USA) software [17].

Normalization
Normalization is used to resolve the systematic errors
and bias in the microarray experimental platform
[18,23–25]. It can be classified into within-array nor-
malization and between-array normalization. Within-
array normalization is achieved by using the tools in the
MATLAB 6.0 (The MathWorks Inc., Natick, MA, USA)
software to eliminate the three sources of systematic
bias [23]: (1) the difference in DNA abundance incor-
porating into the Cy3 and Cy5 labels; (2) the different
emission responses of Cy3 and Cy5 dyes; and (3) the
difference in Cy3 and Cy5 intensities measured on dif-
ferent areas on the array. These biases can be corrected
by using a linear regression of Cy5 against Cy3, a linear
regression of log ratio against average intensity, and a
non-linear (LOWESS) regression of the log ratio against
average intensity, respectively [18]. The software and
instructions for performing the LOWESS algorithm can
be obtained from http://www.stat.Berkeley.EDU/users/
terry/zarray/Html/index.html.

Between-array normalization is a comparison
between samples hybridized to different arrays, which
could be either two-color arrays or Affymetrix arrays.
There are three standard methods: scaling, centering
and distribution normalization. Between-assay normal-
ization is used to minimize experimental variability with-
out interfering with biological variability. Data are scaled
to ensure that the means and standard deviations of
all the distributions are equal.

Clustering methods to analyze gene expression
Analytical analysis of gene expression includes hier-
archical clustering, self-organized mapping, principal
components analysis, K-means clustering, and nearest-
neighbor clustering. Hierarchical clustering is the most
commonly used method of identifying groups of closely
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related genes or samples [26,27]. Hierarchical cluster-
ing is a method that successively links genes or sam-
ples with similar profiles to form a tree structure that is
very much like a phylogenetic tree. This technique has
become popular for four reasons: (1) it simplifies large
volumes of data; (2) the analysis reveals groups of sim-
ilar genes; (3) it visualizes the data in a hierarchical way
using interactive computer programs; and (4) the results
are visualized in a style which is familiar to many geneti-
cists. The algorithm calculates distances between genes
or between samples using single linkage, complete link-
age, or average linkage. Complete linkage defines the
distance between two clusters as the average of the
distances between all pairs of points in the two clusters.
Average linkage is an intermediate value between sin-
gle and complete linkage and tends to perform well in
many microarray applications.

Principal components analysis is used to reduce
multidimensional data to a single x-y graph [28–30].
The data from expression arrays are often of high dimen-
sionality. This analysis allows the data to be reduced
into a lower dimensionality that is more suitable for
visual analysis. When reducing the gene dimensions, the
first step is to construct a variance–covariance matrix
for the genes. Then, a new variable called the eigenvec-
tor is transformed from the matrices. The first principal
component is the axis that captures the most variation
between patients and has the highest eigenvalue. The
second principal component is orthogonal to the first,
maximizing the remaining variance.

Self-organized mapping is a related method that
allocates genes or samples to a predefined number of
clusters that relate to each other on a spatial grid [31].
K-means clustering is a non-hierarchical clustering that
allows genes or samples to cluster appropriately. K-
nearest-neighbors clustering is the simplest method for
grouping samples [26]. The general form of k-nearest-
neighbors clustering uses k nearest neighbors and pro-
ceeds as follows: (1) for each patient, the k nearest
neighbors is found according to the distance metric
used, and (2) the class that is most common among
the k neighbors is predicted.

Minimal Information About a Microarray 
Experiment (MIAME) compliance
When interpreting microarray data, authors are often
requested by editors of many journals to submit suffi-
cient information in the MIAME format that was pro-
posed by the Microarray Gene Expression Data group
[32]. Authors can deposit the data in either one of the
two main public repositories, Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/). There are six

components to MIAME, including experimental design,
array design, samples, hybridizations, measurements,
and normalization of control subjects, all of which
should be included in every microarray publication [1].
The reason for this requirement by many journals is that
microarrays are frequently manufactured independently
of the experiment and are then used for a wide range
of experiments.

Target preparation
RNA preparation from tissues that were snap-frozen in
liquid nitrogen and those that were stored in the reagent
RNAlater (Ambion, Austin, TX, USA) were equally intact
[17]. However, rapid degradation of RNA was noted
when the tissues were kept at room temperature for as
short a time period as 10 minutes. A lab-on-a-chip
device RNA LabChip read on the Bioanalyzer 2100
(Agilent Technologies, Palo Alto, CA, USA) is usually
used to evaluate RNA quality and quantity. With as 
little as 25–500 ng of RNA input, the Bioanalyzer 2100
can calculate the ratio of 28S to 18S ribosomal RNA and
indicate the concentrations of total RNA. On average,
the 28S/18S ratios of RNA isolated from tissues are
between 1.6 and 2.0.

The PAXgene Blood RNA Tubes and PAXgene Blood
RNA Kit (QIAGEN, Mississauga, Ontario, Canada) sys-
tem contains a lysis buffer and a stabilization solution,
which is a mixture of cationic detergent and salts. The
system allows standardized blood collection in optimal
conditions [33–35]. High-throughput microarray tech-
nology in peripheral blood transcriptome has enabled us
to differentiate between healthy and diseased individuals
[36,37] and recognize diseases such as schizophrenia
and bipolar disorder [38], diabetic retinopathy [39],
and cancer [36,40,41].

Verification of microarray results
Microarrays are powerful tools for examining the expres-
sion of thousands of mRNAs, but two potential sources
of error exist. First, as microarrays rely on hybridiza-
tion, accurate measurement is possible only when each
feature on the microarray is in great excess over the
amount of mRNA in the test sample. Second, cross-
hybridization, especially in spotted cDNA microarrays,
can be another source of error. Therefore, confirmation
of the results of gene expression levels is frequently
required. One common method is using real-time quan-
titative PCR (RT-QPCR). Conventional PCR is not quan-
titative, because the end product is observed only after
the bulk of the product has been synthesized. When the
rate of synthesis of new molecules has reached a plateau,
small differences in the amount of target at the start 
of the reaction are masked. Real-time measurement of
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fluorescent product accumulation provides the number
of cycles required to attain the linear phase of increase
in product biosynthesis [42]. With each cycle, the fluo-
rescence intensity reflects the number of molecules of
double-stranded DNA that have been synthesized.

The end point of RT-QPCR analysis is the threshold
cycle or CT. The CT is determined from a log-linear plot
of the PCR signal versus the cycle number. The two most
commonly used methods of analyzing data from RT-
QPCR experiments are absolute quantification and rela-
tive quantification. Absolute quantification determines
the input copy number, usually by relating the PCR sig-
nal to a standard curve [42]. Relative quantification
measures the PCR signal of the target transcript in a
treatment group and compares it to that of another
sample (usually an untreated control). The me-
thod is convenient in analyzing the relative changes 
in gene expression from RT-QPCR experiments [42]. 
In the demonstration by Livak and Schmittgen [42], the
efficiency of the amplification of the target gene (c-myc)
and the internal control (glyceraldehyde-3-phosphate
dehydrogenase [GAPDH]) was examined using RT-
QPCR and TaqMan detection. Using reverse transcrip-
tase, cDNA was synthesized from 1 µg of total RNA
isolated from human Raji cells. Serial dilutions of cDNA
were amplified in a real-time PCR using gene-specific
primers. The sample contained cDNA derived from 1 ng
of total RNA. The �CT (CT c-myc – CT GAPDH) was cal-
culated for each cDNA dilution. If the absolute value
of the slope is close to zero, the efficiencies of the target
and reference genes are similar, and the ��CT calcula-
tion or the relative quantification of target may be used.

Important steps in the design and evaluation of a RT-
QPCR experiment are: (1) to select an internal control
gene, (2) to validate the internal control to determine
that it is not affected by experimental treatment, and
(3) to perform a PCR on serial dilutions of RNA or cDNA
for both the target and internal control genes to ensure
that the efficiencies are similar. Finally, statistical data
should be converted to the linear form and should not
be presented as raw CT values. The purpose of the inter-
nal control gene is to normalize the PCRs for the amount
of RNA added to the reverse transcription reactions.
Standard housekeeping genes usually suffice as internal
control genes. Suitable internal controls for RT-QPCR
include GAPDH, β-actin, β2-microglobulin, and rRNA.

MAGE in Cervical Cancer Research

Implications from cervical cancer cell lines
Gene expression profiling in two morphologically differ-
ent uterine cervical carcinoma cell lines derived from 

a single donor was studied using a human cancer cDNA
array [43]. Among the 10 selected genes, insulin-like
growth factor binding protein-3, inhibitor of apopto-
sis protein-1, and cadherin-13 were more frequently
expressed in squamous cell carcinoma (SC) cell lines.
Interferon-inducible genes, Sno oncogenes, and trans-
forming growth factor (TGF)-β2 receptor were expressed
in both SC and adenocarcinoma (AC) cell lines. It was
suggested that these genes are involved in the morphol-
ogic characteristics and carcinogenesis of cervical cancer.

With the introduction of microarray technology,
large-scale transcriptional changes have been found
after irradiation. Patterns of gene sets characterizing
persistent responses to radiation and those character-
izing immediate responses, as well as genes linked to
radiosensitivity and resistance towards irradiation in
clinical settings, have been reported [44–48].

Two cell lines with different radiosensitivity origi-
nated from the same tumor of a cervical cancer patient
who, prior to treatment, exhibited different gene expres-
sion patterns from the gene expression exhibited when
receiving treatment [49]. The overexpressed genes of
the radioresistant cell line included metal-regulatory
transcription factor-1, cytochrome P450 CYP1B1, adeno-
matosis polyposis coli, translation elongation factor-1,
and cytochrome-c oxidase; whereas, the radiosensitive
cell line overexpressed the transcription factor NF-κB,
metalloproteinase inhibitor-1 precursor, superoxide dis-
mutase 2, insulin-like growth factor binding protein-3,
guanine nucleotide-binding protein, and TGF-β-induced
protein. This early report has shed some light on our
understanding of the biological pathways contributing
to radiation resistance and may lead to the develop-
ment of alternative treatment modalities.

After exposure to 2 Gy of X-rays, Chaudhry et al
examined the expression patterns in HeLa cells in the
G1 and G2 phases of the cell cycle and identified some
previously known and unknown genes associated with
radiation [50]. For example, none of the genes related
to p53 was upregulated, since HeLa cells are deficient in
p53. In addition, both phases of the cell cycle encode
ribosomal proteins. Chen et al demonstrated that NF-κB
was responsible for a major part of the radioresistance
observed in a cell population (HK18-IR) derived from
HK18 cells by fractionated ionizing radiation (2 Gy/
fraction; total dose, 60 Gy) [51].

In cervical carcinoma, extracellular levels of TGF-β1
are increased in the late stage of malignancy [52,53].
Pathways such as the tumor necrosis factor-α (TNF-α),
mitogen-activated protein kinase (MAPK), wingless
type (Wnt) and Smad pathways that are involved in
the cellular processes of proliferation, differentiation,
angiogenesis, wound healing and inhibition of epithelial

2−��CT
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cell growth of cervical cancer have been investigated at
the transcriptional level. Kloth et al observed substan-
tial changes in the gene expression of Wnt, MAPK and
TNF-α pathways, which appear to be induced by TGF-
β1 in cervical cancer cell lines [54]. Changes in gene
expression in TGF-β1 that stimulated cervical cancer
cell lines with high (CC10B), intermediate (SiHa) and
low (HeLa) sensitivity to the antiproliferative effect of
TGF-β1 were investigated at time points 0, 6, 12 and
24 hours. Increased resistance to TGF-β1-induced cell
growth inhibition was correlated with an elevated 
production of TGF-β1 [54].

Differentiation between malignant and normal
cervical epithelia
Much effort has been given to the investigation of dif-
ferentially expressed genes in cervical cancer (Table)

and the evaluation of the feasibility of gene expression
profiling on squamous cervical cells obtained from cer-
vical swabs [55]. Hudelist et al showed the feasibility
of gene expression profiling of cervical squamous cells
obtained with cytobrushes by identifying a characteris-
tic gene expression pattern that clearly distinguishes
between malignant and normal cervical epithelia of
squamous type [55]. Cervical cells from three women
with high-risk human papillomavirus-positive invasive
squamous cervical carcinoma and from three human
papillomavirus-negative women with normal ectocervi-
cal smears were analyzed with cDNA array. Immunoblot
analysis was performed to detect the proteins that 
corresponded to the highest upregulated genes with
cDNA array. mRNA expressions of ERBB2, KIT, FLT1,
MYCN, RAS, CDKN2A, CCND1, NME1, NME2, MET,
FGF7, FGFR2, and STAT1 were increased in malignant
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Table. Studies on gene expression profiling in cervical cancer patients

Study Upregulated gene expression changes Reference

Cell swab
Smear of HR-HPV SC (n = 3) ≥ 10 fold in cancer cells of MET proto-oncogene, Hudelist et al [55]

and normal ectocervix (n = 3) NME1, NME2, EGFR, FGFR2, ERBB2 proto-oncogene, 
CDKN2A/p16INK2A

Tissues
Stage IB–IIA cancer and Guanine nucleotide-binding protein Gs, leukocyte Shim et al [57]

normal tissue pairs (n = 5) adhesion protein (LFA1-β), NF45, Hox-A1,
β-catenin in cancer

Various stages of cancer (n = 38) G32C4B (NADH dehydrogenase 4 gene) Cheng et al [56]
and normal tissue (n = 5) and G30CC (ribosomal protein S12 gene) as early

pre-transformation diagnostic markers
SC (n = 9), AC (n = 3), HSIL (n = 5), Cellular proliferation, extracellular matrix-associated Chen et al [58]

LSIL (n = 5), normal (n = 12) genes in cancer
SC, AC, NGE, NSE (n = 10 in c-myc, RhGC, KRT-4 in SC Contag et al [61]

each group)
Early (I–II; n = 19) and late stage CTGF and RGS1 in late stage cancer Wong et al [62]

(III–IV; n = 10) in SC
Combined CGH and expression Amplification-associated genes at 8q24.3, 11q22.2, Narayan et al [68]

profiles (n = 31) 20q13 involved in cervical cancer pathogenesis

Response to radiation
Radiation-sensitive (n = 17) and ICAM3 in radiation-resistant tumors Chung et al [47]

radiation-resistant SC tumors

Prognostic outcome
Radiation patients (n = 19) A predictive score with 35 genes in apoptosis Harima et al [46]

(BIK, TEGT, SSI-3), hypoxia-inducible genes
(HIF1A, CA12), tumor invasion
(CTSL, CTSB, PLAU, CD44)

SC (n = 16), AC (n = 9), and TACSTD1 and CEACAM5 as poor prognostic Chao et al [6]
ASC (n = 5) factor in AC and ASC patients

HR-HPV = high-risk human papillomavirus; SC = squamous cell carcinoma; AC = adenocarcinoma; HSIL = high-grade squamous intraepithelial lesion; LSIL =
low-grade squamous intraepithelial lesion; NGE = normal glandular epithelium; NSE = normal squamous epithelium; CGH = comparative genomic hybridization;
ASC = adenosquamous cell carcinoma.



samples. Several genes that are associated with anti-
apoptosis (such as BCL2), cell structuring or cell attach-
ment were also upregulated in carcinoma cells [55].

Pattern distinction between different cell types and
biomarker discovery of aggressive cancer
Utilizing RT-QPCR and cDNA microarrays, Cheng et al
identified cellular genes that are involved in the multi-
step carcinogenesis of SC [56]. Thirty-eight cervical
cancer patients in various stages of the disease and five
non-cervical cancer patients were studied. Northern
blot analysis and RNA–RNA in situ hybridization stud-
ies were also used for verification. When compared
with sequences available in the GenBank database,
two clones (G32C4B and G30CC) were identified to 
be the NADH dehydrogenase 4 gene and the gene that
encodes ribosomal protein S12, respectively. Increased
expression of these two genes was detected in the
matched normal tissues collected together with the late
International Federation of Gynecology and Obstetrics
(FIGO) stages of cervical cancer biopsies. In compari-
son, upregulation of these two genes was not detected
in benign cervical squamous epithelia, suggesting that
expression of these two genes in the adjacent histopatho-
logically “normal” cervical squamous epithelial tissue
may be different from that in cervical cancer [56].

Systematic analysis of the expression pattern during
the various steps of cervical tumorigenesis revealed that:
(1) there are specific patterns of gene expression in cel-
lular processes during carcinogenesis, and these profiles
can discriminate between normal cervical tissue and
low-grade cervical intraepithelial neoplasia (CIN) from
high-grade CIN and cervical cancers; (2) many of these
genes are also expressed in the stroma adjacent to the
cancer tissue; and (3) the extent of gene overexpres-
sion is increased during the progression from low-grade
to high-grade CIN and finally to cancer [57–60].

Comparisons of gene expression in SC and AC of
the uterine cervix using microarray experiments have
been reported [6,61]. Selected differentially expressed
genes between AC and SC were further verified using
RTQ-PCR and immunohistochemistry. Genes including
CEACAM5, TACSTD1, S100P and MSLN were upregu-
lated in AC. On the contrary, genes involved in the epi-
dermal differentiation complex, such as S100A9 and
ANXA8, were upregulated in SC. In a group of patients
with known long-term outcomes (n =63; median follow-
up, 70.3 months; range, 4–208 months), the correlation
between the selected six differentially expressed genes
and histology was highly significant. Increased expres-
sion levels of CEACAM5 and TACSTD1 were significantly
correlated with poorer patient outcomes using a mul-
tivariate Cox proportional hazards regression analysis.

The combination of the cDNA microarray, RTQ-PCR
and immunohistochemical results of this study showed
that it is possible to define different gene profiles for
AC and SC. Moreover, TACSTD1 expression may be a
novel poor prognostic factor [6,61]. In another study
in Hong Kong, two genes, CTGF and RGS1, were found
to be more upregulated in late-stage cancer than in
early-stage cancer, suggesting that they may be involved
in cancer progression. The pathway analysis of expres-
sion data showed that the SPP1, VEGF, CDC2 and CKS2
genes were coordinately and differentially regulated
between cancer and normal tissues [62].

Association of expression profiling with radiation
Gene expression profiling by DNA microarray has been
applied to classify disease stages and predict treatment
response to radiotherapy in cervical cancer [44–48,63].
Wong et al classified tumors into two major groups
based on their responses to radiotherapy, and they were
able to predict the response of these patients to radio-
therapy from their expression profiles using a prediction
model [45]. The top 100 differentially expressed genes
represented a wide spectrum of cellular functions,
including transcription, cell adhesion, membrane and
cytoskeletal, and signal transduction functions [45].

Kitahara et al studied the gene profiles of 10 radiore-
sistant cervical SCs versus nine radiosensitive samples
that had a complete response to radiation [44]. Sixty-
two genes were used to classify the tumors, and the
resistant cells had higher levels of the DNA repair gene,
X-ray repair cross-complementing 5 (XRCC5), and its
gene product Ku80. Subsequent follow-up analysis of
Ku80 levels in 89 cervical cancer patients revealed that
low expression of Ku80 protein was correlated with
sensitivity to radiation [63].

Harima et al identified 35 genes that could clearly
separate the thermoradiosensitive group from the ther-
moradioresistant group and further divided these genes
into three groups: apoptosis genes (e.g. BIK, TEGT, SSI-3),
hypoxia-inducible genes (e.g. HIF1A, CA12), and tumor
cell invasion and metastasis genes (e.g. CTSL, CTSB,
PLAU, CD44) [46]. These findings echoed the hypothesis
that increased tumor hypoxia leads to radiation resist-
ance and increased tumor angiogenesis [64,65].

Narrowing down the genome-wide expression pro-
filing, Chung et al first compared gene expression pro-
files between the parental SiHa cervical cancer cells and
the derived radiation-resistant SiHa/R cells. Expression
of ICAM-3 was upregulated in SiHa/R cells. Further
verification showed that the overexpression of ICAM-3
was significantly more frequent in radiation-resistant cer-
vical cancer specimens when compared with radiation-
sensitive specimens (83.3% vs. 35.3%; p = 0.015). These
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observations suggest that the expression of ICAM-3
may be used as a biomarker to predict the radiation
resistance in cervical cancer that occurs during radio-
therapy [47].

Using an in vitro chemoradiation response assay after
exposure to 3 Gy γ-irradiation, Tewari et al divided eight
viable primary untreated cervical cancer specimens into
extreme (n = 4), intermediate (n = 2) and low radiation
resistance (n = 2) categories. They identified a radiation
response gene set of 54 genes transcripts with 100%
accuracy for classifying tumors according to their radi-
ation response [66]. The functional classes of these
genes include signal transduction, apoptotic pathway,
cell cycle regulation, DNA repair, RNA transcription,
and protein transport.

To identify the genes that may be involved in the
development of late tissue injury, genes that were differ-
entially expressed in mouse tissues with specific vascu-
lar damage were studied [67]. Microarray experiments
were performed using amplified RNA isolated from
irradiated mouse kidney and rectum and from sham-
irradiated controls at 10 and 20 weeks after treatment.
The mouse kidney experiments showed that jagged 1
and Kruppel-like factor 5 (KLF5), which are reported
to play a role in vascular development and remodeling,
were upregulated in both tissues.

Chromosomal amplifications and associated
expression changes in cervical cancer
The combining of genomic alteration and gene expres-
sion to examine the molecular changes in cervical cancer
has been reported [68]. The use of cDNA array com-
parative genomic hybridization and fluorescence in situ
hybridization to analyze 29 cervical cancers demon-
strated the presence of high-level amplifications at the
8q24.3, 11q22.2 and 20q13 regions. These regions con-
tain several known tumor-associated genes, such as
those involved in transcription, apoptosis, cytoskeletal
remodeling, ion-transport, drug metabolism, and
immune response. The changes in expression of the
amplification-associated genes were then analyzed
with Affymetrix U133A expression arrays and semi-
quantitative reverse-transcription PCR in 31 cervical
cancers [68]. The identification of characteristic focal
amplicons and expression profiles has facilitated the
understanding of cervical cancer pathogenesis.

Conclusion

Microarray technology has been used in the search for
gene profiles that are associated with different histologic
types, responses to radiation, and prognostic outcomes.

Results of these studies have led us to better under-
stand the molecular events in cervical cancer. Never-
theless, many pertinent questions remain unanswered,
such as the transcriptional changes in radiation and the
functions of differentially expressed genes of cervical
cancer during treatment. At this moment, microarrays
are providing an opportunity for expansive research that
can help unravel the mysteries of tumor biology, but
they are still too costly for widespread clinical use in
gynecologic cancer.
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