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Abstract

Opioid use disorder is a major public health crisis. While effective treatments are available, 

outcomes vary widely across individuals and relapse rates remain high. Understanding neural 

mechanisms of treatment response may facilitate the development of personalized and/or 

novel treatment approaches. Methadone-maintained, polysubstance-using individuals (n=53) 

participated in fMRI scanning before and after substance-use treatment. Connectome-based 

predictive modeling (CPM)—a recently developed, whole-brain approach—was used to identify 

pre-treatment connections associated with abstinence during the 3-month treatment. Follow

up analyses were conducted to determine the specificity of the identified opioid abstinence 

network across different brain states (cognitive vs. reward task vs. resting-state) and different 

substance use outcomes (opioid vs. cocaine abstinence). Post-treatment fMRI data were used to 

assess network changes over time and within-subject replication. To determine further clinical 

relevance, opioid abstinence network strength was compared to healthy subjects (n=38). CPM 

identified an opioid abstinence network (p=.018), characterized by stronger within-network 

motor/sensory connectivity, and reduced connectivity between the motor/sensory network and 

medial frontal, default mode and frontoparietal networks. This opioid abstinence network was 

anatomically distinct from a previously identified cocaine abstinence network. Relationships 

between abstinence and opioid and cocaine abstinence networks replicated across multiple brain 

states but did not generalize across substances. Network connectivity measured at post-treatment 

related to abstinence at 6-month follow-up (p<.009). Healthy comparison subjects displayed 

intermediate network strengths relative to treatment responders and non-responders. These data 

indicate dissociable anatomical substrates of opioid versus cocaine abstinence. Results may inform 

the development of novel opioid-specific treatment approaches to combat the opioid epidemic.
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Introduction

The opioid epidemic has led to a dramatic rise in opioid-related mortality1, 2, highlighting an 

urgent need for improved prevention and intervention efforts based on known biological 

mechanisms. Although evidence-based treatments are available for opioid use disorder 

(OUD)3, there is substantial individual variability in response to different treatments, and 

multiple quit attempts are standard. As the risk of opioid overdose is highest following 

unsuccessful treatment, in part due to reduced tolerance4, more targeted intervention 

approaches to reduce relapse rates are urgently needed. Several prior studies have examined 

neural correlates of treatment response, and there is preliminary evidence to suggest 

that reduced neural response to drug cues at baseline is associated with better treatment 

outcomes (for review, see5, 6). However, few studies have examined how neural functioning 

outside the context of drug cue reactivity relates to risk for relapse, and no prior studies 

have applied machine learning to identify whole brain patterns of functional connectivity 

that predict opioid use.

In addition, polysubstance use is common and undertreated. Approximately half of 

individuals seeking treatment for OUD have comorbid cocaine use, which is associated with 

poorer outcomes7, including higher overdose risk8, 9. Therefore, elucidation of the neural 

mechanisms of opioid and other substance use among individuals in treatment for OUD 

is needed to stimulate the development of novel treatment approaches, and may ultimately 

facilitate the identification of individuals who are likely to benefit from additional resources 

to achieve and/or maintain abstinence10. However, neurobiological features conferring 

vulnerability for opioid relapse remain poorly understood; see11 for systematic review.

Here we use a recently developed whole-brain, machine-learning approach— connectome

based predictive modeling (CPM)—to identify neural network connections associated 

with future opioid relapse. Unlike traditional regression/correlation approaches, CPM 

with leave-one-out (LOO) cross-validation (CV) is designed to protect against overfitting, 

increasing the likelihood that identified brain-behavior relationships will generalize in novel 

samples12, 13. As CPM is entirely data-driven and allows one-to-one mapping back to brain 

anatomy13, it is a powerful tool for identifying complex networks subserving multifaceted 

behaviors, which we have previously used to identify a network associated with cocaine 

abstinence14.

We first applied CPM to identify neuromarkers of opioid abstinence among methadone

maintained, polysubstance-using individuals. Given evidence suggesting that distinct 

personality and neurocognitive profiles underlie cocaine versus opioid dependence15—in 

addition to differential affective and environmental precipitants to craving and use of each 

substance16, 17—we hypothesized that connections identified via CPM as associated with 

opioid use would be largely dissociable from those previously identified as predictive of 

cocaine use14. Additionally, as recent advances in brain-behavior modeling demonstrate 

that individual differences in functional connectivity may be maximized by examining 

data acquired during performance of different tasks (i.e., brain state manipulation)18–22, 

we also examined the impact of brain state on network identification and brain-behavior 

associations. Finally, as addiction remission is hypothesized to arise from multiple 
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neurobiological processes—i.e., some networks may return to premorbid levels of 

functioning when drug use is discontinued, whereas others may be upregulated to support 

the active maintenance of abstinence23—we compared opioid abstinence network strength 

within our patient sample to an independent sample of healthy comparison (HC) participants 

to determine whether individuals who respond well to treatment display network strengths 

that are comparable to or increased relative to HCs.

Materials

Participants and recruitment

Patients were recruited from a larger randomized controlled trial (RCT) of treatment for 

cocaine use disorder (NCT00809835; see Supplemental Materials for details on RCT). As 

reported previously14, 74 patients from the parent RCT enrolled in the current neuroimaging 

protocol, who were already engaged in methadone maintenance treatment for OUD, and also 

had cocaine use disorder (see Supplemental Materials for additional information, Figures 

S1). A final sample of 53 participants were included in the CPM analyses (3 excluded 

for incomplete data, 18 excluded for excessive motion, Table S1). While no formal power 

analysis was conducted for the neuroimaging component of the RCT, our prior work in 

this population found that this sample size was sufficiently powered to develop a CPM 

of cocaine abstinence that replicated in an external sample14. Demographic and clinical 

characteristics for all participants are shown in Table 1. All participants provided written 

informed consent approved by the Yale School of Medicine IRB following description of 

study procedures. Abstinence during treatment was determined using biweekly urine testing 

and defined as the percentage of urine specimens testing negative for opioids (excluding 

methadone) during treatment. A subsample of participants (n=41) also completed a post

treatment scan. Additionally, 38 HCs were included who underwent fMRI scanning as part 

of ongoing research protocols at Yale University (details in Supplemental Materials).

Neuroimaging data acquisition

fMRI data were acquired during cognitive control (Stroop) and reward (Monetary Incentive 

Delay; MID)24 tasks (all participants), as well as during resting state (n=36). CPM analyses 

related to reward task data and subsequent cocaine use have been published previously14. 

Task, acquisition, preprocessing, and calculation of functional connectivity matrices are 

described in the Supplemental Materials.

Connectome-based predictive modeling (CPM) for opioid abstinence

To identify patterns of connectivity linked with opioid abstinence, CPM was conducted 

with cognitive control task data in MATLAB using validated custom scripts12, available at 

https://www.nitrc.org/projects/bioimagesuite. CPM generates a brain-behavior model using 

behavioral data (here, percentage of opioid-negative urines) and whole brain connectomes 

as inputs12. This approach identifies positive and negative predictive features in a training 

dataset using regression analysis (here, either Pearson’s correlation or partial correlation). 

The sum of positive and negative edge weights is then calculated for each individual 

and entered into predictive models with behavioral data assuming linear relationships. 

Resultant coefficients are then applied to the test dataset to generate behavioral predictions 
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and model performance is quantified as the correspondence between actual and predicted 

values (here, using Spearman’s rho to account for the non-normal distribution of opioid 

abstinence). Consistent with current recommendations for predictive modeling in modestly 

sized neuroimaging samples25, the current analyses use LOOCV. Only edges that are shared 

across every iteration are retained in the final positive and negative opioid abstinence 

networks. Permutation testing was used for significance testing (details in Supplemental 

Materials). As LOOCV may in some instances overfit the data26, CPM was repeated using 

5-fold CV and this was iterated 50 times.

Abstinence network strength across substance use outcomes

To assess the specificity of the opioid abstinence network and the previously identified 

cocaine abstinence network14 to predict opioid versus cocaine abstinence, associations 

between opioid abstinence network strength and cocaine abstinence (defined as the 

percentage of cocaine negative urine drug screens collected during treatment), as well 

as between cocaine abstinence network strength and opioid abstinence, were tested using 

Spearman correlations.

Abstinence network strength across brain states

To assess the replicability of the opioid and cocaine abstinence networks across different 

brain states, CPM analyses were repeated using connectomes from reward task data to 

predict opioid use, and using connectomes from cognitive control task data to predict 

cocaine use. Furthermore, edge weights corresponding to each network were extracted from 

connectomes generated from reward task (opioid abstinence network) or cognitive control 

task (previously identified cocaine abstinence network) and resting state data (further details 

in Supplemental Materials, Table S2). Associations between network strengths across brain 

states and opioid and cocaine abstinence were tested using Spearman correlations.

Network change and replication over time

Post-treatment fMRI data were used to assess changes from pre- to post-treatment and to 

determine replicability of brain-behavior associations over time. Post-treatment abstinence 

was defined as the percentage of self-reported days of opioid abstinence during a 6-month 

follow-up period.

Network strength relative to HCs

Finally, we were also interested in assessing how HC network strength compares to 

patients as a function of treatment response. Edge weights corresponding to the opioid 

and cocaine abstinence networks were extracted from HC cognitive control and reward 

task connectomes. Participants were classified into groups of treatment responders and 

non-responders for opioids and cocaine separately (details in Supplemental Materials). 

Independent samples t-tests were used to compare mean network strength between (i) 

responders versus HCs and (ii) non-responders versus HCs (i.e., as networks were defined 

based on dimensional treatment responses, we did not compare network strengths between 

responders and non-responders).
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Results

Opioid abstinence network

CPM analysis of baseline cognitive control task data successfully identified a network 

associated with subsequent within-treatment opioid abstinence, including motion as a 

covariate (r(df=52)=0.32, p=0.018; Figure 1A; see Supplemental Materials for more on 

motion controls). Across 50 iterations, the CPM analysis with 5-fold cross-validation 

yielded consistent results (initial: r=.33, mean±st.dev: r=.27±.10, median: r=.27).

Opioid abstinence network anatomy

Consistent with prior connectome-based work, the opioid abstinence network identified 

via CPM was complex and included connections within and between multiple large-scale 

canonical neural networks (opioid and cocaine abstinence networks available at https://

www.nitrc.org/projects/bioimagesuite/). Nonetheless, it contained only 2.7% of possible 

connections (985 total edges: 520 positive, 465 negative). Figure 1B summarizes networks 

based on connectivity between macroscale brain regions, which included connections 

between frontal, parietal, temporal, and occipital lobes (details in Supplemental Materials).

Figure 1C summarizes connectivity based on the number of connections between canonical 

networks for positive and negative edges— hereafter referred to as the positive and negative 

networks. The positive network was predominantly characterized by within-network 

connections of the motor/sensory network, and between-network connections of the motor/

sensory, salience and visual networks, as well as the default mode and frontoparietal 

networks. The negative network was largely comprised of connections between the 

motor/sensory network and frontoparietal, medial frontal, and default mode networks. To 

determine the relative specificity of different network subcomponents, edges corresponding 

to each of these five canonical networks were iteratively ‘knocked-out’ and CPM analyses 

were rerun. In all cases, CPMs still successfully predict opioid abstinence (details in 

Supplemental Materials; Table S3).

Network change and replication over time

Opioid abstinence network strength did not change across treatment (t(df=40)=−.587, p=.56), 

and post-treatment opioid abstinence network strength was positively associated with 

subsequent opioid abstinence across the 6-month follow-up period (rho(df=40)=.404, p<.009).

Comparison with cocaine abstinence network anatomy

Figure 2A–E shows anatomical overlap between the opioid abstinence network and the 

previously identified cocaine abstinence network14. Notably, there was almost no overlap 

between cocaine and opioid abstinence networks (details in Supplemental Materials).

Specificity of opioid and cocaine abstinence networks across substance use outcomes

There were no significant associations between within-treatment cocaine abstinence 

and opioid abstinence network strength during cognitive control task performance 

(rho(df=52)=0.07, p=0.606), reward task performance (rho(df=52)=0.06, p=0.674) or resting

state (rho(df=52)=0.12, p=.47). Similarly, there were no significant associations between 
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within-treatment opioid abstinence and cocaine abstinence network strength during reward 

task performance (rho(df=52)=0.11, p=0.425).

CPM analyses controlling for concurrent cocaine and opioid use

We repeated both opioid and cocaine abstinence CPM analyses controlling for cocaine and 

opioid use, respectively. The CPM model predicting opioid abstinence from Stroop data 

remained significant after controlling for concurrent cocaine use (r=.30, p=.025). Similarly, 

our CPM model predicting cocaine abstinence from reward task data also remained 

significant after controlling for concurrent opioid use (r=.45, p<.001).

Correspondence between opioid and cocaine use

Across individuals there was no significant association between cocaine and opioid 

abstinence (as indicated by % negative urines; rho=.132, p=.352). In addition, prediction 

errors (i.e., actual abstinence – predicted abstinence for each drug) for cocaine and opioid 

CPMs were not significantly correlated (rho = .169, 1-tailed p = .113).

Replication of opioid abstinence network across brain states and in relation to cocaine 
abstinence

CPM analysis of reward task data did not significantly predict within-treatment opioid 

abstinence (r(df=52)=0.17, p=0.10; Figure 3A). Alternatively, extracting the opioid abstinence 

network generated using cognitive control data from reward task and resting-state data 

indicated significant positive associations between within-treatment opioid abstinence 

and opioid abstinence network strength during reward task performance (rho(df=52)=0.71, 

p<.001) and during resting state (rho(df=52)=0.46, p=.005; Figure 3B), indicating replication 

across brain states. Applying the opioid abstinence network to predict cocaine abstinence 

across brain states, Spearman’s correlation analyses indicated no significant associations 

between within-treatment cocaine abstinence and opioid abstinence network strength during 

cognitive control task performance (rho(df=52)=0.07, p=0.606), reward task performance 

(rho(df=52)=0.06, p=0.674) or resting state (rho(df=52)=0.12, p=.472; Figure 3B). Therefore, 

cognitive control, but not reward task, data could be used to identify an opioid abstinence 

network, and the opioid abstinence network was specific for predicting opioid, not cocaine 

abstinence.

CPM analysis of cognitive control task data did not predict within-treatment cocaine 

abstinence (r(df=52)=0.16, p=0.13; Figure 3A). However, extracting edge weights for the 

cocaine abstinence network (that was identified using reward task data) from cognitive 

control task and resting-state connectomes demonstrated significant positive associations 

between within-treatment cocaine abstinence and cocaine abstinence network strength 

during cognitive control task performance (rho(df=52)=0.70, p<.001) and during rest 

(rho(df=35)=0.41, p=.014; Figure 3B), indicating replication across brain states. In contrast, 

applying the cocaine abstinence network to predict opioid abstinence across brain states, no 

significant associations between within-treatment opioid abstinence and cocaine abstinence 

network strength were found during cognitive control task performance (rho(df=52)=0.003, 

p=0.983) or during resting state (rho(df=35)=0.091, p=.597; Figure 3B). Therefore, reward, 

but not cognitive control task, data could be used to identify a cocaine abstinence network, 
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and the cocaine abstinence network was specific for predicting cocaine, but not opioid 

abstinence (Figure 3A–B).

Connectivity strength relative to HCs

Overall, network strength of the cocaine and opioid abstinence networks did not differ 

between HCs and patients (cocaine abstinence network t(df=75.5)=−1.36, p=0.178; opioid 

abstinence network t(df=72.9)=.91, p=369). However, HCs demonstrated an intermediate level 

of network strength relative to treatment responders and non-responders (Figure 3C–D). 

Specifically, opioid abstinence network strength was significantly decreased in HCs relative 

to opioid treatment responders (t(df=55)=7.5, p<.001), and non-significantly increased 

relative to opioid non-responders (t(df=43.1)=−1.6, p=.112). Similarly, HCs demonstrated 

significantly decreased cocaine abstinence network strength relative to cocaine treatment 

responders (t(df=47.1)=2.04, p=.047), and significantly greater cocaine abstinence network 

strength relative to cocaine treatment non-responders (t(df=56)=−8.3, p<.001).

Discussion

We applied CPM to identify a neural network associated with opioid abstinence during 

treatment among methadone-maintained, polysubstance-using individuals and compared this 

to a previously identified cocaine abstinence network14. Consistent with prior evidence for 

distinct neural mechanisms of opioid and stimulant use17, 27, opioid and cocaine networks 

were largely anatomically distinct and were specific for predicting opioid or cocaine 

abstinence only (respectively). Across-task comparisons revealed that while distinct brain 

states were optimal for identifying each network, once identified, both networks successfully 

predicted substance-specific abstinence across multiple brain states.

Findings of dissociable neural substrates of different substance use behaviors are consistent 

with recent machine-learning work that identified distinct profiles of neurocognitive, 

personality, psychiatric, and demographic characteristics in association with opioid versus 

stimulant dependence15. Congruently, recent evidence suggests that different mood states16 

and contexts17, 27 precipitate craving and relapse for heroin versus cocaine, and that 

these processes may be driven by distinct neural mechanisms17. Similarly, a growing 

literature suggests that a significant proportion of the variance in substance use behavior 

is accounted for by substance-specific genetic and neurocognitive risk factors, in addition to 

characteristics that confer vulnerability to substance use more generally (for review, see28). 

Collectively, these data suggest there are substance-specific neural substrates of opioid use. 

Tailoring interventions according to individual risk factors has been proposed as a relatively 

unexplored approach for improving the precision and efficacy of addiction treatment28. 

Thus, targeting opioid-specific clinical and neurobiological mechanisms may represent a 

promising approach for designing more effective treatments for OUD.

Primarily, opioid abstinence was associated with increased within-network motor/sensory 

connectivity and increased between-network connectivity of motor/sensory, salience, default 

mode, and frontoparietal networks, as well as decreased connectivity between motor/sensory 

and medial frontal, default mode, and frontoparietal networks. Figure 4 presents a theoretical 

working network model highlighting these key aspects of the opioid abstinence network. 

Lichenstein et al. Page 7

Mol Psychiatry. Author manuscript; available in PMC 2021 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nonetheless, our virtual lesion analysis indicated that brain-behavior associations remained 

significant following removal of any one of these networks (see Supplemental Materials), 

indicating that no single network alone was required to support abstinence. Despite this 

generality, a lesion analysis eliminating the entire opioid abstinence network was unable 

to predict opioid abstinence altogether, demonstrating the centrality of the identified 

connections for predicting opioid abstinence.

Speculatively, motor/sensory connectivity may be related to opioid abstinence via its role 

in sensorimotor learning and acquired automaticity of opioid use behaviors30. In particular, 

the automatization of actions related to substance use is an important component of the 

addiction process, and individuals with more automatized drug use behaviors may be 

more vulnerable to relapse30. Congruently, in addition to the significant contribution of 

sensorimotor connectivity, 14% of the positive opioid abstinence network was comprised of 

between-network cerebellar connections and 12% consisted of between-network subcortical 

connections (including caudate and putamen nodes; see Figure 1). Collectively, these results 

demonstrate that a large proportion of the opioid abstinence network is comprised of 

connections between regions implicated in automatic motor movements. Future research 

is needed to assess how opioid abstinence network characteristics relate to sensorimotor 

processing of drug-relevant stimuli, as well as to explore the possibility of targeting 

sensorimotor components of addiction to improve treatment outcomes. For additional 

discussion of network anatomy, see Supplemental Materials (Figure S2).

Notably, network identification—but not model performance—was dependent on brain state, 

supporting previous work18 suggesting that linking brain function to behavior is critically 

dependent on selecting the optimal brain state for data acquisition and subsequent feature 

selection22. Future studies utilizing FC data collected while participants view drug-relevant 

stimuli or make drug-related decisions may further improve our ability to predict abstinence 

and enhance our understanding of the neural mechanisms of addiction recovery.

The neurobiology of successful addiction remission is theorized to involve complex 

interactions between multiple neural circuits23. In particular, certain circuits may return 

to premorbid functioning once substance exposure is discontinued, whereas other neural 

processes may be upregulated to maintain abstinence by supporting self-monitoring, 

cognitive control, and/or new skill acquisition. The current finding that HCs display 

intermediate network strength relative to treatment responders and non-responders suggests 

that the opioid abstinence network contributes to the maintenance of abstinence, such that 

individuals who are successful in treatment are characterized by ‘hyper-normal’ network 

strength relative to HCs23. Furthermore, these results suggest that novel interventions 

targeting this circuitry prior to treatment—such as neurofeedback, neuromodulation, and 

novel pharmacological and behavioral approaches—may be helpful in promoting subsequent 

within-treatment abstinence.

Limitations

This study has several limitations. While CPM with LOOCV is more robust than the whole

brain correlation or regression approaches employed in prior studies of OUD11–13, this study 

did not include an external replication sample25. Thus, additional replication in an external 
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sample is needed. However, this limitation should be considered within the context of the 

urgent need for research to address the current opioid epidemic31 and the current scarcity 

of neuroimaging data from clinical OUD samples in the United States11. Additionally, given 

the modest sample of female participants included in our analyses, we did not have sufficient 

power to run separate CPM analyses within male and female subgroups (see Supplemental 

Materials for more on sex differences).

Opioid abstinence network strength did not differ across the 12-week period of treatment, 

rather the ‘predictive’ ability of the opioid abstinence network replicated over time, with 

connectivity patterns measured at post-treatment relating to abstinence measured during 

6-month follow-up. However, as participants were already maintained on methadone at 

the time of study entry, additional research is needed to assess whether network strength 

increases during the early stages of successful opioid treatment or else represents a 

stable predictor of treatment response, such that individuals with increased pre-treatment 

opioid abstinence network strength may be more likely to achieve abstinence. Moreover, 

although opioid network strength was a significant predictor of opioid abstinence, it 

accounted for only ~10% of the variance in opioid use during treatment. It is likely 

that functional connectivity data collected during more drug-relevant tasks (i.e. drug-cue 

reactivity paradigms) could yield networks that account for an even greater proportion of the 

variance in treatment outcome. Nonetheless, an important advantage of predictive modelling 

approaches, such as CPM, is to decrease the likelihood of overfitting, and thus yield smaller, 

but more realistic effect size estimates25. Additionally, it will be important to replicate the 

current analyses comparing network strength to HCs using better matched control samples, 

as well as examining whether network strength continues to increase with ongoing skill 

building in extended abstinence. Furthermore, a more comprehensive understanding of the 

neurobiological basis for successful addiction treatment will also require future studies 

examining neural networks of treatment compliance as well as treatment outcome10. Several 

prior studies have identified neural correlates of adherence to addiction treatment32, 33, and 

there is evidence to suggest that neural mechanisms of treatment compliance may be distinct 

from neural mechanisms of treatment response34, 35. Therefore, future research applying 

machine learning to identify neural networks associated with treatment compliance (rather 

than abstinence) could elucidate the extent to which successful treatment engagement and 

response involve common versus distinct neural networks. Finally, future work is needed 

to assess how opioid abstinence network characteristics relate to clinical facets of OUD 

symptomatology and recovery, and whether novel treatment approaches aimed at targeting 

these systems could improve treatment outcomes for individuals with OUD.

Conclusions

The current study utilized a recently developed, connectome-based approach to identify 

a distinct neural network associated with opioid versus cocaine abstinence in a sample 

of treated individuals with both opioid and cocaine use disorders. The opioid abstinence 

network was specifically related to opioid (but not cocaine) abstinence across multiple brain 

states and over time. In addition, our data suggest that HCs show an intermediate level 

of network strength relative to treatment responders and non-responders, suggesting that 

the opioid abstinence network is involved in successfully achieving and maintaining of 
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abstinence. Future research is needed to extend these results across diverse clinical settings, 

to identify intermediate clinical correlates of opioid abstinence network strength, and to 

assess the utility of developing novel treatments targeting this circuitry to improve treatment 

outcomes in OUD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 –. 
Positive and negative opioid abstinence networks

Figure 1A displays the positive opioid abstinence network (red), for which stronger 

connectivity predicts more opioid abstinence during treatment and the negative opioid 

abstinence network (blue), in which decreased connectivity is associated with more opioid 

abstinence. Larger spheres correspond to higher degree nodes. There was a significant 

association between CPM-predicted opioid abstinence (y-axis) and the observed percentage 

of opioid-negative urines during treatment (x-axis; p=.018). Figure 1B displays circle plots 
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summarizing positive (red) and negative (blue) opioid abstinence network anatomy based on 

overlap with macroscale brain regions. Regions are organized according to their anatomical 

location, with more anterior regions are at the top of each plot, and more ventral and 

posterior regions displayed towards the bottom. The first set of plots contain all network 

edges, subsequent plots are thresholded to include only higher degree nodes. Figure 1C 

summarizes positive and negative opioid abstinence network anatomy based on overlap with 

canonical neural networks. Cells along the diagonal represent within-network connectivity 

and the remaining cells correspond to between-network connectivity. Color bars correspond 

to the percentage of each network accounted for by edges within/between each canonical 

neural network. Darker colors indicate a higher percentage of edges. The last figure shows 

the percentage of positive versus negative edges that correspond to different canonical neural 

networks. Red cells indicate relatively more positive network edges and blue cells indicate 

relatively more negative network edges.
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Figure 2 –. 
Anatomical specificity of opioid and cocaine abstinence networks

Figure 2A-D compares the anatomy of the opioid and cocaine abstinence networks based 

on their overlap with macroscale brain regions. Figure 2A depicts edges that belong to 

both the positive opioid and positive cocaine abstinence networks, and figure 2B shows 

edges that are common to both the negative opioid and the negative cocaine abstinence 

network. Figure 2C shows edges that positively predict opioid but negatively predict cocaine 

abstinence, and figure 2D displays edges that positively predict cocaine but negatively 
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predict opioid abstinence. Figure 2E compares the anatomy of the opioid and cocaine 

abstinence networks based on their overlap with canonical neural networks. Color bars 

correspond to the difference between the percentage of the positive and negative opioid 

versus cocaine abstinence network accounted for by edges within and between each 

canonical network. Purple cells indicate relatively more edges in the opioid abstinence 

network and orange cells indicate relatively more edges in the cocaine abstinence network. 

Figure 2F displays frequency distributions of the percent of opioid and cocaine negative 

urines collected across the 12-week treatment period. Percent of opioid negative urines was 

not significantly correlated with the percent of cocaine negative urines (Spearman rho=.082, 

p=.565).

Lichenstein et al. Page 16

Mol Psychiatry. Author manuscript; available in PMC 2021 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3 –. 
Brain state manipulation and comparison with healthy controls

Figure 3A demonstrates that CPM analyses successfully predict opioid abstinence using 

cognitive control - but not reward task - data, whereas cocaine abstinence is successfully 

predicted by reward task – but not cognitive control task – data. Figure 3B demonstrates 

that both opioid and cocaine abstinence networks can predict substance use outcomes 

(opioid or cocaine use, respectively) across brain states, and perform better with task 

versus resting-state data. Associations between the strength of each network in the brain 

state used for network generation (opioid abstinence network strength in cognitive control 

task data and cocaine abstinence network strength in reward task data) and abstinence are 

plotted for reference using dotted lines. Figure 3C-D compares opioid (3C) and cocaine 

(3D) network strength (y-axis) between treatment responders, treatment non-responders, and 

HCs. Because patients were stably maintained on methadone at the time of study enrollment, 

patients were classified as opioid treatment responders if they had no opioid positive urines 

during treatment. In contrast, patients were actively using cocaine at the time of study 

enrollment, so patients were classified as cocaine treatment responders if they had any 

cocaine negative drug screens during treatment. Error bars indicate the standard error of the 

mean.
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Figure 4 –. 
Network model of opioid abstinence network

Figure 4 presents a network model summarizing the dominant connections of the opioid 

abstinence network. Stronger connectivity (red) within the motor/sensory network and 

between motor/sensory and salience, and default mode and frontoparietal networks predicted 

greater within-treatment opioid abstinence, and reduced connectivity (blue) between the 

motor/sensory and medial frontal, default mode, and frontoparietal networks predicted 

greater within-treatment opioid abstinence.
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