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Abstract: The mode coupling theory of supercooled liquids is combined with advanced closures
to the integral equation theory of liquids in order to estimate the glass transition line of Yukawa
one-component plasmas from the unscreened Coulomb limit up to the strong screening regime. The
present predictions constitute a major improvement over the current literature predictions. The
calculations confirm the validity of an existing analytical parameterization of the glass transition line.
It is verified that the glass transition line is an approximate isomorphic curve and the value of the
corresponding reduced excess entropy is estimated. Capitalizing on the isomorphic nature of the
glass transition line, two structural vitrification indicators are identified that allow a rough estimate
of the glass transition point only through simple curve metrics of the static properties of supercooled
liquids. The vitrification indicators are demonstrated to be quasi-universal by an investigation of
hard sphere and inverse power law supercooled liquids. The straightforward extension of the present
results to bi-Yukawa systems is also discussed.

Keywords: glass transition; mode coupling theory; integral equation theory; Yukawa one-component
plasmas; isomorph theory; quasi-universality

1. Introduction

When liquids are quenched below their melting point by cooling or compression in a
manner that suppresses crystallization [1], they exhibit a dramatic slowdown in dynamics
and remarkable increase in their viscosity. Since quenching is typically caused by cooling,
these metastable liquids are known as supercooled and, for a sufficiently low temperature,
they can undergo dynamical arrest and transform into a glass [2]. The process of liquid-
glass transition or more simply glass transition has been the source of various questions
concerning the nature of the transition and the microscopic mechanisms driving it [3–5].

The physics of the glass transition have been addressed with a mix of experiments,
computer simulations and theoretical approaches. In experiments, the glass transition
has been investigated in colloidal systems [6–8], granular media [9,10] and organic com-
pounds [11]. Simulations have led to important insight in the physics of supercooled
liquids in regimes often not accessible in experiments by adopting simplified models
such as the Kob–Andersen [12–14] and hard-sphere binary mixtures [15,16]. Theoretical
approaches such as mode coupling theory [17,18], random first-order transition theory [19]
and dynamic facilitation theory [20] have rationalized some experimental findings and
even predicted previously unobserved features of the vitrification process [21,22].

In this paper, mode coupling theory (MCT) is employed to estimate the glass transi-
tion line of Yukawa one-component plasmas (YOCP). MCT is an entirely first-principle
approach for the investigation of the dynamic processes occurring in glass-forming liquids,
which allows to localize the glass transition point requiring only the knowledge of the static
properties of the supercooled liquid as an input. MCT is known to lead to good predictions
for the dynamics of supercooled liquids [22], which also applies for the glass transition point
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in spite of the fact that the MCT bifurcation (associated with the glass transition) should
rather be interpreted as a cross-over point from a non-activated into an activated dynamics
regime [4,22]. The YOCP comprises of equally charged point particles immersed in a neu-
tralizing background that interact via the pair potential u(r) = (Q2/r) exp(−r/λ). Here Q
is the particle charge and λ the screening length defined by the polarizable background.
Thermodynamic YOCP states are uniquely specified by two dimensionless variables [23]:
the coupling parameter Γ = βQ2/d and the screening parameter κ = λ/d. This allows to
re-write the interaction potential as βu(x) = (Γ/x) exp(−κx), where d = (4πn/3)1/3 is
the Wigner–Seitz radius, n is the particle number density, β = 1/(kBT) and x = r/d is a
normalized distance. The YOCP possesses a well-understood phase diagram in terms of
the κ and Γ variables [24].

The main motivation of this work lies in the relevance of the YOCP model to the
experimental realization of complex plasmas, a novel state of soft matter composed of
charged particles of mesoscopic size that are immersed in a weakly ionized plasma [23].
The YOCP has been suggested as a promising tool to investigate the dynamics of glassy
systems [25], but glass formation has remained experimentally elusive in three dimensional
complex plasmas. In particular, complex plasmas have already been employed in order to
study supercooled fluids near the vitrification point in two dimensions [26,27], but three-
dimensional glassy structures exhibiting dynamical arrest still remain to be observed. The
accurate estimate of the glass transition line provided in this work should help to guide
current [28] or future complex plasma experiments in microgravity conditions that are or
will be actively searching for the glassy state of plasmas. It is worth pointing out that MCT
calculations of the YOCP glass transition line are already available in the literature [29].
However, there is space for drastic improvement over the existing prediction due to the use
of oversimplified structural input that should be grossly inaccurate within the supercooled
liquid regime.

2. Theoretical Background

This section provides an overview of the theoretical background upon which the
remaining part of this work is constructed. The equations and approximations which char-
acterize mode coupling theory are presented, the basics of isomorph theory are discussed
and the integral equation theory of liquids employed to compute the static structural
properties is presented.

2.1. Mode Coupling Theory of the Glass Transition

In order to distinguish glasses from stable and supercooled fluids, it is necessary to
consider the temporal evolution of the microscopic dynamics. One common probe for
such dynamics is the intermediate scattering function, F(k, t), which quantifies, at time t
and for the wavenumber k, the correlation of the density fluctuations over a length scale
∼k−1. The temporal dependence of F(k, t) exhibits three distinguished behaviors between
the fluid, supercooled and glassy state [30]: for stable fluids, the intermediate scattering
function relaxes exponentially in time, F(k, t) ∼ e−t/τ . On the other hand, supercooled
liquids exhibit a multi-stage relaxation in which an initial exponential decay is followed
by the so-called β-relaxation regime in which the particles are trapped in cages and the
intermediate scattering function exhibits a plateau, i.e., F(k, t) ≈ const.r Such plateau is
eventually destroyed during the final α-relaxation regime when the particles escape from
their cages, ergodicity is restored and the intermediate scattering function relaxes towards
zero following a stretched-exponential law, F(k, t) ∼ e−(t/τ)γ. In the above τ and γ are two
constants which are both wavenumber and temperature dependent. Finally, for glasses,
there is no full relaxation of the dynamics, particles escape their cages only in rare events
and the intermediate scattering function is characterized by a persistent plateau which
leads to a positive asymptotic limit F(k, t→ ∞) > 0.

MCT provides an equation of motion for the intermediate scattering function [17,18].
In what follows, we will briefly describe the derivation of the fundamental MCT equation
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with the main purpose of highlighting the assumptions that are adopted in MCT, the reader
is addressed to Ref. [30] for a detailed derivation of the MCT equation of motion. Let us
start by considering a system with N particles of mass m that are enclosed in a volume
V with average number density n = N/V and temperature T. Using r j(t) to denote the
position of a particle j at a time t, we introduce the time-dependent microscopic density
ρ(r, t) = ∑N

j=1 δ[r − r j(t)] and the microscopic density fluctuations δρ(r, t) = n− ρ(r, t).
The intermediate scattering function is then defined as the autocorrelation function of the
density fluctuations, F(k, t) = (1/N)〈δρ(−k, 0)δρ(k, t)〉, where 〈...〉 denotes the ensemble
average operator and where δρ(k, t) = ∑N

j=1 exp[ik · r j(t)] − (2π)3nδ(k) is the spatial
Fourier transform of the density fluctuations (we have implicitly assumed that the system
is isotropic). Employing the Zwanzig–Mori projection formalism [31,32], it is possible to
obtain the following exact integro-differential equation for the intermediate scattering
function [18]

∂2F(k, t)
∂t2 + [Ω(k)]2F(k, t) +

∫ t

0
dt′M(k, t′)

∂F(k, t− t′)
∂t

= 0 (1)

where [Ω(k)]2 = k2/[βmS(k)], S(k) = F(k, 0) is the static structure factor and M(k, t) is a
memory kernel which can be expressed as the ensemble average of a fluctuating force that
depends on density fluctuations and pair density products of the form δρ(−k, t)δρ(k, t) [30].
Equation (1) has the structure of an oscillator equation in which Ω(k) plays the role of the
characteristic frequency, while the memory kernel acts as a generalized and time-dependent
friction coefficient. However, without a simplified expression for the memory function,
Equation (1) cannot be solved. Within MCT, such simplified expression for M(k, t) is
derived by adopting the procedure explained below.

In MCT, the memory kernel is decomposed into the regular Mreg(k, t) part that de-
scribes the short-time conventional liquid dynamics and the asymptotic MMCT(k, t) part
that describes the long-time dynamics dominated by the interplay between caging and
ergodicity-restoring effects [18], M(k, t) = Mreg(k, t) + MMCT(k, t). The regular part is
neglected [30] or approximated with Mreg(k, t) = νδ(t) with ν a friction constant [17,33],
since the glassy state is mainly concerned with the long-time behavior of the density
correlation function. The second part is treated under the assumption that the most rel-
evant contribution stems from the pair density products of the fluctuating force. Hence,
MMCT(k, t) is projected onto a basis of pair density products ρ(k1, t)ρ(k2, t) with a properly
defined projection operator running over all (k1, k2) pairs relevant to the system [30]. The
projection leads to the emergence of triplet correlation functions containing only static
properties and of a time-dependent four particle density correlation function; the triplet cor-
relation functions are factorized into static structure factor products within the convolution
approximation [34], while the four particle density correlation function is approximated
as the product of density pair correlation functions with Kawasaki’s approach [35]. These
lead to the MCT intermediate scattering function equation

τ(k)
[

1
ν

∂2F(k, t)
∂t2 +

∂F(k, t)
∂t

]
+ F(k, t) +

∫ t

0
dt′MMCT(k, t′)

∂F(k, t− t′)
∂t

= 0 (2)

where τ(κ) = ν/[Ω(k)]2 and the memory kernel is given by [30]

MMCT(k, t) =
nS(k)

16π3k4

∫
d3k′F(k′, t)F(p, t)

[
(k · k′)c(k′) + (k · p)c(p)

]2. (3)

In the above p = |p|, p = k − k′ and c(k) is the Fourier transform of the direct
correlation function which is related to the static structure factor via the Ornstein–Zernike
equation (see Section 2.3), S(k) = 1/[1− nc(k)]. Provided that the static structure factor and
the viscosity are known, Equation (2) is a self-consistent equation for F(k, t) which can be
solved subject to the initial conditions F(k, 0) = S(k) and ∂F(k, 0)/∂t = 0. Equation (2) is
sometimes reported in its over-damped form by assuming that the viscosity is so large that
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the inertial second order derivative term can be neglected [18,33,36]. However, while the
over-damped form of Equation (2) is appropriate to study colloids, it would be inaccurate
for complex plasmas in which the dilute background gas [23] makes viscous damping
less predominant.

Given that glasses can be distinguished from conventional liquids from the asymptotic
limit of the intermediate scattering function, it is sufficient to obtain an equation for
F(k, t→ ∞) in order to investigate the glass transition properties. Rewriting Equation (2)
in terms of the normalized density autocorrelation function φ(k, t) = F(k, t)/S(k), Laplace
transforming and employing the final value theorem to extract the asymptotic limit, leads
to the form factor f (k) = lim

t→∞
φ(k, t) MCT equation

f (k)
1− f (k)

=
nS(k)

16π3k4

∫
d3k′S(k′)S(p)

[
(k · k)′c(k′) + (k · p)c(p)

]2 f (k′) f (p). (4)

The solution of the MCT equation for the form factor allows to distinguish between
liquids and glasses, since the former are characterized by f (k) = 0 while the latter are
characterized by f (k) > 0. It should be noted that, at the glass transition point, the form
factor changes discontinuously from zero to some positive critical value fc(k) > 0. This
discontinuity in the form factor happens despite the fact that the static properties do
not exhibit any discontinuity between supercooled liquids and glasses. This bifurcation
phenomenon is a manifestation of the feedback between the force fluctuations in the
memory kernel and the density fluctuations in the form factor [18,21].

2.2. Isomorph Theory

Isomorphic curves are phase diagram lines of constant excess entropy along which
a substantial set of structural and dynamical properties remain approximately invariant
when expressed in dimensionless units where the length is normalized to a = n1/3 and the
energy to kBT [37,38]. While it is possible to identify lines of constant excess entropy in
the phase diagram of any system, only in R-simple systems the isentropic lines are also
isomorphs. R-simple systems are characterized by the property that the ordering of the
potential energies of two configurations corresponding to the same density is preserved
when the two configurations are re-scaled uniformly to a different density [39]. In other
words, denoting with U the potential energy and with R the set of N particle’s position
{r1, ...rN}, R-simple systems satisfy the relation U(Ra) < U(Rb) =⇒ U(ζRa) < U(ζRb),
where Ra and Rb are two equal-density configurations and ζ a positive scaling factor.

A recent investigation has shown that the YOCP is an R-simple system whose iso-
morphs can be accurately described with the following analytical parameterization [40]

Γiso(Γ, κ) = Γe−Λακ

[
1 + (Λακ) +

(Λακ)2

2

]
= const, (5)

where α = a/d = (4π/3)1/3 is the ratio between the mean-cubic inter-particle distance
employed in isomorph theory and the Wigner–Seitz radius used for the characterization
of the YOCP state point, while Λ is a constant close to unity which depends weakly
on the state point. It should be noted that, with the assumption Λ = 1, the isomorph
parameterization described by Equation (5) is equivalent to the semi-empirical expression
utilized in Ref. [41] in order to fit MD data of the YOCP melting line [24,42]

Γm(κ) = ΓOCP
m eακ

[
1 + ακ +

(ακ)2

2

]−1

, (6)

where ΓOCP
m = 171.8 is the coupling parameter at melting in the one-component plasma

(OCP) limit (κ = 0) [42]. The fact that the isomorphs and the melting line can be approx-
imated with the same analytical expression is a reflection of the fact that for R-simple
systems the melting line constitutes an isomorphic curve to the first-order [37,43].
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2.3. Integral Equation Theory of Liquids

The integral equation theory (IET) of liquids gives access to the static liquid properties
without resorting to computer simulations. For one-component liquids with pair-wise
isotropic interactions, IET comprises of two exact equations: the Ornstein–Zernike equa-
tion [34]

h(r) = c(r) + n
∫

c(r′)h(|r− r′|)d3r′ (7)

and the non-linear closure condition derived from cluster diagram analysis [34]

g(r) = exp[−βu(r) + h(r)− c(r) + B(r)]. (8)

In the above g(r) denotes the radial distribution function, h(r) = g(r)− 1 the total
correlation function, c(r) the direct correlation function and B(r) the bridge function.
Knowledge of the total correlation function h(r) gives direct access to the static structure
factor via the Fourier space relation S(k) = 1 + nh(k). Thus, the solution of the above
equations provides all the input that is necessary for the calculation of the form factor via
MCT. Nevertheless, the solution of the IET system of equations requires an expression
for the bridge function. The latter can be formally represented as a power series of the
density, but such series is known to converge slowly already at moderate densities [44,45].
Combined with the fact that the calculation of the series coefficients becomes extremely
cumbersome beyond the third order [46–48], this calls for the adoption of approximate
bridge function expressions.

Among the wide variety of bridge function approximations or closures that have
been proposed over the years [49], here we shall consider only three approximations
which have been previously employed to investigate the fluid properties of the YOCP:
the hypernetted chain (HNC) approximation, the isomorph-based empirically-modified
hypernetted chain (IEMHNC) approach and the variational modified hypernetted chain
(VMHNC) approximation. Within the HNC approximation, the bridge function is neglected
altogether by assuming B(r) = 0 [50]. The HNC approximation is straightforward to
implement and flexible, since it is not taylored to any specific interaction potential. For
systems featuring Coulomb interactions, it has been shown that the HNC approximation
produces qualitatively correct results for the static and thermodynamic properties of state
points far from crystallization, but that its performance rapidly degrades near the freezing
line [51].

The IEMHNC approach is an advanced closure to the IET system of equations that is
built upon the ansatz that reduced-unit bridge functions remain exactly invariant along
isomorphic lines [52]. Systematic indirect bridge function extractions along isomorphic
curves with the aid of molecular dynamics simulations have confirmed the approximate
validity of the invariance conjecture for Yukawa systems [53]. This ansatz is then combined
with two external inputs, a closed-form expression for the isomorphs and a closed-form
bridge function expression valid along any phase diagram line that possesses a unique
intersection point with any isomorph, in order to construct an expression for the bridge
function valid for the whole phase diagram [52]. The IEMHNC approach has been applied
to Yukawa and bi-Yukawa fluids showing a remarkable agreement with computer simula-
tions in the entire dense fluid region up to crystallization [52,54]. Note that the IEMHNC
approach is only applicable to R-simple systems for which the aforementioned external
input is available. In addition, the IEMHNC bridge function expression might be accurate
only in a sub-region of the phase diagram which depends on the region of validity of the
external inputs. For instance, with the currently available external inputs, the IEMHNC
bridge function for the YOCP is strictly applicable for coupling parameters which satisfy
5.25 ≤ Γiso(Γ, κ) ≤ 171.8 [52].

The VMHNC approximation is an advanced closure to the IET system of equa-
tions which is based on the ansatz of bridge function quasi-universality [55]. The quasi-
universality conjecture justifies the following two-step procedure adopted to define the
bridge function [56]: first, the unknown bridge function B(r) is replaced with the Percus–
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Yevick bridge function of the hard sphere system, BHSPY(r; η), for which an exact analyt-
ical representation in terms of the inter-particle separation r and of the packing fraction
η = πnσ3/6 (with σ the hard sphere diameter) is available. Second, the value of the
packing fraction which ensures the correct mapping between B(r) and BHSPY(r; η) is deter-
mined with a robust method based on the minimization of a properly defined free energy
functional. Since it is not constructed for a specific class of systems, the VMHNC approach
shares the same flexibility of the HNC approximation and can be applied without any
major modification to any one-component system characterized by purely repulsive inter-
actions. For the specific case of the YOCP, the VMHNC is known to produce results that
compare exceptionally well with computer simulations [57] and are as accurate as those
obtained with the IEMHNC approach over the entire fluid region of the phase diagram [58].
The main drawback of the VMHNC approach lies in its computational cost, since the
minimization of the free energy functional makes the algorithm for the solution of the IET
more cumbersome, eventually causing the VMHNC approach to become up to 80 times
slower than approximations which do not involve minimization [58].

3. Computational Approach

This section describes the computational methods employed in the solution of the
MCT equation for the form factor and in the solution of the IET system of equations
for the static structural properties. The advantages of combining MCT with structural
input obtained with advanced IET closures are discussed and the present algorithm is
benchmarked against the literature results.

3.1. Combining MCT with Advanced IET Approaches

Within MCT, the static structural properties of the supercooled fluid constitute the
only external to the theory input that is required for the calculation of the glass transition
line and the critical form factors. In the literature, such properties have been obtained either
from computer simulations [59–61] or from IET calculations combined with elementary
closures (when simulation input was unavailable) which include the aforementioned HNC
approximation for soft long range interaction potentials [29,62] or the Percus–Yevick (PY)
approximation for hard sphere short range interactions [16,17,33,63–65]. More advanced
IET closures which enforce thermodynamic consistency through free parameters or resem-
ble the VMHNC approximation by featuring an optimized correspondence rule have also
been considered [66–68]. However, they have received comparatively much less attention
than the elementary HNC and PY closures. The objective of this section is to demonstrate
that the adoption of advanced IET approximations for the calculation of the static prop-
erties is an essential ingredient for reliable predictions of the MCT glass transition line.
In what follows, the HNC approximation will be compared to the IEMHNC approach.
The PY approximation will not be discussed owing to the long range interaction potential
of interest, while the VMHNC approach will not be addressed here owing to its similar
accuracy to the IEMHNC approach [58].

The discussion will center around stable rather than supercooled fluids. The main rea-
son is that it has proven to be extremely challenging to simulate supercooled liquids due to
the necessity of preventing crystallization (especially for one-component systems) [69–73]
as well as due to the high computational cost necessary to obtain an equilibrated configura-
tion and to effectively sample the phase space [74–77], while it is relatively cheap from a
computational point of view to perform computer simulations of the stable fluid state in
order to quantify the accuracy of the different IET approximations. The secondary reason
is that, formally, the region of validity of the IEMHNC approach is the stable fluid region.
Thus, any attempt to compare the HNC and IEMHNC approximations outside this region
involves extrapolations which inevitably cast a doubt over the result of the comparison.
However, as will shall deduce later, the IEMHNC approach can indeed be extrapolated
deep into the supercooled liquid regime without losing its accuracy.
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The comparison is illustrated in Figure 1. Panels (a) and (b) feature a radial distribu-
tion function comparison between the results of the HNC, IEMHNC approximations and
the results of molecular dynamics simulations. It is evident that the IEMHNC approach
outperforms the HNC approximation leading to radial distribution functions that are
nearly indistinguishable from the results of computer simulations within the first and
second coordination cells [52]. In addition, the IEMHNC approach maintains the same
level of accuracy throughout the stable fluid region [58]. On the contrary, the HNC approx-
imation exhibits strong deviations from the MD results within the first coordination cell.
More important, it becomes more and more problematic upon approaching the melting
point [52,58]. The latter observation is a direct manifestation of the fact that the bridge
function contribution to the static structural properties gradually becomes more prominent
as the liquid–solid phase transition is approached. Finally, it is reasonable to assume that
this trend continues also beyond the melting point, in the supercooled portion of the phase
diagram, which implies that the HNC approximation leads to grossly inaccurate estimates
for state points close to the MCT glass transition.
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Figure 1. Static structural properties from the HNC and IEMHNC approaches in the stable YOCP fluid region for κ = 1
with Γm denoting the coupling parameter obtained with the analytical parameterization of the YOCP melting line given by
Equation (6). Panel (a) compares the radial distribution function g(r) as obtained from the IEMHNC approach (solid lines)
and molecular dynamics (MD) simulations (discrete points) at Γ/Γm = {0.6, 0.9}. The MD simulations were performed with
the LAMMPS package [78] using 8000 particles in the canonical NVT ensemble. Panel (b) compares the radial distribution
function g(r) as obtained from the HNC approach (solid lines) and MD simulations (discrete points) at Γ/Γm = {0.6, 0.9}.
Panel (c) compares the static structure factor S(q) as obtained from the IEMHNC approach (solid lines) and the HNC
approach (dashed lines), both applied at the same YOCP state points with Γ/Γm = {0.6, 0.9}. Panel (d) compares the static
structure factor S(q) stemming from the IEMHNC approach (solid lines) and the HNC approach (dashed lines), applied at
the different state points, namely the IEMHNC at Γ/Γm = {0.6, 0.9} and the HNC at Γ/Γm = {0.935, 1.495}.

Panels (c) and (d) of Figure 1 feature a static structure factor comparison between the
results of the HNC and IEMHNC approximations. These panels shed light on another
property of the HNC approximation, which is here observed for the stable fluid region but
also holds beyond the melting point (as we shall deduce in what follows); namely, the fact
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that the HNC approximation produces quantitatively correct structural properties but for
state points of much stronger coupling than that of the actual state point. In particular, in
panel (c), the IEMHNC and HNC approaches are compared for the same state points and,
as anticipated, lead to different results. Given the high accuracy of the IEMHNC approach,
the IEMHNC results can be considered as nearly exact which confirms that the HNC
approximation introduces noticeable distortions in the static properties. On the other hand,
panel (d) demonstrates that the two IET approximations result to nearly identical structural
properties, if the HNC approximation is applied at Γ = ΓHNC and the IEMHNC approach at
Γ = ΓIEMHNC with ΓHNC � ΓIEMHNC. In order to rationalize this result, it is convenient to
rewrite the IET diagrammatic closure, Equation (8), as g(r) = exp[−βu∗(r) + h(r)− c(r)],
with βu∗(r) = βu(r)− B(r). This leads to the physical interpretation of the bridge function
B(r) as an additional repulsion which is superimposed on the interaction potential u(r),
given that it is always negative except for a series of small positive peaks in its long-range
behavior [79–82]. Thus, it becomes apparent that the HNC approximation, which assumes
that B(r) = 0, would produce quantitatively accurate results, only when the state point is
adjusted in such a way that u∗(r) ≈ u(r). For the specific case of the YOCP, this amounts
to say that the HNC approximation can be expected to reproduce the structural properties
of the state point (Γ, κ), only if it is applied to a different state point (ΓHNC � Γ, κ),
as demonstrated in panel (d).

At this point, it is worth analyzing the consequences of the results discussed above on
the MCT glass transition calculations. The MCT equation for the form factor, Equation (4),
does not explicitly include any information about the interaction potential whose effect
appears only indirectly via the static properties in the non-linear kernel stemming from
the memory function. Therefore, it can be expected that the HNC approximation, which
produces nearly exact static properties if the state point is artificially re-scaled towards
the stronger coupling region, produces unreliable estimates for the location of the MCT
glass transition line but accurate predictions for the shape of the critical MCT form factors.
Therefore, for a precise determination of the MCT glass transition line, it is necessary to
adopt more advanced IET closures. Here we consider two such closures, the IEMHNC
approach and the VMHNC approximation. The reason behind considering both advanced
closures is that none of them has been extensively tested in the supercooled regime, so it is
important to confirm that they produce consistent results for a phase diagram region that
falls outside their normal range of applicability.

3.2. Numerical Implementation

The following four-step procedure was devised for the efficient localization of the
YOCP MCT glass transition line: (i) For a given value of the screening parameter κ, ten
values of the coupling parameter Γ that belong to the YOCP supercooled region were
considered according to the prescription Γi = Γi−1 + ∆Γ with i = 2, 3, ...10. Here Γ1 and
∆Γ are κ-dependent free parameters that should be chosen in a manner that allows the
exploration of a sizable portion of the YOCP supercooled region. (ii) For each (κ, Γi)
combination, Equations (7) and (8) were solved with one of the three closures described
in the Section 2.3 leading to the determination of the static structural properties of the
supercooled fluid. (iii) For each (κ, Γi) combination, the form factor was computed from
Equation (4) supplemented with the structural properties obtained from the IET equations.
(iv) In the case of positive form factor for a state point characterized by Γ = Γi, the
update Γ1 → Γi−1 was employed, ∆Γ was divided by ten and the procedure was repeated
until the coupling parameter of the glass transition point was determined within four
digits of accuracy. In the case of zero form factors for all Γ = Γi state points, the update
Γ1 → Γ10 + ∆Γ was employed and the procedure was restarted. In the case of positive
form factors for all Γ = Γi state points, the update Γ1 → Γ1 − 11∆Γ was employed and the
procedure was restarted. For the above procedure to prove successful, robust algorithms
should be available for the solution of the IET system of Equations (7) and (8) and for the
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solution of the MCT form factor Equation (4). The algorithms implemented are outlined in
the following paragraphs.

The IET equations were solved with a well-established algorithm [52,54,58] that is
based on Picard iterations in Fourier space combined (when necessary) with mixing and
long-range decomposition techniques to facilitate convergence. The Fourier transforms
are computed on a discretized domain extending up to Rmax = 80d with a real space
resolution ∆r = 10−3d and a reciprocal space resolution ∆kIET = π/Rmax = 0.039/d. The
convergence criterion for the Picard iterations reads as |γm(k)− γm−1(k)| < 10−5 ∀k where
γ(k) is the Fourier transform of the indirect correlation function γ(r) = h(r)− c(r). When
the IET equations are solved within the VMHNC closure, the effective packing fraction η
which appears in the VMHNC bridge function is found with a dedicated iteration cycle
that is terminated when the convergence criterion |ηm − ηm−1|/ηm < 10−5 is satisfied. A
more detailed description of the algorithm employed in the solution of the IET equations
can be found in Ref. [58].

The MCT equation for the form factor was solved over a discretized wavenumber
domain with resolution ∆k = 0.1/d containing 400 equally-spaced points distributed
between ∆k and km = 40/d . Taking advantage of the fact that the long-time limit of
the form-factor obeys the maximum property [33], Equation (4) was solved with the
iterative scheme fm(ki)/[1− fm(ki)] = M[ fm−1(k)] starting from the uniform initial guess
f (k) = 1.0. Here ki = i∆k, k = {k1, k2, ..., kM} and M[ f ] is a short-hand notation for the
non-linear term which appears in the right hand-side of Equation (4). Concerning this
non-linear term, it was first rewritten in a form more suitable for numerical integration by
applying the bipolar convolution theorem [12,17]

M[ f ] =
nS(k)
16π3

∫ ∞

0
dy
∫ y+k

|y−k|
dz
[(

k2 + y2 − z2
)

c(y) +
(

k2 + z2 − y2
)

c(z)
]
yzS(y)S(z) f (x) f (z), (9)

and then it was evaluated with the adaptive Gauss-Kronrod quadrature rule as imple-
mented in the GNU Scientific Library [83]. The discretization employed in the solution of
the MCT equation has two straightforward consequences. First, the fact that ∆k > ∆kIET
suggests that it is necessary to interpolate the static properties obtained from IET when
they are employed in the solution of the MCT equations. This, however, should not im-
pact the final result of the MCT calculations because there is no extrapolation involved
and because such results have proven to be independent from the grid resolution if
∆k ≤ 0.2/d (see Section 3.3). Second, the integrand values within the long wavelength
limit (k = 0) and within the short wavelength limit (k → ∞) are inaccessible, since
both these limits fall outside of the grid employed in the solution of the MCT equa-
tions. This implies that in Equation (9) the integration range of y must be shrunk from
[0, ∞) to [∆k, km] and the integration range of z must be modified from [|y − k|, y + k]
into [max{∆k, |y− k|}, min{km, y + k}]. In what follows, we shall demonstrate that the
present choices for ∆k and for km ensure that this distorsion of the integration domain has
a negligible effect on the form factors resulting from the MCT equations.

3.3. Benchmarking and Convergence Study

Before proceeding with the presentation of the results stemming from the systematic
solution of the MCT equations over the supercooled YOCP phase diagram, it is impor-
tant to discuss how the present algorithm was benchmarked against results available in
the literature.

The MCT benchmarking exercise initially focused on hard-sphere (HS) systems, since
the glass transition of HS systems has been the focal point of numerous investigations
over the years [15–17,33] making it relatively easy to find reference values for the critical
form factor and the glass transition point. In addition, it is possible to employ analytical
expressions for the static structural properties of the HS systems, which allows to test
the isolated performance of the MCT solver without worrying about the performance of
the IET solver. Regarding the static properties of such systems, they have either been
obtained within the Percus–Yevick approximation by employing the Wertheim–Thiele
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analytical solution [84,85] or expressed through the accurate semi-empirical parameteri-
zation proposed by Verlet and Weis [86]. In what follows, the former case will be coined
as the Hard-Sphere Percus–Yevick (HSPY) system (this is the same system employed for
the definition of the bridge function in the VMHNC approximation), while the latter case
will be addressed as the Hard-Sphere Verlet-Weis (HSVW) system. Panel (a) in Figure 2
illustrates how the present numerical solutions for the critical form factor of the HSPY and
HSVW systems compare against results available in the literature. It is evident that the
present numerical implementation is able to correctly reproduce both the glass transition
points (which occur at η = 0.516 for the HSPY system and η = 0.525 for the HSVW system)
and the corresponding critical form factors.
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Figure 2. Results from the benchmarking of the algorithm employed to solve the MCT equation for the form factor,
Equation (4). Panel (a) compares the form factor at the glass transition point for the HSPY system as obtained from the
present numerical implementation (solid line) and from the results reported by Bengtzelius in Figure 2 of Ref. [17] (discrete
circles). The inset compares the form factor at the glass transition point for the HSVW system as obtained from the present
numerical implementation (solid line) and from the results reported by Wu and Cao in Figure 1 of Ref. [63] (discrete squares).
The HS calculations were performed with km = 50/σ and ∆k = 0.1/σ where σ denotes the HS diameter. Panel (b) compares
the form factor at the glass transition point for the OCP system as obtained from the present numerical implementation
(solid line) and from the results reported by Yazdi and collaborators in Figure 2 of Ref. [29] (discrete diamonds). Note that
for the present implementation we report the form factors at two values of the coupling parameter: Γ = 575 (magenta)
which is the present glass transition point prediction and Γ = 590 (blue) which is the Yazdi glass transition point prediction.

The MCT benchmarking exercise was also extended to YOCP systems, where the
investigation of Yazdi and collaborators [29] provided the only literature results that can be
employed as a reference. In panel (b) of Figure 2, the present solution of the MCT form factor
equation in the OCP limit is compared with the corresponding OCP solution (as reported
in Figure 2 of Ref. [29]). In both cases, the static properties of the OCP were computed
by closing the IET system of equations with the HNC approximation. Two problems
can immediately be noticed: the predictions for the glass transition point do not match
(the present implementation predicts a glass transition at Γ = 575, while the reference
implementation predicts a glass transition at Γ = 590) and the two implementations
generate different form factors for the same coupling parameter. Unfortunately, Ref. [29]
contains very little information regarding the algorithms and the parameters used to solve
the MCT form factor equation. Hence, in order to rule out the presence of numerical errors
in the present solution, we had to resort to a systematic convergence study on the two
free numerical parameters that emerge in the solution of Equation (4) with the memory
kernel expressed via Equation (9), namely the wavenumber resolution ∆k and the cutoff
wavenumber km.

In the convergence study, the wavenumber resolution was varied between ∆k = 0.05/d
and ∆k = 0.4/d, while the cutoff wavenumber was varied between km = 10/d and
km = 50/d. The results of this investigation are reported in Figure 3 and reveal that a
wavenumber resolution ∆k ≤ 0.2/d and a cutoff wavenumber km ≥ 20/d are sufficient
to obtain a form factor and glass transition point Γg which are independent from the
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parameters employed in the numerical implementation. The results in Figure 3 refer to
the OCP limit (κ = 0) and to structural input from the HNC approximation, but similar
conclusions were obtained also for selected higher values of κ and structural input from
the IEMHNC or VMHNC approximations.

(a) qmax = 20

Δq 0.40
Δq 0.30
Δq 0.25
Δq 0.20
Δq 0.10
Δq 0.07
Δq 0.05

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

q kd

f(
q
)

●●●●
●

●

●

0 5 10 15 20
550

560

570

580

590

600

1 Δq

Γ
g

(b) Δq = 0.1

qmax = 10
qmax = 12
qmax = 16
qmax = 20
qmax = 30
qmax = 40
qmax = 50

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

q = kd
f(
q
)

●●●●●

●

●

10 20 30 40 50
560

580

600

620

640

660

qmax

Γ
g

Figure 3. Results from the convergence study conducted in order to confirm the accuracy of the present numerical
implementation of MCT for Yukawa systems. The results refer to the OCP limit (κ = 0) with the structural properties
computed with the HNC approximation. Panel (a) reports the form factor at the glass transition point for a fixed value
of the cutoff wavenumber qm = kmd = 20 and for seven color-coded values of the grid resolution, namely ∆q = ∆kd =

{0.05, 0.07, 0.10, 0.20, 0.25, 0.30, 0.40}. The inset illustrates how the coupling parameter at the glass transition point,
Γg, converges towards Γg = 575 upon increasing the grid resolution. Panel (b) reports the form factor at the glass
transition point for a fixed value of the grid resolution ∆q = 0.1 and seven color-coded values of the cutoff wavenumber,
i.e., qm = {10, 12, 16, 20, 30, 40, 50}. The inset illustrates how the coupling parameter at the glass transition point, Γg,
converges towards Γg = 575 upon increasing the cutoff wavenumber.

To summarize, this section demonstrated that the present numerical implementation
of the MCT equations is able to reproduce results available in the literature for HS systems.
Regarding YOCP systems, a small mismatch was observed between the present results
and the literature results. However, while it was not possible to pin-point the origin of
this mismatch due to insufficient information, the results of a thorough convergence study
ensured that the present MCT calculations are accurate also for Yukawa systems.

4. Numerical Results
4.1. The MCT Glass Transition Line

The glass transition line of the YOCP was computed for fifteen screening parameters
which belong to the part of the YOCP phase diagram that is most relevant to experimental
realizations of Yukawa systems and for which molecular dynamics based calculations of the
liquid–solid phase transition are available [24,42], κ = {0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 2.6,
3.0, 3.6, 4.0, 4.6, 5.0}. For each value of κ, the MCT glass transition point was localized with
the procedure described in Section 3.2. Three sets of MCT calculations have been performed
in order to determine the glass transition line featuring different static properties for the
supercooled YOCP fluid, i.e., those computed with the HNC approximation (MCT-H
calculations), the IEMHNC approach (MCT-I calculations) and the VMHNC approximation
(MCT-V calculations).

The phase diagram coordinates of the glass transition line obtained with the MCT-H,
MCT-I and MCT-V calculations are reported in Table 1. It is apparent that the MCT-H
estimate of the glass transition line is drastically different from the MCT-I and MCT-V
estimates, whereas the MCT-I and MCT-V estimates lie relatively close to each other. In
particular, considering ΓMCT-I

g (κ) as a reference curve, the MCT-V prediction falls within
5% of the MCT-I result, ΓMCT-V

g (κ) = (1± 0.05)ΓMCT-I
g (κ), while the MCT-H estimate is

approximately given by ΓMCT-H
g (κ) ≈ 2ΓMCT-I

g (κ) for any value of the screening parameter.
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Table 1. YOCP phase diagram coordinates of the MCT glass transition line at fifteen values of
the screening parameter, κ = {0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 2.6, 3.0, 3.6, 4.0, 4.6, 5.0}. For each
value of κ, three estimates of the coupling parameter at the MCT glass transition line, Γg(κ), are
reported. Each Γg(κ) estimate was computed with static structure factor input from a different IET
closure. Namely, ΓMCT-H

g is obtained with the HNC approximation (MCT-H calculations), ΓMCT-I
g

with the IEMHNC approximation (MCT-I calculations) and ΓMCT-V
g with the VMHNC approximation

(MCT-V calculations).

κ ΓMCT-H
g ΓMCT-I

g ΓMCT-V
g

0.0 575.5 289.8 279.7
0.2 581.0 291.7 282.5
0.4 597.9 299.5 291.3
0.6 626.9 314.6 306.4
0.8 669.8 337.8 328.8
1.0 731.1 370.3 359.3
1.2 804.3 413.5 399.5
1.4 903.3 469.5 451.6
2.0 1395 746.3 711.5
2.6 2400 1308 1249
3.0 3618 1980 1905
3.6 7085 3871 3792
4.0 11,440 6210 6182
4.6 24,430 13,010 13,330
5.0 41,030 21,650 22,660

The observation that ΓMCT-V
g (κ) ≈ ΓMCT-I

g (κ) suggests that the IEMHNC approxima-
tion and the VMHNC approach maintain the consistency and accuracy which characterizes
them for stable YOCP liquids also for supercooled YOCP liquids. In addition, it indirectly
suggests that the defacto extrapolations of the IEMHNC and VMHNC bridge functions
deep into the supercooled regime are rather safe. As a consequence, both the ΓMCT-V

g (κ)

and ΓMCT-I
g (κ) estimates can be considered to be an accurate approximation to the “exact”

MCT glass transition line which would have been obtained if the MCT equations were
supplied with an “exact” structural input extracted from computer simulations. On the
other hand, the observation that ΓMCT−H

g (κ) ≈ 2ΓMCT-I
g (κ) confirms that adopting the HNC

approximation would lead to inaccurate estimates for the MCT glass transition line, see the
detailed discussion in Section 3.1. In fact, assuming that the MCT-I or MCT-V calculations
are able to predict the “exact” MCT glass transition line within a few percent, then the
MCT-H calculations lead to an overestimation of the MCT glass transition line of roughly a
factor two, regardless of the value of the screening parameter. This justifies our revisiting
of the YOCP glass transition results earlier reported by Yazdi and collaborators [29], since
the latter were exclusively based on MCT-H calculations.

Perhaps, the most significant result of Ref. [29] was the observation that, for YOCP
systems, the glass transition line is almost parallel to the melting line. As a consequence, it
can be well approximated by the following analytical semi-empirical formula [29]

Γg(κ) = ΓOCP
g eακ

[
1 + ακ +

(ακ)2

2

]−1

, (10)

where ΓOCP
g is the glass transition point in the OCP limit. It is important to test the validity

of the scaling given in Equation (10) against the accurate glass transition predictions
obtained from the MCT-I and the MCT-V calculations not only because it provides a simple
convenient parameterization but also because its validity is a strong indication that the
glass transition line constitutes an isomorphic curve, compare Equations (10) and (5). As
we shall see in the following sections, the isomorph invariance of the MCT glass transition
line implies the validity of numerous state-independent symmetries that can be exploited
in different ways.
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In Figure 4, the analytical scaling of Equation (10) is compared against the predictions
of the three MCT glass transition calculations. At this point, it should be noted that during
the comparison with a type of MCT calculation, the ΓOCP

g pre-factor which appears in
Equation (10) is adapted to match to the corresponding value that is given in the first
line of Table 1. This means that ΓOCP

g = 575.5 for MCT-H, ΓOCP
g = 289.8 for MCT-I and

ΓOCP
g = 279.7 for MCT-V. It is apparent that the semi-empirical expression performs well

for the MCT-H calculations (as it was already observed in Ref. [29]) and that it performs
even better for the MCT-I calculations and the MCT-V calculations. To be more quantitative,
for the set of screening parameters considered in this work (κ ≤ 5.0), the relative deviations
between the analytical scaling and ΓMCT-H

g (κ) can become as large as 15%, while the relative
deviations between the analytical scaling and ΓMCT-I

g (κ) or ΓMCT-V
g (κ) never exceed 5%.
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Figure 4. YOCP phase diagram featuring the liquid–solid phase transition line determined from
the MD simulations of Ref. [24] (circles), the glass transition line determined from the MCT-H
calculations (stars), the glass transition line determined from the MCT-I calculations (squares), the
glass transition line determined from the MCT-V calculations (diamonds). The solid curves represent
the prediction of the semi-empirical expression for the melting line of Equation (6) with ΓOCP

m = 171.8
(red) and the prediction of the semi-empirical expression for the glass transition line of Equation (10)
with ΓOCP

g = 575.5 (blue), with ΓOCP
g = 289.8 (cyan) and with ΓOCP

g = 279.7 (purple).

The high accuracy of analytical semi-empirical expression for the MCT glass transition
and the equivalence of Equation (10) to Equation (5) with Λ = 1, suggest that the glass
transition line can be considered to be an isomorphic curve. This observation also rational-
izes why the analytical scaling agrees better with the MCT-I calculations which feature an
explicitly isomorph-invariant bridge function [52] and with the MCT-V calculations which
feature an implicitly isomorph-invariant bridge function [58] rather than with the MCT-H
calculations which neglect the bridge function altogether. It should be mentioned that
a modified version of Equation (10) was also tested, in which the analytical scaling was
made fully equivalent to the expression for the YOCP isomorphs by replacing ακ with Λακ
and then by determining Λ via least-square fitting. The results of such modified scaling
will not be analyzed further, because for all three calculations the parameter Λ was found
to be very close to unity, suggesting that the choice Λ = 1 is already nearly optimal, and
that the modified scaling possesses essentially the same accuracy of the standard scaling of
Equation (10).
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The above results indicate that the MCT glass transition line of YOCP systems con-
stitutes an isomorphic curve. Given that isomorphs are phase diagram lines of constant
reduced excess entropy, this suggestion can be supported by computing the reduced ex-
cess entropies of the YOCP state points that lie along the glass transition line, sex(κ, Γg),
and then by checking to which extent they satisfy the condition sex(κ, Γg) = const. The
accurate computation of the excess entropy requires to perform computer simulations of
supercooled fluids combined with free-energy calculation techniques [87], but the correct
implementation and execution of such simulations falls outside the scope of the present
work. Hence, here we computed sex(κ, Γg) by utilizing two YOCP equations of state avail-
able in the literature which provide the reduced excess internal energy, uex(κ, Γ), from
which the reduced excess entropy can be straightforwardly computed by thermodynamic
integration from sex(κ, Γ) = uex(κ, Γ)−

∫ Γ
0 uex(κ, Γ′)/Γ′. Note that reduced excess internal

energies are expressed in units of NkbT and reduced excess entropies are expressed in
units of Nkb.

The equation of state constructed by Hamaguchi and coworkers fits well computer
simulation results in the entire stable fluid YOCP phase diagram and expresses the re-
duced excess internal energy as uH

ex(κ, Γ) = a(κ)Γ + b(κ)Γ1/3 + c(κ) + d(κ)Γ−1/3 [24,42].
The equation of state proposed by Rosenfeld and Tarazona, within the framework of an
asymptotically-high density expansion for purely repulsive potentials, fits well computer
simulation results in the strongly coupled stable liquid portion of the YOCP phase dia-
gram and leads to the reduced excess internal energy expression uRT

ex (κ, Γ) = M(κ)Γ +

3.0[Γ/Γm(κ)]2/5 [88,89]. The κ-dependent parameters a(κ), b(κ), c(κ), d(κ) and M(κ) are
given in the respective references, while the coupling parameter at the melting point, Γm(κ),
can be conveniently expressed via Equation (6) [54]. It should be emphasized that both
equations of state are strictly valid only for the stable fluid phase of the YOCP. In order to
confirm that they can be safely extrapolated to the supercooled regime, the reduced excess
internal energies uH

ex(κ, Γ) and uRT
ex (κ, Γ) were compared against those computed from the

IET structural properties, uex(κ, Γ) = (3/2)
∫ ∞

0 x2βu(x)g(x)dx, along the glass transition
line that stems from the MCT-I and MCT-V calculations. The comparison showed that both
equations of state could predict the reduced excess internal energy within 2% along the
MCT-I glass transition line and within 1% along the MCT-V glass transition line leading to
the conclusion that both can be employed to obtain accurate estimates for thermodynamic
properties of supercooled Yukawa fluids.

The reduced excess entropies along the MCT-I and MCT-V glass transition lines are
reported in Table 2. The MCT-H calculations are not included due to their poor glass
transition line prediction. There are deviations in the entropy predictions of the equations
of state. The Rosenfeld–Tarazona expression predicts that both glass transition lines
satisfy sex(κ, Γg) = −5.5 within 3%, whereas the Hamaguchi expression predicts reduced
excess entropies that are not constant along the glass transition lines (see the relatively
large deviations reported in the last two rows of Table 2) and change noticeably between
the MCT-I and MCT-V glass transition lines. At this point, one should recall that the
Hamaguchi equation of state was constructed on an empirical basis by observing the
functional dependencies within the stable fluid range, while the Rosenfeld–Tarazona
equation of state was derived on the basis of an asymptotically-high coupling parameter
expansion that ignores the liquid–solid phase transition. Thus, the Rosenfeld–Tarazona
equation of state should be more accurate for supercooled YOCP liquids. Overall, from
the results of Table 2, it can be concluded that the MCT glass transition line constitutes an
isentropic curve with sex = −5.5 (within 3%) reduced excess entropy.
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Table 2. Excess entropy along at the MCT-I glass transition line (columns 3 and 4) and the MCT-V
glass transition line (columns 6 and 7) as obtained from the Hamaguchi equation of state sH

ex , and the
Rosenfeld–Tarazona equation of state, sRT

ex . All the excess entropies are reported in units of Nkb, i.e.,
these are reduced excess entropies. In the last three rows, the designation AVE denotes the average
value of the reduced excess entropy along the respective glass transition line (rows 1–15), while
the quantities εa and εm report the average and maximum relative deviations between the reduced
excess entropies along the respective glass transition line and their average value reported in AVE.

κ ΓMCT-I
g sH

ex(MCT-I) sRT
ex (MCT-I) ΓMCT-V

g sH
ex(MCT-V) sRT

ex (MCT-V)

0.0 289.8 −5.204 −5.547 279.7 −5.124 −5.469
0.2 291.7 −5.188 −5.552 282.5 −5.115 −5.481
0.4 299.5 −5.161 −5.557 291.3 −5.098 −5.496
0.6 314.6 −5.134 −5.558 306.4 −5.074 −5.499
0.8 337.8 −5.111 −5.551 328.8 −5.05 −5.491
1.0 370.3 −5.093 −5.540 359.3 −5.025 −5.474
1.2 413.5 −5.062 −5.526 399.5 −4.984 −5.451
1.4 469.5 −5.082 −5.512 451.6 −4.992 −5.427
2.0 746.3 −5.002 −5.469 711.5 −4.893 −5.366
2.6 1308 −4.932 −5.444 1249 −4.827 −5.344
3.0 1980 −4.884 −5.436 1905 −4.798 −5.353
3.6 3871 −4.782 −5.441 3792 −4.737 −5.396
4.0 6210 −4.602 −5.453 6182 −4.593 −5.443
4.6 13,010 −4.614 −5.481 13,330 −4.662 −5.534
5.0 21,650 −4.626 −5.503 22,660 −4.715 −5.605

AVE −4.695 −5.505 −4.912 −5.455
εa

(%) 3.628 0.739 3.151 0.994

εm
(%) 10.84 1.253 6.494 2.748

4.2. The MCT form Factors

The critical form factors resulting from the MCT-H, MCT-I and MCT-V calculations
are compared in Figure 5 for two screening parameters. Important observations from
Figure 5 are that the MCT-H, MCT-I and MCT-V calculations lead to similar form factors at
their respective glass transition points (compare the solid curves) as well as that there are
enormous form factor differences between MCT-H and MCT-I or MCT-V calculations at the
same state point (compare the dashed curves to the blue solid curve). These observations
are in line with the discussions of Sections 2.3 and 3.1. They are both manifestations of the
fact that the MCT non-linear kernel on the right hand side of Equation (4) requires only
the static structure factor as external input and does not contain any explicit dependence
on the interaction potential. The form-factor similarity at the glass transition point can be
explained by the fact that the IEMHNC, VMHNC and HNC approximations can all be
expected to produce similar structure factors at their respective glass transition points; the
IEMHNC and VMHNC approximations due to their high accuracy (see Section 2.3) and the
HNC for the reasons discussed in Section 3.1. On the other hand, the large discrepancies
observed between the MCT-H calculations and the other two sets of calculations at the
same state point are caused by the poor performance of the HNC approximation in the
dense fluid region which was also discussed in Section 3.1.

Figure 6 illustrates how the critical YOCP form factor changes with the screening pa-
rameter according to MCT-I and MCT-V calculations; similar results (not shown here) were
also obtained from MCT-H calculations. Regardless of the IET approximation employed
to compute the static structural properties, it is apparent that the critical form factor is
characterized by a main peak whose magnitude and position are practically independent of
the screening parameter under consideration. The main peak is preceded by a rapid decay
towards a state-point-dependent long wavelength limit and is followed by slowly decaying
oscillations which also appear to be state-point-independent. The results of Figure 6 are
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rather anticipated in light of our previous discussions. Since the MCT glass transition
line constitutes an isomorphic curve, then a large number of reduced unit dynamic and
structural properties should be nearly invariant while traversing the glass transition line.
The static structure factor is known to be an isomorph invariant quantity, thus, given the
deep connection between S(k) and f (k), it can be expected that also the form factor exhibits
some degree of invariance. On the other hand, the variance of f (k) near the k = 0 limit is
caused by the fact that the long wavelength limit of the MCT memory kernel is given by a
relation of the form αS(0) = αχT where the pre-factor α is described by Equation (9b) of
Ref. [29] and where χT = 1 + n

∫
h(r)d3r is the isothermal compressibility, which is known

to strongly vary along an isomorph [90] (strictly speaking, S(0) = χT does not hold for
the OCP for which the correct infinite wavelength limit of the structure factor, S(0) = 0,
must be retrieved from the small argument expansion S(q→ 0) = (3Γ/q2 + 1/χT)

−1 with
q = kd [91]). While the isomorph variance of S(0) has a negligible effect on the overall
degree of invariance of the static structure factor due to the nearly incompressible nature of
supercooled YOCP liquids (see Figure 7), the isomorph variance of S(0) has a strong effect
on the degree of invariance of the form factor over a sizeable wavenumber interval due to
the large value of the proportionality constant α which augments the small compressibility
values.
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MCT-I ( = 727.7)
MCT-V ( = 727.7)
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(a) = 1.0 MCT-H ( = 41,030)
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Figure 5. Comparison between the critical YOCP form factors stemming from the MCT-H (blue), MCT-I (cyan) and MCT-V
(purple) calculations for two values of the screening parameter, κ = 1.0 in panel (a), κ = 5.0 in panel (b). Each panel also
reports the form factors obtained from the MCT-I and MCT-V calculations at the glass transition state point predicted by the
MCT-H calculations (dashed lines).
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Figure 6. Critical YOCP form factors along the MCT-I (panel a) and the MCT-V glass transition line (panel b). Each
panel reports the results for fifteen YOCP state points with screening parameters κ = {0.0, 0.2, 0.6, 0.8, 1.0, 1.2, 1.6, 2.0,
2.6, 3.0, 3.6, 4.0, 4.6, 5.0} (color-coded).
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4.3. The MCT Vitrification Indicators

The YOCP static structure factor, radial distribution function and direct correlation
function along the MCT glass transition line (MCT-H, MCT-I, MCT-V) are illustrated in
Figure 7. Let us first focus on the results for the state points pertaining to the MCT-I and
MCT-V glass transition lines. In accordance with the predictions of isomorph theory, the
static structure factor and radial distribution function are almost invariant. On the other
hand, owing to the asymptotic limit c(r → ∞) = −βu(r) and due to the connection to
the compressibility via (1/χT) = −n

∫
c(r)d3r, the direct correlation function is strongly

variant. Albeit not directly evident from Figure 7, the radial distribution function and
the static structure factor are similar to f (k) in the sense that their short-range values are
also non-invariant; g(r) is variant due to the asymptotic limit g(r → 0) ∝ exp[−βu(r)] [92],
while S(k) is variant due to its connection to the compressibility S(k→ 0) = χT . However,
while the short-range variance has a noticeable effect on the critical form factor, it is
inconsequential for both the radial distribution function and the static structure factor since
it occurs in a region where both functions are approximately zero. Finally, we point out that
the invariance of the radial distribution and the static structure factor is slightly violated in
the vicinity of their first maxima, but it holds to a nearly exact degree at their subsequent
minima and maxima. Regarding the static properties along the MCT-H glass transition line,
it can be noticed that S(k) and g(r) both show a reduced degree of invariance, in accordance
to an earlier observation which reported that assuming B(r) = 0 has a detrimental effect
on the invariant properties along an isomorphic line [52].
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Figure 7. YOCP static properties obtained by solving the IET Equations (7), (8) with the HNC closure along the MCT-H
glass transition line (panels a,d,g), with the IEMHNC closure along the MCT-I glass transition line (panels b,e,h) and
with the VMHNC closure along the MCT-V glass transition line (panels c,f,i). The static structure factor is presented in
panels (a–c), the radial distribution function in panels (d–f) and the direct correlation function in panels (g–i). Each panel
reports the results for 15 state points with screening parameters κ = {0.0, 0.2, 0.6, 0.8, 1.0, 1.2, 1.6, 2.0, 2.6, 3.0, 3.6, 4.0, 4.6, 5.0}
(color-coded).
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The high degree of isomorph invariance which characterizes the static structure factor
and the radial distribution function at the MCT glass transition line opens up the possibility
of determining a group of empirical vitrification indicators. Such indicators are inspired
by the successful application of freezing indicators which allow to locate the liquid–solid
phase transition line simply by monitoring some characteristic features of the liquid state
S(k) and g(r). Empirical vitrification indicators would serve as phenomenological criteria
for the localization of the glass transition line based solely on the structural properties of the
supercooled liquid. In fact, it was observed that two commonly used freezing indicators,
namely the magnitude of the first peak of the static structure factor Smax employed in the
Hansen–Verlet freezing rule [93] and the amplitude ratio of the first nonzero minimum
to the first maximum of the radial distribution function gR employed in the Raveché–
Mountain–Streett freezing rule [94] perform reasonably well also for the prediction of
the glass transition line, albeit at different values. In particular, it was revealed that the
MCT-I glass transition line is characterized by Smax = 4.49± 0.15 and by gR = 0.14± 0.01,
while the MCT-V glass transition line is characterized by Smax = 4.00 ± 0.08 and by
gR = 0.13± 0.01.

Given the fact that most of the non-invariant features of S(k) and g(r) are concentrated
around their first peak and taking into account that an effective vitrification indicator should
remain as constant as possible along the glass transition line, it should be possible to identify
even better vitrification indicators by generating simple curve metrics that do not involve the
magnitude of the first peak of these quantities. For this reason, two additional prospective
vitrification indicators were considered which refer to the amplitude ratio of the first nonzero
minimum to the second maximum of the radial distribution function, gR2, and the amplitude
ratio of the first nonzero minimum to the second maximum of the static structure factor,
SR2. The values of these prospective vitrification indicators along the glass transition lines
stemming from the MCT-I and the MCT-V calculations are reported in Table 3.

Table 3. Prospective vitrification indicators along the MCT-I glass transition line (columns 3 and 4)
and the MCT-V glass transition line (columns 6 and 7). SAPP

R2 denotes the amplitude ratio of the first
nonzero minimum to the second maximum of the static structure factor obtained from approximation
APP, while gAPP

R2 denotes the amplitude ratio of the first nonzero minimum to the second maximum
of the radial distribution function stemming from approximation APP. In the last three rows, the
designation AVE denotes the average value of the vitrification indicator along the glass transition
line (rows 1–15), while the quantities εa and εm report the average and maximum relative deviations
between the vitrification indicators along the respective glass transition line and their average value
reported in AVE.

κ ΓMCT-I
g SIEMHNC

R2 gIEMHNC
R2 ΓMCT-V

g SVMHNC
R2 gVMHNC

R2

0.0 289.8 0.37 0.31 279.7 0.35 0.30
0.2 291.7 0.37 0.31 282.5 0.35 0.30
0.4 299.5 0.37 0.31 291.3 0.35 0.30
0.6 314.6 0.37 0.31 306.4 0.35 0.30
0.8 337.8 0.37 0.31 328.8 0.35 0.30
1.0 370.3 0.37 0.31 359.3 0.35 0.30
1.2 413.5 0.37 0.31 399.5 0.35 0.30
1.4 469.5 0.37 0.31 451.6 0.35 0.30
2.0 746.3 0.37 0.31 711.5 0.35 0.30
2.6 1308 0.37 0.31 1249 0.35 0.29
3.0 1980 0.37 0.31 1905 0.34 0.29
3.6 3871 0.36 0.31 3792 0.34 0.29
4.0 6210 0.36 0.31 6182 0.34 0.29
4.6 13,010 0.36 0.31 13,330 0.34 0.30
5.0 21,650 0.36 0.31 22,660 0.34 0.30

AVE 0.37 0.31 0.35 0.30
εa (%) 1.22 0.20 1.24 0.57
εm (%) 2.32 0.60 2.34 0.86
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Both prospective vitrification indicators remain almost constant along the MCT glass
transition line, with minor deviations from their average value which do not exceed 1%
for gR2 and 3% for SR2. These vitrification indicators possess another desirable property,
since they exhibit respectable variations within the supercooled regime prior to and post
the glass transition line (see Figure 8). This characteristic highlights their potential practical
use for the localization of the MCT glass transition point. Overall, the indicators gR2 and
SR2 perform better than Smax and gR, since they exhibit slightly smaller variations along
the MCT glass transition line and result to more consistent predictions between the two
IET approaches employed in the computation of the MCT glass transition line. In this
regard, the VMHNC approximation and the IEMHNC approach produce really close but
not identical values for gR2 and SR2 at the glass transition point. We argue that the results
obtained with the VMHNC approximation should be preferred over the ones obtained with
the IEMHNC approach, since the former approximation is known to produce more accurate
predictions for the second coordination cell [58]. Combining the above, it can be concluded
that the MCT glass transition point is characterized by gR2 = 0.30 or equivalently by
SR2 = 0.35 and that these two conditions can be employed to obtain an accurate guess for
the MCT glass transition line of the YOCP without having to solve the MCT equation. On a
side note, it is worth pointing out that the vitrification indicator gR2 could also be employed
as a freezing indicator, since the state points along the YOCP melting line obtained via
computer simulations are all characterized by gR2 = 0.4± 0.01 (see panel b in Figure 8).
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Figure 8. The variations of the prospective vitrification indicators SR2 (panel a) and gR2 (panel b) for different screening
parameters as a function of the coupling parameter normalized by its MCT glass transition value. Results for stable
liquids (Γ/Γg(κ) . 0.6), supercooled liquids prior to the glass transition (0.6 . Γ/Γg(κ) < 1.0) and supercooled liquids
post the glass transition (Γ/Γg(κ) > 1.0). For each indicator, the superscript denotes the IET approximation employed,
i.e., the VMHNC approach or IEMHNC approach. The panels report the SR2 or gR2 values for six screening parameters
κ = {0, 1, 2, 3, 4, 5} and two MCT glass transition lines, namely those stemming from MCT-V calculations where Γg(κ) ≡
ΓMCT-V

g (κ) (main plot) and from MCT-I calculations where Γg(κ) ≡ ΓMCT-I
g (κ) (inset). The numerical values of ΓMCT−V

g (κ)

and ΓMCT-I
g (κ) have been reported in Table 1. The full symbols represent the values of SR2 and gR2 at the YOCP melting

point predicted by computer simulations [24].

5. Discussion and Future Work
5.1. Summary of the Results

In the present work, the glass transition line of Yukawa one-component plasmas was
computed by combining the mode coupling theory of the glass transition with highly
accurate structural input obtained from two advanced closures to the integral equation
theory of liquids, namely the isomorph-based empirically modified hypernetted chain
approach and the variational modified hypernetted chain approach. It was observed
that both closures lead to consistent values for the YOCP glass transition line and it was
concluded that the present results offer a greatly improved estimate compared to earlier
estimates that are available in the literature. Besides the improvement upon existing
results, the highly accurate structural input adopted in the present calculations allowed the
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identification of two vitrification indicators which can be employed to obtain an accurate
guess for the YOCP glass transition line without necessitating a determination of the
bifurcation point. The existence of vitrification indicators is important from a theoretical
and practical standpoint; from a theoretical perspective, the possibility to identify reliable
vitrification indicators that are solely based on the structural properties of the supercooled
fluid is a direct manifestation of the fact that the glass transition line is an isomorph. From
an experimental perspective, the vitrification indicators can be used to guide experiments
aimed at reaching the glassy state since they can be readily estimated from the radial
distribution function or the static structure factor, two quantities which are often easily
measured in the course of an experiment either by direct camera observation in the case of
soft matter [95] or by neutron diffraction in the case of atomic or molecular systems [96].

5.2. Extension to Bi-Yukawa Systems

The present results can be trivially extended to bi-Yukawa systems, which are one-
component model systems relevant to the laboratory realization of complex plasmas [97,98]
that are characterized by purely repulsive interactions of the form βu(x) = (Γ/x)[(1−
σ)e−κx + σe−µκx], where σ ∈ [0, 0.5] and µ ∈ [0, 1] are external (non-thermodynamic) poten-
tial parameters. For such systems, it has been demonstrated that the isomorphs can be accu-
rately parameterized by the analytical expression [54] Γ{(1− σ)e−ακ

[
1 + ακ + (ακ)2/2

]
+

σe−αµκ
[
1 + αµκ + (αµκ)2/2

]
} = const. Given that the glass transition line is nearly an iso-

morph, it can be expected that the bi-Yukawa glass transition line is given by ΓbiYOCP
g (κ; σ, µ)

= ΓOCP
g {(1− σ)e−ακ

[
1 + ακ + (ακ)2/2

]
+ σe−αµκ

[
1 + αµκ + (αµκ)2/2

]
}−1 with ΓOCP

g ≈
280. An identical expression for ΓbiYOCP

g (κ; σ, µ) was earlier inferred by Yazdi and collabo-
rators [29] who, however, overestimated ΓOCP

g by approximately a factor of two.

5.3. Quasi-Universality Aspects

A brief investigation of the glass transition point for the HSPY system and for three
inverse power law (IPL) systems with exponents m equal to 4, 9 and 12 revealed that the
structural vitrification indicators SR2 and gR2 have a quasi-universal character, i.e., the
conditions SR2 = 0.35 and gR2 = 0.30 produce an accurate estimate for the glass transition
point regardless of the system under consideration. In the investigation of the HSPY and
IPL-m glass transition point, we proceeded as follows: (a) The static properties of the HSPY
system were computed via the Wertheim–Thiele analytical solution [84,85], while the static
structure factors for the IPL-4, IPL-9, IPL-12 systems were computed with the VMHNC
approach. (b) MCT was employed for the IPL systems leading to the glass transition points
ñ = 8.103 for IPL-4, ñ = 1.648 for IPL-9 and ñ = 1.322 for IPL-12 where ñ = (βε)3/mnσIPL
is a temperature-scaled density which fully specifies the state point of an IPL−m system
with interaction potential u(r) = ε(σIPL/r)m. On the other hand, it was not necessary to
solve the MCT for the HSPY system, since it is known that it vitrifies when the packing
fraction becomes η = 0.516, see Section 3.3. (c) The vitrification indicators were computed
and it was revealed that the four systems satisfied SR2 = 0.35 and gR2 = 0.30 within 3% at
their respective glass transition points.

In addition, the quasi-universal character of the thermodynamic vitrification indicator
sex = −5.5, obtained in Section 4.1, was tested. The reduced excess entropy of the HSPY
system was computed from the Wertheim–Thiele equation of state [85] and the reduced
excess entropy of the IPL systems was computed with the Rosenfeld equation of state [88].
These led to sHSPY

ex (η = 0.516) = −5.6, sIPL
ex

-4(ñ = 8.103) = −6.3, sIPL
ex

-9(ñ = 1.648) = −5.3
and sIPL

ex
-12(ñ = 1.322) = −4.7. While the HSPY result for compares well with the YOCP

result, the IPL results exhibit large deviations from sex = −5.5. Such deviations are
probably connected to the unjustified extrapolation of the IPL equation of state in the
supercooled regime, but this can only be confirmed by an extended IPL investigation which
falls beyond the scope of the present work.
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5.4. Future Work

The traditional mode coupling theory of the glass transition has some drawbacks
that stem from the assumptions that are necessary in order to derive a tractable equation
for the intermediate scattering function. In fact, MCT predicts a glass transition at higher
temperatures than the ones observed in experiments [22]. For the YOCP, this implies that
the true glass transition point will occur at coupling parameters which are higher than the
ones predicted by MCT.

A possible approach to rigorously improve the MCT predictions is to employ the
so-called Generalized mode coupling theory (GMCT) of the glass transition [63,99]. Similar
to MCT, GMCT is an entirely first-principle approach which allows to describe the physics
of the glass transition without having to resort to computer simulations or experiments.
The GMCT tries to improve upon the MCT by delaying the uncontrolled factorization
of the density correlation functions, which is necessary to obtain a simplified version of
the memory kernel. In doing so, the GMCT derives an infinite hierarchy of equations of
motion in which the N-particle density correlation function depends on the (N + 2)-particle
density correlation function. The hierarchy is then truncated at some finite order N = Nmax
and it is assumed that the correlations for N > Nmax can be factorized with an MCT-like
approach. If Nmax = 2, GMCT simply reduces to MCT.

It has been observed that the delayed factorization of the correlation functions em-
ployed in GMCT has a beneficial effect in correcting some short-comings of the MCT; most
noticeably it has been proven that truncating the GMCT at Nmax = 4 or at Nmax = 6 brings
the estimate for the HS glass transition point systematically closer to the experimental
value of η = 0.580 obtained with colloidal hard-spheres [63,99]. Future developments of
the current results could go in the direction of employing GMCT to refine the present
estimates of the YOCP glass transition line. Given that, similarly to the MCT equations, the
GMCT equations do not contain any explicit dependence on the interaction potential, it
can be expected that the improvements observed for HS systems would also appear for
the YOCP.
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IEMHNC Isomorph-based Empirically Modified HNC
IET Integral Equation Theory



Molecules 2021, 26, 669 22 of 25

IPL Inverse Power Law
MCT Mode Coupling Theory
MCT-H MCT solved with structural input from the HNC approximation
MCT-I MCT solved with structural input from the IEMHNC approximation
MCT-V MCT solved with structural input from the VMHNC approximation
MD Moleculary Dynamics
OCP One-Component Plasma
PY Percus–Yevick
YOCP Yukawa One-Component Plasma
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