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Abstract: Globally, cancer is the second leading cause of mortality and morbidity. The growth
and development of cancer are extremely complex. It is caused by a variety of pathways and
involves various types of enzymes. Pyruvate kinase M2 (PKM2) is an isoform of pyruvate kinase,
that catalyses the last steps of glycolysis to produce energy. PKM2 is relatively more expressed in
tumour cells where it tends to exist in a dimer form. Various medicinal plants are available that
contain a variety of micronutrients to combat against different cancers. The phytocompounds of
the olive tree (Olea europaea) leaves play an important role in inhibiting the proliferation of several
cancers. In this study, the phytocompounds of olive leaf extract (OLE) were studied using various
in silico tools, such as pkCSM software to predict ADMET properties and PASS Online software to
predict anticancer activity. However, the molecular docking study provided the binding energies
and inhibition constant and confirmed the interaction between PKM2 and the ligands. The dynamic
behaviour, conformational changes, and stability between PKM2 and the top three hit compounds
(Verbascoside (Ver), Rutin (Rut), and Luteolin_7_O_glucoside (Lut)) are studied by MD simulations.

Keywords: pyruvate kinase M2 (PKM2); virtual screening; ADMET analysis; molecular docking;
molecular dynamic simulations

1. Introduction

Cancer is initiated by alterations in the human genome that enhance cellular pro-
liferation through variation in normal pathways and mechanisms. However, cancer is
the second prominent cause of death worldwide [1]. The development of cancer is an
extremely complex process, therefore, it is recognized as a multifactorial disease [2]. The
main difference between cancer and normal cells is that, even when there is adequate
oxygen available in the surroundings, cancer cells are completely dependent on aerobic
glycolysis to generate energy. During glucose metabolism, pyruvate kinase catalyses the
last step of the conversion of phosphate unit from phosphoenolpyruvate to ADP to form
the end-products as pyruvate and ATP. Under aerobic conditions, tumour cells continue to
convert glucose to lactate, and this phenomenon is termed the Warburg effect [3]. In mam-
mals, there are four main types of pyruvate kinase (PK) isomers, which include PKL, PKR,
PKM1, and PKM2. PKL is mainly expressed in the liver, intestine, and kidney, whereas
PKR is primarily up-regulated in RBC [4]. PKM1 is expressed in the muscles, heart, and
brain. However, PKM2 is up-regulated in tumours and embryonic tissues of proliferating
cells [5]. In healthy tissues, PKM2 proteins transit between the tetrameric form to dimeric
form. Moreover, in tumour cells, PKM2 exist in the dimeric form. The low catalytic activity
of dimeric PKM2 increases the anabolic synthesis of protein through the pentose phosphate
pathway and thus, stimulates the growth and development of cancer cells [6].
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Olive tree (Olea europaea) leaves have been widely used in folk medicine in the Eu-
ropean Mediterranean area, India, Arabian peninsula, and other tropical and subtropi-
cal regions for the treatment of inflammation, allergies, diarrhea, and diseases such as
Alzheimer’s, chronic fatigue syndrome, and osteoarthritis [7]. The bioactive composites
of olive leaf extract (OLE) contain a higher quantity and variety of microconstituents than
extra virgin olive oil (Table 1). There is also a structural difference between the phyto-
compounds of OLE that shows a great enhancement to health outcomes compared with
olive fruit [8]. It has been proposed that the OLE plays an important protective role in
inhibiting the proliferation of several cancer cell lines including pancreatic, leukaemia,
breast, prostate, and colorectal [9]. There are numerous bioactive compounds of OLE that
are studied for the inhibition of progression and development of different types of cancers.
A study conducted on flavonoids of OLE against HeLa cervical cancer cells reported that its
increasing concentrations resulted in decreased cancer cell viability. The major compounds
detected in the extract were luteolin-4′-O-glucoside, apigenin-7-O-glucoside, and rutin [10].
Similarly, another study found a cytotoxic effect of OLE extract on MCF-7 breast and HepG2
hepatocellular carcinoma cells [11]. Some of the compounds of OLE have been reported to
induce apoptosis and inhibit proliferation in the cancer cells due to its potential anticancer
activity [12]. In this study, we utilized in-silico approaches such as (i) pharmacoinformatics
to predict the toxicity, anticancer, and pharmacokinetics properties of the selected phyto-
compounds against PKM2, (ii) molecular docking, and (iii) molecular dynamic simulations
for evaluation of the conformational changes, stability, and intermolecular interactions
between PKM2 and the phytocompounds. This study aims to identify the potential lead
phytocompounds from OLE to combat PKM2-related cancer in the coming future.

Table 1. List of bioactive compounds, their micro constituents and molecular formula present in olive
leaf extract (OLE).

Compound Names Micro Constituent Formula Reference

Rutin Flavonoid C27H30O16 [13]
Luteolin_7_O_glucoside Flavonoid C21H20O11 [14]

Verbascoside Phenolic compound C29H36O15 [13]
Maslinic acid Triterpenoid C30H48O4 [15]
Oleuropein Secoiridoid C25H32O13 [1]

Lucidumoside C Secoiridoid C27H36O14 [14]
Ursolic acid Triterpenoid C30H48O3 [13]

Oleanolic acid Triterpenoid C30H48O3 [13]
Uvaol Phenolic compound C30H50O2 [15]

Betulinic acid Triterpenoid C30H48O3 [16]
Oleoside Secoiridoid C16H22O11 [13]

Elenolic acid glucoside Secoiridoid C17H25O11 [13]
Loganic acid Phenolic compound C16H24O10 [17]

Diosmetin Flavone glycoside C21H13O11 [18]
Apigenin Flavonoid C15H10O5 [13,14]

Secologanin Phenolic compound C17H24O10 [17]
Ferulic acid Phenolic compound C10H10O4 [19]

Hydroxytyrosol Phenolic compound C8H10O3 [13]
Gallic acid Phenolic compound C7H6O5 [20]

Coumaric acid Phenolic compound C9H8O3 [21]
Homovanillyl alcohol Phenolic compound C9H12O3 [13]

Cinnamic acid Phenolic compound C9H8O2 [13]
Tyrosol Phenolic compound C8H10O2 [22]
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2. Materials and Methods
2.1. Preparation of the Phytocompounds Database

The three-dimensional structure of the phytocompounds of OLE was retrieved from
PubChem (www.pubchem.ncbi.nlm.nih.gov) in the format of SDF. The molecules were
then converted to PDB format using Chimera 1.14 software (California, SF, USA) [23]. The
PDB file was further used for molecular docking.

2.2. Prediction of ADMET Properties

Computational pharmacokinetics in an in-silico approach was used to determine the
time course of drug absorption, distribution, metabolism, excretion, and toxicity (ADMET).
In the early stages of the selection of phytocompounds, ADMET properties support and
define the efficiency and integrity of the active compounds. To estimate the ADMET
properties of phytocompounds, pkCSM server was used [24]. Toxicity can be evaluated by
measuring the degree of the quality of a chemical substance being poisonous to humans or
animals and that can damage an organ. It is very important to evaluate the harmful effect
of chemical compounds before undergoing a drug trial. Toxicity evaluation is one of the
main and vital steps in the drug design process [25].

2.3. Prediction of Anticancer Activity

The in-silico prediction of anticancer properties of the selected phytocompounds were
further studied by using a web server named PASS-Way2Drug server. The PASS (Prediction
of Activity Spectra for Substances) gives p values for the similarity measures based on
which anticancer activity is predicted as highly possible or less possible [26]. It can hit
65% positive results at a rate of 0.05 false-positive outcomes. Since it requires the canonical
Simplified Molecular Input Line Entry String (SMILES) of compounds to be investigated,
we used the PubChem server as sources of required entries.

2.4. Retrieval and Preparation of Protein

In this study, the 3D structure of the PKM2 (PDB ID: 3BJF) obtained by X-ray diffraction
with a resolution of 2.03 Å was retrieved from RCBS, Protein Data Dank (https://www.
rcsb.org/, accessed on 8 June 2022). The human PKM2 protein is a homo-tetramer with
a molecular weight of 228.50 kDa. Each chain contains 518 residues. The ions, water
molecules, and other ligands were removed to make a clean PDB structure. The only
monomeric structure of PKM2 was taken for molecular docking and simulation studies. A
detailed procedure is given in the molecular docking section.

2.5. Screening of Potential Lead Compounds

The active site of enzymatic proteins contains a catalytic site, where the substrate
binds, and the reaction is catalysed forming the product. Mammalian PKM2 is a tetrameric
protein with identical subunits. Each monomer contains one active site and is composed of
three main domains—designated A, B, and C—plus a small N-terminal domain. Molecular
docking is a well-known screening tool that can analyse the best binding mode of a ligand
to a targeted macromolecule. The molecular docking was performed using AutoDock-Vina
software (La Jolla, CA, USA) [27]. The receptor molecule (PKM2) was cleaned before
preparation. The non-polar hydrogen was added and then Kollman charges were added.
The spacing of the grid was set to 1 Å. The size of the grid was 60 × 72 × 92 with centre as
x = 3.580, y = −18.461, and z = 27.361. The receptor was finally saved into PDBQT format
using MGLTools 1.5.6. The ligand molecules were made flexible by detecting the roots
to obtain the best possible conformation. The ligands were saved in PDBQT format. The
analysis of molecular docking was performed using LigPlot+ (Cambridge, UK), Discovery
Studio 2021, AutoDock Tools (La Jolla, CA, USA), and PyMOL [28–30].

www.pubchem.ncbi.nlm.nih.gov
https://www.rcsb.org/
https://www.rcsb.org/
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2.6. Molecular Dynamics Simulations

The top three compounds, Rut, Lut, and Ver, exhibiting the highest binding affinity
towards PKM2 were used for further studies using molecular dynamics (MD) simulations.
For these selected compounds, the docked conformations with the lowest binding energy
were taken as the initial structure of MD simulation. The MD simulations were performed
on Gromacs 2018.1 package using amber99sb-ILDN force field [31,32]. The topology of
the ligands was generated with Antechamber packages in AmberTools21 [33]. PKM2
alone was also simulated as a control. All systems were solvated in a triclinic box using
the TIP3P water model followed by their neutralization by adding 3 chlorine ions. The
energy of the system was minimized using a maximum of 50,000 steps to remove the weak
van der Waals contacts. The systems were equilibrated for NVT and NPT for 1 ns, each
using a V-rescale thermostat at 310 K and using Parrinello-Rahman barostat at 1.0 bar,
respectively. The equilibrated structure was finally used to perform 100 ns MD simulations.
Three replicates of each system were simulated, and the data are presented as averages.
Each trajectory and all trajectories were subjected to periodic boundary conditions (PBC)
corrections before analysis. Using Gromacs utilities, root mean square deviation (RMSD)
of the backbone was calculated for initial conformation. Furthermore, root mean square
fluctuations (RMSF), hydrogen bond analysis, solvent accessible surface area analysis
(SASA), radius of gyration (Rg), secondary structure of protein, etc., were calculated. The
principal complement analysis (PCA) was calculated using gmx covar utility of gromacs
that calculates and diagonalizes the covariance matrix and a new trajectory file. The new
trajectory written was then analysed by gmx anaeig in which all structures are fitted to
the structure in the eigenvector file. The free energy landscape was made using gmx sham
utility. The quantitative evaluation of the interaction of ligands with PKM2 was done using
MM-PBSA calculation [34].

3. Results and Discussion
3.1. Prediction of ADMET Properties

The preliminary analysis of the phytocompounds of OLE was performed for its ability
to cause toxicity in different models using in-silico tools. Compared with the conventional
methods, computer-aided toxicity tests are fast and inexpensive methods that eliminate
potentially toxic chemical compounds at an initial stage and reduce many biological experi-
mental tests. Using the pkCSM web server, the toxicity of all compounds was predicted.
The drug-induced AMES toxicity, hepatotoxicity, skin sensitization, and Tetrahymena pyri-
formis (T. pyriformis) toxicity, and oral rat acute toxicity of selected compounds are listed in
Table 2. AMES toxicity measures the mutagenic potential of compounds [35]. Out of all
tested compounds, only the hydroxytyrosol showed AMES toxicity. In hepatotoxicological
assessment, five compounds namely ursolic acid, oleanolic acid, uvaol, betulinic acid, and
maslinic acid, were predicted positive. Similarly, only tyrosol was found to exhibit skin
sensitization properties. T. pyriformis is one of the most routinely used model organisms to
test the toxicity of compounds [36]. All compounds showed very low or negligible toxicity
in the T. pyriformis model of toxicity. This indicates that most of the tested compounds
were not toxic to T. pyriformis-based toxicity. For instance, there is no inhibition of human
ether-a-go-go-related gene 1 (hERG-1) K+ channels in this study. The hERG-1 is toxic for
the heart and may produce lethal cardiac arrhythmia. Therefore, early-stage identification
of putative hERG inhibitors or non-inhibitors may play an important role in reducing
cardiotoxicity. Moreover, the oral rat acute toxicity of all compounds was also evaluated.
In all compounds, except lucidumoside C, the oral rat acute toxicity was found to be below
3 log µg/l. Based on the toxicological assessment of selected compounds, it may be inferred
that most of the phytocompounds of OLE were not found to exhibit toxicity. The ADME
properties of the phytocompounds predicted by the pkCSM web server indicate relevant
pharmaceutical properties for most of the compounds as shown in Table 3.
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Table 2. Assessment of the toxicity of different bioactive compounds of olive leaf extract (OLE) using
pkCSM webserver.

Compound Names AMES
Toxicity

hERG-I
Inhibitor

Hepato-
Toxicity

Skin
Sensitisation

T. pyriformis Toxicity
(log µg/L)

Oral Rat Acute
Toxicity (mol/kg)

Rutin No No No No 0.285 2.491
Verbascoside No No No No 0.285 2.527

Luteolin_7_O_glucoside No No No No 0.285 2.547
Ursolic acid No No Yes No 0.285 2.346

Oleanolic Acid No No Yes No 0.285 2.349
Oleuropein No No No No 0.285 2.862

Maslinic acid No No Yes No 0.285 2.516
Uvaol No No Yes No 0.376 2.646

Betulinic acid No No Yes No 0.285 2.256
Apigenin No No No No 0.38 2.45

Loganic acid No No No No 0.285 1.995
Oleoside No No No No 0.285 2.389

Diosmetin No No No No 0.336 2.338
Elenolic acid glucoside No No No No 0.285 2.35

Lucidumoside C No No No No 0.285 3.068
Secologanin No No No No 0.285 2.031

Coumaric acid No No No No 0.319 2.155
Cinnamic acid No No No No 0.247 2.094

Ferulic acid No No No No 0.271 2.282
Hydroxytyrosol Yes No No No −0.128 1.858

Gallic acid No No No No 0.285 2.218
Tyrosol No No No Yes −0.244 1.861

Homovanillyl alcohol No No No No −0.059 1.891

1/total 0/total 5/total 1/total

T. pyriformis toxicity- Aquatic toxicity model. Oral Rat Acute Toxicity is presented as LD50.

Table 3. Evaluation of the ADME properties of the phytocompounds present in the olive leaf extract
(OLE) using pkCSM web server for human model.

Compound Names
Absorption Distribution Metabolism Excretion

Water Solubility
(log mol/L)

Intestinal
Absorption (%)

Fraction Unbound
(Fu)

CYP3A4
Inhibitor

Total Clearance
(log mL/min/kg)

Rutin −2.892 3.446 0.187 No −0.369
Verbascoside −2.906 32.119 0.269 No 0.479

Luteolin_7_O_glucoside −2.716 37.556 0.224 No 0.478
Ursolic acid −3.072 100 0 No 0.083

Oleanolic Acid −3.074 99.931 0 No 0.285
Oleuropein −2.722 44.206 0.485 No 1.176

Maslinic acid −3.042 100 0.033 No −0.071
Uvaol −5.947 92.819 0 No 0.206

Betulinic acid −3.122 99.763 0.018 No 0.116
Apigenin −3.329 93.25 0.147 No 0.566

Loganic acid −2.365 16.515 0.641 No 1.225
Oleoside −2.604 0 0.567 No 1.395

Diosmetin −3.238 79.898 0.068 No 0.598
Elenolic acid glucoside −2.517 20.4 0.606 No 1.482

Lucidumoside C −2.833 41.241 0.418 No 1.146
Secologanin −2.676 40.54 0.611 No 1.585

Coumaric acid −2.378 93.494 0.428 No 0.662
Cinnamic acid −2.608 94.833 0.38 No 0.781

Ferulic acid −2.817 93.685 0.343 No 0.623
Hydroxytyrosol −1.139 72.809 0.593 No 0.23

Gallic acid −2.56 43.374 0.617 No 0.518
Tyrosol −1.146 85.255 0.485 No 0.283

Homovanillyl alcohol −1.433 84.608 0.395 No 0.305
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3.2. Prediction of Anticancer Activity

Prior to docking, the potential cellular targets of phytocompounds of OLE were also
identified through the PASS Online software (http://www.way2drug.com/passonline).
Using PASS Online, we only predicted the anticancer activity in which two main param-
eters, pyruvate kinase inhibition and antineoplastic properties, were considered. The
reason for selection of these two parameters is that this study focuses on the screening
of compounds against pyruvate kinase. The PASS Online sever predicts the biological
activities of compounds and presents the results in the form of indices of the biological
activity or inactivity [26]. There are probabilities of either presence of biological activity
(Pa) or absence of biological inactivity (Pi). The predicted pyruvate kinase inhibition and
antineoplastic properties of compounds of OLE are listed in Table 4. For pyruvate kinase
inhibition, the Pa values of all compounds were more than Pi, showing the probability of
biological activity compared with inactivity. It is interesting to note that Pa values of the top
three compounds were far more than the Pi values. This shows the greater probability of
these hit compounds to inhibit the pyruvate kinase. Similarly, Pa values for antineoplastic
properties of selected compounds were also far more than Pi values. These two parameters
indicate higher chances of anticancer activity of these compounds.

Table 4. Anti-cancer predictions of the phytocompounds present in the olive leaf extract (OLE) using
Way2Drug (pass) server.

Compound Name
Pyruvate Kinase Inhibition Antineoplastic

Pa Pi Pa Pi

Rutin 0.229 0.009 0.849 0.007
Luteolin_7_O_glucoside 0.680 0.002 0.830 0.009

Verbascoside 0.115 0.017 0.814 0.010
Maslinic -- -- 0.867 0.005

Oleuropein -- -- 0.387 0.109
Lucidumoside C -- -- 0.674 0.030

Ursolic acid -- -- 0.857 0.006
Oleanolic acid -- -- 0.876 0.005

Uvaol -- -- 0.907 0.005
Betulinic acid -- -- 0.925 0.005

Oleoside 0.091 0.025 0.796 0.012
Elenolic acid glucoside 0.063 0.050 0.795 0.012

Loganic acid 0.071 0.040 0.817 0.010
Diosmetin 0.135 0.014 0.791 0.013
Apigenin 0.280 0.007 0.774 0.015

Secologanin -- -- 0.500 0.071
Ferulic acid 0.080 0.031 0.601 0.045

Hydroxytyrosol 0.119 0.016 -- --
Gallic acid 0.124 0.016 0.313 0.145

Coumaric acid 0.163 0.011 0.520 0.065
Homovanillyl alcohol 0.070 0.040 0.321 0.140

Cinnamic acid 0.141 0.013 0.455 0.085
Tyrosol 0.132 0.014 -- --

It is documented that both the extract and phytocompounds of OLE plays a protective
role in the inhibition and proliferation of several cancer cell lines such as pancreatic cancer,
leukaemia, breast, prostate, colorectal etc. [9]. Moreover, certain bioactive compounds of
OLE have also been found to reduce the progression of some cancer types. For insurance,
the flavonoids of OLE were found to be effective against HeLa cervical cancer cells and also
decreased cancer cell viability. The major compounds detected in the extract were luteolin-
4′-O-glucoside, apigenin-7-O-glucoside, and rutin [10]. Similarly, another study found
the cytotoxic effect of OLE extract on the MCF-7 breast, HepG2 hepatocellular carcinoma
cells [11].

http://www.way2drug.com/passonline
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3.3. Screening of Potential Phytocompounds

The molecular docking study was performed for virtual screening and to determine the
best intermolecular interaction between the PKM2 protein and the phytocompounds. In this
study, the selected phytocompounds of OLE were docked using Autodock-Vina software.
The docking with Autodock-vina gave nine best conformations in which the conformation
with lowest binding energy was considered. The binding energies and inhibition constant
of compounds against PKM2 are listed in Table 5. Most of the compounds exhibited good
binding affinity towards PKM2 and binding energies ranged from −5.7 to −10.0 kcal/mol.
A total of 13 compounds were found to be docked at the catalytic site of PKM2. Only three
compounds were found to bind at the allosteric site and the rest of the phytocompounds
were found to interact at the other sites, i.e., sites other than catalytic and allosteric site. The
top three compounds that were identified on the overall basis of binding energy, binding
site, pharmacokinetics data, ADMET properties, predicted anticancer activities were Rut,
Ver, and Lut. It is interesting to note that these three compounds were docked at the catalytic
site of PKM2. The inhibition constant of Rut, Ver, and Lut were found to be 0.046, 0.064,
and 0.296 µmol/l, respectively. The data clearly shows the potency of these compounds
to inhibit PKM2 at very low concentrations. Rut interacted with Asp296, Glu332, His78,
Arg120, and Arg73 of PKM2 via hydrogen bonds (Figure 1B). Asp178 formed hydrophobic
interacts with Rut. Similarly, Asn210, Gly363, Asn75, Ile51, Arg73, Glu272, Lys270, Asp296,
Thr328, and Ser362 formed hydrogen binds with Lut (Figure 1A). Other amino acids were
involved in hydrophobic interactions. Ver was found to make hydrogen bonds with Glu118,
Glu272, Thr328, Ser362, Asn75, Gly52, and Asp296 (Figure 1C). The 3D docked structure of
the top three complexes are shown in Figure 1. The data clearly show the strong affinity
of these compounds with PKM2 which paves the way for exploration of their therapeutic
effects under in vitro and in vivo models.

Table 5. Screening of the phytocompounds to obtain potential lead molecules (bold) based on their
respective binding energy profile upon docking with PKM2 using Autodock vina.

Compound Names PubChem
CID

Binding Energy
(kcal/mol)

Ki
(µmol/L) Binding Site

Rutin 5280805 −10 0.046 CS
Verbascoside 5281800 −9.8 0.064 CS

Luteolin_7_O_glucoside 5280637 −8.9 0.296 CS
Ursolic acid 64945 −8.9 0.296 OS

Oleanolic Acid 10494 −8.8 0.351 CS
Oleuropein 5281544 −8.8 0.351 CS

Maslinic 73659 −8.7 0.415 OS
Uvaol 92802 −8.7 0.415 OS

Betulinic acid 64971 −8.4 0.690 OS
Apigenin 5280443 −8.1 1.145 OS

Loganic acid 89640 −8 1.356 CS
Oleoside 101042548 −8 1.356 CS

Diosmetin 5281612 −9 0.250 CS
Elenolic acid glucoside 10692563 −7.6 2.665 CS

Lucidumoside C 10793430 −7.5 3.155 CS
Secologanin 161276 −7.1 6.201 CS

Coumaric acid 637542 −6.9 8.693 AS
Cinnamic acid 444539 −6.4 20.226 CS

Ferulic acid 445858 −6.3 23.947 OS
Hydroxytyrosol 82755 −6.3 23.947 AS

Gallic acid 370 −6 39.746 CS
Tyrosol 10393 −6 39.746 AS

Homovanillyl alcohol 16928 −5.7 65.968 CS
Ki: Inhibition content; AS: allosteric site, CS: catalytic site; OS: other site (other than catalytic and allosteric site).
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Figure 1. 2D and 3D representation of the docked structures of the top three lead molecules showing
the residues involved in the interaction of the protein-ligand complexes. (A) PKM2-Lut complex;
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3.4. Molecular Dynamics Simulation
3.4.1. Analysis of RMSD and RMSF

The preliminary analysis of the molecular dynamics simulation data was performed
by calculating the RMSD of all systems with respect to their respective initial conformations.
The RMSD values provide an idea regarding the stability of proteins/complexes during
MD simulation studies. The RMSD of all systems are shown in Figure 2A. The RMSD
of all systems exhibited some variations until 40 ns and then the systems became stable.
This shows that all systems were well equilibrated after 40 ns. The average RMSD of
PKM2 alone was found to be 0.311 nm. Similarly, the RMSD of the PKM2-Ver complex,
PKM2-Rut complex, and PKM2-Lut complex was found to be 0.317, 0.313, and 0.305 nm,
respectively. A slight increase in RMSD values compared with PKM2 alone is due to the
dynamic behavior of ligands in the binding pocket. The RMSDs of binding pocket residues
were also calculated as shown in Figure 2B. The average RMSD of the binding pocket
of PKM2 alone was obtained as 0.336 nm, whereas the RMSD of the binding pocket of
PKM2-Ver complex, PKM2-Rut complex, and PKM2-Lut complex were 0.279, 0.234, and
0.236 nm, respectively. It is interesting to note that the RMSD of binding pocket of all
complexes decreased compared with that of PKM2 alone which is due the stabilization
of the binding region after interaction of the ligands. The fluctuation in all amino acids
of PKM2 alone and the complexes were studied by calculating the RMSF of Cα of the
residues, as presented in Figure 3A. The RMSF of most of the amino acids of were found to
be less than 0.25 nm, further indicating the stable nature of the systems. There were certain
spikes in RMSF which are attributed to the loops and coils of PKM2 that tend to fluctuate
in aqueous environments. The RMSF of each atom of all ligands were also calculated to
obtain their dynamic behaviour (Figure 3B). Out of all ligands, Lut was found to exhibit the
least dynamic behaviour. Other ligands, Rut and Ver, showed relatively more fluctuation
indicating their dynamic behaviour in the binding pocket. This dynamic behaviour may be
attributed to the rotatable bonds and the changes in interaction at binding site. As evident
from the docking studies, the binding site of these three ligands were at the catalytic site
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of PKM2. This shows that ligands exhibited dynamical shift for their respective initial
positions at the catalytic site of the protein.
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3.4.2. Analysis of Physicochemical Parameters, Structure Compactness and
Secondary Structure

Further detailed analysis of PKM2 and its complexes in aqueous environment was
performed in order to validate the stability of each system and their physicochemical
parameters, such as total and potential energies (Figure 4A). The potential energy of all
complexes remained constant and equal to the PKM2 alone. Similarly, the total energy of
all systems was found to be uniform throughout the simulation. These parameters show
the stability of systems in physiological conditions [37]. The mass-weighted RMS distance
of the collection of atoms from their common centre of mass is termed as radius of gyration
(Rg). Typically, compact proteins such as globular proteins have relatively lower radius
variations in Rg compared with the expanded form of proteins [38]. The Rg values are taken
as an important parameter to study the structural compactness and stability of proteins
or complexes during MD simulation [39]. The Rg of PKM2 alone and its complexes are
presented in Figure 4B. The average Rg of PKM2 alone was found to be 2.471 nm. Similarly,
the Rg of PKM2-Ver, PKM2-Rut, and PKM2-Lut complexes were obtained as 2.458, 2.470,
and 2.459 nm, respectively. The data shows the stable nature of complexes. Moreover,
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solvent accessible surface area (SASA) of all systems were also calculated as shown in
Figure 5A. The average SASA of PKM2 alone was recorded as 234.430 nm2. The SASA of
PKM2-Ver, PKM2-Rut, and PKM2-Lut complexes were found to be 232.062, 235.464, and
235.980 nm2, respectively. As evident from the data there were negligible change in the
SASA of all complexes compared with PKM2 alone and the uniformity in the results further
validates the stability of systems in physiological conditions.
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Figure 5. Number of hydrogen bonds formed between PKM2-Ver, PKM2-Rut, and PKM2-Lut
complexes over the entire course of simulation.

The effect of binding of ligands on the structural stability of PKM2 was investigated
by calculating secondary structure of the protein in complexed and un-complexed form.
Each of the secondary structural components in PKM2 alone and complexes are shown in
Figure 5B. The percentage of coils, β-Sheet, β-Bridge, bends, turns, α-helix, and 3′-helix in
PKM2 alone was found to be 18.02, 19.81, 1.13, 11.81, 12.86, 32.92, and 3.42, respectively.
There was no significant change in any of these motifs of PKM2 in the presence of individual
ligands (Ver, Rut, and Lut). This confirms and finally validates the structural stability of all
simulated complexes.

3.4.3. Analysis of Hydrogen Bonds and Binding Energies

To study the interaction between the ligands and PKM2, hydrogen bond profiles of all
systems were calculated. First, the number of hydrogen bonds of the entire trajectories was
calculated (Figure 6A). The average number of hydrogen bonds in all frames for PKM2-Ver,
PKM2-Rut, and PKM2-Lut complexes were found to be 4.840, 5.801, and 4.323, respectively.
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This shows that Rut formed more hydrogen bonds with PKM2 than the other two ligands
(Ver, Lut). The finding supports the docking studies where Rut showed the highest binding
affinity towards the protein. The analysis of hydrogen bond profiles showed the existence
of hydrogen bonds throughout the entire simulation period (Figure 6B–D). The shift in
hydrogen bond profiles with time indicates that hydrogen bonds between the ligands
and PMK2 were dynamic in nature [40]. Moreover, the fluctuation in hydrogen bonds
may also be due to the interaction of water molecules at the binding site that may be
resulting in fluctuation of the hydrogen bond profiles [41]. The occupancy of hydrogen
bonds with more than 1.0% was also calculated. For the binding of PKM2-Ver and PKM2-
Lut complexes, Asn75 showed the highest occupancy at 42.2% and 63.4%, respectively.
Similarly, Glu364 of PKM2 was found to exhibit the highest hydrogen bond occupancy of
46.0% with Rut. Many other amino acids of PKM2 were also involved in the hydrogen
bond formation with these ligands.
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The interaction of the ligands with PKM2 was further studied using MM-PBSA calcu-
lations. A total of 100 frames from the entire trajectory of each complex at 1 ns interval was
extracted for MM-PBSA analysis. In protein–ligand interactions, the non-covalent forces
such as electrostatic, hydrophobic, van der Waals forces, and hydrogen bonds are predom-
inant. These forces either contribute positively or negatively in the overall binding [42].
Various binding energies were calculated using MM-PBSA methods and the results are
listed in Table 6. Electrostatic and van der Waals forces were predominant in the interaction
of ligands with PKM2. There was also a small contribution of SASA energy in the total
binding energy. However, polar solvation energy impaired the binding of ligands with
PKM2 as evident from its positive values. The total binding energy for the interaction of Ver,
Rut, and Lut with PKM2 was found to be −7.76, −3.22, and −15.00 kcal/mol, respectively.
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Table 6. Binding free energy of ligands with PKM2 calculated by the MM-PBSA method for 100
snapshots of MD simulation.

Ligands

Verbascoside Rutin Luteolin_7_O_Glucoside

∆EvdW −47.63 ± 6.78 −35.32 ± 2.91 −40.88 ± 5.98
∆Eele −39.57 ± 6.32 −40.47 ± 6.57 −26.22 ± 10.80
∆EPSE 85.42 ± 11.35 77.30 ± 12.81 56.68 ± 17.23

∆ESSASA −5.98 ± 0.39 −4.72 ± 0.44 −4.57 ± 0.50
∆EBE −7.76 ± 5.95 −3.22 ± 3.22 −15.00 ± 5.58

∆EvdW: van der Waal energy, ∆Eele: Electrostatic energy, ∆EPSE: Polar solvation energy, ∆ESASA: Solvent accessible
surface area energy, ∆EBE: Binding energy.

The MM-PBSA calculations were further used to identify the major energy contributing
amino acids of PKM2 (Table 7). Thr50, Pro53, Ser77, His78, Asp113, Thr114, Glu118, Val176,
Asp177, Val209, Glu332, and Ala366 of PKM2 were the major energy contributors for the
binding of Ver (Figure 6B–D). In the PKM2-Rut complex, Thr328, Gln329, Ile335, Gly363,
and Glu364 were the major energy contributors (Figure 6C). Similarly, the binding of PKM2-
Lut complex was mostly contributed by Thr50, Pro53, Leu74, His78, Gly79, Tyr83, and
Ala366 residues (Figure 6D). It is interesting to note that the polar energy of some of these
highest energy contributors were found to be positive, showing that the polar energies of
these residues impaired the overall interaction.

Table 7. Total binding energies (kcal mol−1) of major energy contributors for the interaction of ligands
with PKM2 calculated from MM-PBSA.

Luteolin_7_O_Glucoside Rutin Verbascoside

Residues Etotal Residues Etotal Residues Etotal

Thr50 −0.71 ± 0.04 Thr328 −0.68 ± 0.06 Thr50 −0.72 ± 0.02
Pro53 −1.96 ± 0.04 Gln329 −0.80 ± 0.11 Pro53 −0.68 ± 0.02
Leu74 −0.63 ± 0.04 Ile335 −1.38 ± 0.07 Ser77 −0.59 ± 0.08
His78 −1.87 ± 0.09 Gly363 −0.61 ± 0.05 His78 −0.54 ± 0.05
Gly79 −0.52 ± 0.04 Glu364 −0.55 ± 0.25 Asp113 −0.81 ± 0.17
Tyr83 −2.20 ± 0.12 Thr114 −0.73 ± 0.06

Ala366 −0.77 ± 0.05 Glu118 −1.11 ± 0.05
Val176 −0.60 ± 0.03
Asp177 −0.96 ± 0.05
Val209 −0.88 ± 0.02
Glu332 −0.56 ± 0.08
Ala366 −0.59 ± 0.03

Etotal: Total energy.

3.5. Principal Component Analysis

Principal component analysis (PCA) is one the most common standard statistical
procedures to study the large-scale motion of proteins which is performed by reducing the
dimensionality of data sets without losing the important information, which is characterised
by eigenvectors [43]. PCA was done to analyse the differences in flexibility parameters
in PKM2 and its complexes as shown in Figure 7A. All complexes and PKM alone oc-
cupied a conformational space in the projection of eigenvectors. In PCA analysis, larger
conformational space denotes more structural flexibility of the proteins/complexes. This
shows that the PKM2-Rut complex exhibited the highest structural flexibility compared
with other complexes. The free energy landscapes were made from eigenvectors of PCA
analysis to decipher the protein folding patterns. The free energy landscapes of PKM2
alone and complexes are presented in Figure 7B–E. The landscapes showed that all systems
reached energy minima during MD simulation. However, there were certain differences in
the position of energy minima showing the variations in their conformation. The lowest
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energy minima of all systems were used to extract the lowest energy structures from the
respective trajectories. The Ramachandran plots for lowest energy structures are shown
in Figure 8A–D. The average phi (ϕ) and psi (ψ) angles for PKM2 alone were found to be
−77.93 and 36.58 degrees. Similarly, the average ϕ & ψ angles for PKM2-Ver, PKM2-Rut,
and PKM2-Lut complexes were obtained as −77.16 & 35.55, −77.35 & 37.19, and −79.58
& 38.70, respectively. The negligible differences between these values show that energy
minima structures of all systems were approximately equally stable, and PKM2 did not
undergo any major structural transformation after the binding with the ligand molecules. A
slight variation in these dihedral angles of complexes compared with PKM2 alone denotes
a slight dynamical shift in the conformation of PKM2 after the interaction of ligands.
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PKM2-Ver complex.
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4. Conclusions

Medicinal plants have played an important role in the discovery of approximately
50% of anticancer drugs. The phytocompounds of OLE have a protective effect against
cancer in humans. This study intends to explore the potential lead molecules from OLE as
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PKM2 protein inhibitors against cancers by using in-silico approaches. The top three OLE
phytocompounds, Ver, Rut, and Lut, have higher binding affinities with PKM2 proteins in
docking. The inhibition constant of these top three phytocompounds against PKM2 were
recorded as 46, 64, and 296 nmol/L. The molecular dynamics simulations show that the
ligands exhibited dynamical shift for their specific initial positions at the catalytic site of
the protein. These data clearly support the strong affinity of these compounds with PKM2
that needs to be further tested under in vitro and in vivo models. The ADME properties of
the top three phytocompounds, predicted using the pkCSM web server, indicated relevant
pharmaceutical properties. Moreover, the PASS Online software shows the prodigious
probability of hit compounds to inhibit the protein and their antineoplastic properties also
indicate elevated possibilities of anticancer activity. The MM-PBSA energy calculations
support the strong binding of the potential lead molecules with the PKM2 protein. Based
on the data, out the three hit compounds, we cannot be sure to label one compound as
having the most potential, since one compound ranked better in one parameter, while
other compounds were good in other properties. Hence, we propose Ver, Rut, and Lut
as potential lead compounds for further study in the drug development process with the
PKM2 protein against cancer.
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