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Background: The invention and development of single-cell technologies have

contributed a lot to the understanding of tumor heterogeneity. Theobjective of this

research was to investigate the differentially expressed genes (DEGs) between

normal and tumor cells at the single-cell level and explore the clinical application of

these genes with bulk RNA-sequencing data in breast cancer.

Methods: We collected single-cell, bulk RNA sequencing (RNA-seq) and

microarray data from two public databases. Through single-cell analysis of

23,909mammary gland cells from seven healthy donors and 33,138 tumor cells

from seven breast cancer patients, cell type-specific DEGs between normal and

tumor cells were identified. With these genes and the bulk RNA-seq data, we

developed a prognostic signature and validated the efficacy in two independent

cohorts. We also explored the differences of immune infiltration and tumor

mutational burden (TMB) between the different risk groups.

Results: A total of 6,175 cell-type-specificDEGswere obtained through the single-

cell analysis betweennormal and tumor cells in breast cancer, ofwhich 1,768genes

intersected with the bulk RNA-seq data. An 18-gene signature was constructed to

assess the outcomes in breast cancer patients. The efficacy of the signature was

notably prominent in two independent cohorts. The low-risk group showed higher

immune infiltration and lower TMB. Among the 18 genes in the signature, 16 were

also differentially expressed in the bulk RNA-seq dataset.

Conclusion: Cell-type-specific DEGs between normal and tumor cells were

identified through single-cell transcriptome data. The signature constructed

with theseDEGs could stratify patients efficiently. The signaturewas also closely

correlated with immune infiltration and TMB. Nearly all the genes in the

signature were also differentially expressed at the bulk RNA-seq level.
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Introduction

Breast cancer is the most prevalent malignancy in females

worldwide and accounted for about 30 % of new cancer cases in

2020 (Siegel et al., 2020). Currently, it is not precise enough to

predict the prognosis of patients by clinicians with just clinical stage

information. Traditionally, molecular subtypes based on estrogen

receptor (ER) expression, progesterone receptor (PR) expression,

and human epidermal growth factor receptor-2 (HER2)

amplification could provide some references for treatment

decision-making, but they do not capture the essential

characteristics of tumors (Pusztai et al., 2006). In this regard,

novel methods and deep understanding are warranted to

facilitate personalized medicine.

Malignancy is a genetic disease characterized by an aberrant

expression of multiple genes and accumulating gene mutations

(Lengauer et al., 1998). The key oncogenic transformation which

breaks the balance between tumorigenesis and immune clearance

has not been elucidated. Moreover, the heterogeneity of

malignancies is also attributed to various degrees of

differentiation, proliferation, and invasiveness in different patients

(Feng et al., 2018). Therefore, it is crucial to identify the differentially

expressed genes (DEGs) between normal and tumor tissues which

might be the cardinal genes in the multistep progression of tumors.

The microarray (Abd-Elnaby et al., 2021) and next-generation

sequencing (NGS) (Hong et al., 2020) technologies provide

convenient approaches for gene expression profiling. These

technologies have proven beneficial for risk prediction, patient

stratification, and mechanism investigation (Chen et al., 2022).

A tumor microenvironment contains multiple components

or various cells, such as cancer cells and immune cells (Li et al.,

2007; Shi et al., 2020). Numerous bulk RNA-seq analyses

provided hints about the differences between a normal and

tumor microenvironment (Wang et al., 2020; Lu et al., 2021;

Chen et al., 2022). However, bulk RNA-seq only provides average

expression profiles which may lead to misunderstanding of the

cardinal features. The invention and development of single-cell

RNA-seq (scRNA-seq) offer cell-type-specific insights (Chen

et al., 2019a; Chen et al., 2019b). The genes which drive the

tumor progression forward or inhibit the initiation may be

investigated at a single-cell resolution.

Given that bulk RNA-seq analyses could provide correlations

between transcriptome profiles and clinical information and cell

type-specific insights from scRNA-seq, it is of critical importance

to bridge the analyses of single-cell and bulk RNA-seq data.

There are such increasing efforts from different research

communities who generated single-cell and bulk data using

different methods (Bao et al., 2021; Chen et al., 2021; Li et al.,

2021). Nonetheless, insights about cell-type-specific DEGs are

still deficient. Hereby, in this study, we attempted to afford a

means to integrate data from these two dimensions. Through the

integrative analyses, we also provided a new insight into the study

of neoplasia and developed a gene signature to facilitate the

prognosis prediction for breast cancer. Moreover, all of the

DEGs, except for two, in the signature expressed differentially

between tumor and normal tissues in the bulk RNA-seq data,

which could support the importance of the genes.

Materials and methods

Data collection

The scRNA-seq data on 23,909 mammary gland cells from

seven healthy donors and 33,138 tumor cells from two ER+, two

HER2 amplifications, one PR+, and two triple-negative (TN)

breast cancer (BC) patients were downloaded from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geo/, GSE161529) (Pal et al., 2021).

The bulk RNA-seq data on female breast cancer patients were

collected from The Cancer Genome Atlas (TCGA) database

(Tomczak et al., 2015). The microarray data on 532 breast

cancer patients were collected from the GEO database

(GSE20685, GSE20711, and GSE88770) (Dedeurwaerder et al.,

2011; Kao et al., 2011; Metzger-Filho et al., 2013). They were

removed of the batch effects using the “sva” R package (Powell

et al., 2018) and merged as the GEO cohort.

We downloaded the reference file for the gene set variation

analysis (GSVA) from a website (http://www.gsea-msigdb.org/).

Single-cell RNA-seq data analyses

We conducted single-cell RNA-seq data analyses according

to the pipeline of the “Seurat” R package (Butler et al., 2018).

Unqualified cells (the gene counts per cell≤300 and percentage of
mitochondrial genes per cell≥5) were removed. We normalized

the expression matrix of all cells with the “LogNormalize”

method and then identified 2,000 highly variable genes among

the cells via the “vst” method.

We conducted principal component analysis (PCA) to reduce

the dimensions of the data. With the help of an elbow plot, we

selected the top 19 principal components to cluster cells with the

marker genes. We utilized the “harmony” algorithm to integrate the

data from different samples (Korsunsky et al., 2019). We used the

“SingleR”R package to annotate the cell types (Aran et al., 2019) and

validated the annotation via cell markers from a previous study

(Aran et al., 2017).We displayed a landscape of all the cells using the

uniform manifold approximation and projection (UMAP). Finally,

we identified the seven clusters of DEGs between normal and tumor

cells in the seven cell types, respectively (|log fold change (logFC)| >
0.5 and p-value < 0.05).

To investigate the differences of the biological pathways in

each individual cell type, we also conducted GSVA scores of the

50 hallmark pathways in normal and cancer cells (Hanzelmann

et al., 2013).
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Construction and validation of a
prognostic signature

In the two bulk datasets, we normalized the RNA expression

levels with the “limma” and “sva” R packages (Powell et al., 2018).

We randomly assigned 70 percent of patients in TCGA dataset to

the training cohort, and the rest of the patients were assigned to the

test cohort. With the “survival” R package, we conducted univariate

Cox regression to obtain prognosis-related DEGs in the training

cohort. With these genes, we developed a prognostic signature

including several genes with the least absolute shrinkage and

selection operator (LASSO) regression method in the “glmnet” R

package. The risk score of each patient was calculated with ∑

(expression of genei p βi), where β was the coefficient of each gene.

The median risk score of the training cohort assisted the

stratification of patients in the training, test, and GEO cohorts

separately into low-risk and high-risk groups. We compared the

overall survival (OS) differences between different risk groups by the

Kaplan–Meier (KM) method in the “survival” R package.

Patients in TCGA cohort were divided into stage I–II and

III–IV subgroups. We also validated the efficacy of the signature

in the two subgroups, respectively, using the KM method.

We further validated the efficacy of the signature by

conducting 3-, 5-, and 8-year ROC (receiver operating

characteristic curve) analyses using the “time-ROC” R package

in the training, test, and GEO cohorts separately.

Nomogram model construction and
validation

To improve the efficacy of the prediction, we incorporated

clinical factors (age and stage) and constructed a nomogram

model via the “rms” R package in TCGA cohort.

To validate the efficacy of the nomogram, we plotted 3-, 5-,

and 8-year ROC curves to assess the efficacy of the nomogram.

We also demonstrated the efficacy of the nomogram through a

calibration plot.

Gene set enrichment analysis and immune
infiltration differences

To figure out the implications of different risk scores, we

performed GSEA with the clusterProfiler R package (Wu et al.,

2021) to explore the biological pathways differentially enriched in

the high- and low-risk groups separately.

Considering the differences of immune-related pathways

through GSEA, we calculated the immune infiltration score of

every sample of TCGA dataset via single-sample gene set

enrichment analysis (ssGSEA) (Hanzelmann et al., 2013).

Subsequently, we compared the differences of the immune

cells and pathways between different risk groups. We also

utilized the “estimate” R package to evaluate the immune

FIGURE 1
Schematic diagram of this study.
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infiltration (ImmuneScore, StromalScore, and ESTIMATEScore)

(Galon et al., 2012) and compared the differences in immune

infiltration between different risk groups.

Tumor mutational burden and tumor-
immune dysfunction and exclusion
differences

Considering the DEGs between normal and tumor cells

might indicate different accumulations of mutations. Tumor

mutational burden (TMB) could be a common indicator of

malignancy for tumors. We calculated the TMB of each

sample in TCGA dataset by Varscan software (Koboldt

et al., 2012) and compared the difference between the high-

and low-risk groups.

Tumor immune dysfunction and exclusion (TIDE) could

predict patient responses to anti-PD1 and anti-CTLA4

therapies. We calculated the TIDE scores from the website

(http://tide.dfci.harvard.edu/) (Fu et al., 2020) and compared

the differences between different risk groups.

Investigation of the expression of the genes in single-cell and

bulk RNA-seq data

To validate the signature genes in bulk RNA-seq data, we

compared the expression levels of the 18 genes in the signature

between normal and tumor samples in TCGA dataset. We also

compared the expression levels of the 18 signature genes between

normal and tumor cells in the seven cell types separately.

To understand the importance of these genes and investigate

the differential expression in the different developmental states of

cells, we performed a pseudotime analysis with the “Monocle” R

package (version 2.22) (Qiu et al., 2017).

FIGURE 2
Cell-type annotation and cell ratios. (A) Uniform manifold approximation and projection (UMAP) displayed the cell distribution of normal and
different subtypes of breast cancer. (B)Cell distribution of normal and cancer cells. (C) Eight cell types were annotated and labeled. (D)Differences of
the cell ratios between normal and tumor samples.
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FIGURE 3
DEGs and GSVA. (A) Seven clusters of significant DEGs between normal and tumor cells in the seven cell types were separately identified, and
the top five upregulated and downregulated DEGs of each cluster were labeled. (B) Average gene set enrichment analysis (GSVA) scores of each cell
type in normal and cancer cells, respectively, displayed the scores of the 50 hallmark pathways.
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Statistical analysis

The Wilcoxon test was utilized to compare the differences

between the two groups. Correlations between variables were

calculated by the Spearman test. All statistical analyses were

conducted with R software (v4.1.3), and p < 0.05 was

considered statistically significant. We utilized “set.seed”

function in our codes to guarantee that the analysis was

reproducible.

Results

DEGs between normal and tumor cells
through analyses of scRNA-seq data

The schematic diagram of this study is shown in Figure 1. We

removed cells with less than 300 gene counts and more than 5 %

mitochondrial gene counts (Supplementary Figure S1A). We

defined the top 2,000 DEGs among the cells as variable genes,

FIGURE 4
Identification of a prognostic signature in the training cohort and validation cohort. (A-B) At the bulk level, a signature including 18 genes was
developed based on the prognostic DEGs and the optimal λ through the least absolute shrinkage and selection operator (LASSO) regressionmethod.
(C-F) KM curves displayed a significantly better overall survival (OS) of the low-risk group in the training cohort (C), the test cohort (D), the whole
TCGA cohort, (E) and the GEO cohort (F). (G–H) In the stage I–II (G) and stage III–IV (H) subgroups of TCGA cohort, OS of the low-risk group is
also better than that of the high-risk group.
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and the top 10 were labeled (Supplementary Figure S1B). With the

expression of the 2,000 variable genes, we conducted PCA to reduce

the dimensions and displayed all cells in the top two dimensions

(Supplementary Figure S1C). The elbow plot helped us select

1–19 PCs in the downstream analyses (Supplementary Figure S1D).

Through the DEGs between cells, we classified all the cells

into 22 clusters. We displayed the cell distribution of normal

and different subtypes of breast cancer (Figure 2A). The

distribution of normal and cancer cells (Figure 2B) could

demonstrate that the integration of different samples was

efficient. We annotated eight cell types with the “SingleR”

R package and labeled them in Figure 2C. To validate the

accuracy of cell annotation, we summarized some marker

genes and displayed their expressions (Supplementary

Figure S2).

We calculated and displayed the cell ratios of normal and

tumor samples, respectively, in Figure 2D. There were only

three common myeloid progenitor (CMP) cells in cancer

samples, and thus, this cell type was neglected when we

calculated the DEGs. Therefore, seven clusters of significant

cell-type-specific DEGs between normal and tumor cells in

seven cell types are separately displayed in Figure 3A and

listed in Supplementary Table S1.

To facilitate the understanding of the functional

differences between normal and cancer cells, we calculated

and displayed the average GSVA scores of 50 hallmark

pathways for each cell type in normal and cancer cells,

respectively (Figure 3B).

Identification of an 18-gene signature and
validation

In the DEGs, 163 genes were prognostic in the training

cohort through univariate Cox regression and are listed

Supplementary Table S2. Through the LASSO regression, a

signature comprising 18 genes was developed based on the

optimal λ (Figures 4A, B). Table 1 lists the 18 genes and their

coefficients which could be used to calculate the risk score of

every sample.

The KM curves displayed a significantly better OS of the

low-risk group in the training cohort (Figure 4C). We also

showed that in the test cohort (Figure 4D), the whole TCGA

cohort (Figure 4E), and the GEO cohort (Figure 4F), the

signature could stratify patients into different risks well. In

the stage I–II and stage III–IV subgroups of TCGA cohort, the

OS of the low-risk group was also better than that of the high-

risk group (Figures 4G,H).

The areas under the ROC curves (AUCs) were 0.820,

0.813, and 0.858 for the 3-, 5-, and 8-year survivals,

respectively, in the training cohort (Figure 5A). Separately,

AUCs were 0.753, 0.678, and 0.732 for the 3-, 5-, and 8-year

survival for the test cohort (Figure 5B) and 0.802, 0.780, and

0.821 for the whole TCGA cohort (Figure 5C). AUCs were

0.645, 0.646, and 0.640 for the GEO cohort (Figure 5D). All

the results aforementioned demonstrated that the prognostic

signature was significant for breast cancer.

Nomogram construction and validation

Age, stage, and risk score were incorporated into a nomogram to

improve the efficacy and facilitate the clinical application of the

signature (Figure 6A). The points of age, stage, and risk score were

calculated with reference to the nomogram, and the total points

could help determine the outcomes.

The efficacy of the nomogram was also assessed with ROC

curves, and the AUC values were 0.819, 0.789, and 0.819 for 3-,

5-, and 8-year survival (Figure 6B). The calibration plot

demonstrated the consistency of the nomogram with true

clinical outcomes (Figure 6C).

Gene set enrichment analysis differences
between different groups

GSEA was conducted to investigate the differentially

enriched pathways between different risk groups. The high-

risk group harbored higher metabolism-related pathways such

as histidine metabolism and starch and sucrose metabolisms

which indicated the exuberant metabolism in the high-risk

samples (Figure 7A). Immune-related pathways were enriched

in the low-risk group such as allograft rejection, intestinal

TABLE 1 Genes in the signature and their coefficients calculated by
using the LASSO algorithm.

Gene Coefficient

AIMP2 0.950789

SNX3 0.790702

ARID1B 0.736265

ZMAT3 0.664705

OR51E1 0.450027

C8orf33 0.411607

TCEAL8 0.393024

ACSL1 0.331655

IGFBP5 0.135417

KRT15 −0.07247

RBP1 −0.17784

PIGR −0.22442

PLGRKT −0.26485

LEF1 −0.27798

FAM118A −0.34295

BCL2A1 −0.39692

ANXA5 −0.62069

NGDN −0.76176
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immune network for IgA production, and primary

immunodeficiency, which might provide hints that immune

infiltration occurred more in low-risk samples (Figure 7B).

Immune infiltration differences between
different groups

Considering the differences of the immune-related

pathways through GSEA, we also investigated the immune

infiltration differences between different risk groups. Immune

infiltration scores of every sample in the TCGA dataset are

listed in Supplementary Table S3. Virtually all immune cells

(Figure 8A) and activities (Figure 8B) were higher in the low-

risk group. Furthermore, the “ESTIMATE” algorithm also

supported the immune infiltration advantage in the low-

risk group (Figure 8C).

Tumor mutational burden differences
between different groups

The TMB score of every breast cancer patient studied from

TCGA database is listed in Table S4. TMB is higher in the high-risk

group than that of the low-risk group (Figure 8E). A higher TIDE

score indicated poorer responses to immune checkpoint blockades,

and patients in the high-risk group were more sensitive.

Differences of gene expression and
developmental states

Virtually, all signature genes were also differentially

expressed between the normal and tumor tissues in TCGA

dataset (Figure 8F). The expression levels and ratios in the

corresponding cell types of signature genes were shown for

FIGURE 5
Assessment of the efficacy of the risk signature. (A) Areas under the ROC curves (AUCs) were 0.820, 0.813, and 0.858 for 3-, 5-, and 8-year
survival, respectively, in the training cohort. (B) Likewise, AUCs were 0.753, 0.678, and 0.732 in the test cohort. (C) Likewise, AUCs were 0.802, 0.780,
and 0.821 in the whole TCGA cohort. (D) Likewise, AUCs were 0.645, 0.646, and 0.640 in the GEO cohort.
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normal and cancer cells, respectively (Figure 9A). Cells were

ordered along different trajectories, which meant different

developmental states (Figure 9B) or pseudotimes (Figure 9C).

Genes in the signature were differentially expressed in different

developmental states (Figure 9D), and they were classified into

three clusters based on their expression profiles.

Discussion

Tumor cells are endowed with multiple abilities through the

differential expression of many genes (Hanahan and Weinberg,

2011). Hence, it would make sense to identify tumor-promoting

genes that induce and help sustain tumorigenesis and can thereby

serve as potential targets for vaccine designs. Furthermore,

tumor-antagonizing genes could advance our understanding of

tumor escape from immune recognition and elimination (Bates

et al., 2018). Increasing evidence from studies of bulk RNA-seq

data have provided plenty of support for the search of new targets

or new therapeutics (Liu et al., 2018; Chen et al., 2022). However,

the DEGs from bulk RNA-seq could only represent the average

expression levels of the genes. Over the last decade, scRNA-seq

technology has been increasingly accepted to be a cardinal

method which could assist the gene annotation of the various

FIGURE 6
Nomogram construction and validation. (A) Age, stage, and risk score were included to construct a nomogram. The point of age, stage, and risk
score was calculated with reference to the nomogram, and the total points could help determine the outcomes. (B) Efficacy of the nomogram was
also assessed with ROC curves, and the AUCwas separately 0.819, 0.789, and 0.819 for 3-, 5-, and 8-year survival. (C) Calibration plot demonstrated
the consistency of the nomogram with true clinical outcomes.
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biological roles at the single-cell level (Ren et al., 2021). Hence, in

our study, we identified the DEGs of seven cell types between

normal and tumor cells in breast cancer. With these genes, we

further filtered prognosis-related genes and developed a

prognostic signature to facilitate the prognosis prediction in

clinical practice.

We envisaged that tumor and normal cells displayed

distinct cell landscapes because of different gene

expressions. Cell ratios were different between tumor and

normal samples which may support this concept. Compared

with other types of cancer, the immune cell ratios were lower

in TNBC, which might be the reason for the poorer prognosis

of TNBC patients (Mori et al., 2017). In most, if not all, tumor

samples, the ratio of immune cells such as macrophages,

T cells, and B cells increased dramatically compared to

normal samples. It indicated that immune cells were

recruited into the tumor environment during the multistep

transformation of normal tissues into malignancies. The

question now is why these immune cells fail to identify

tumor cells or how these tumor cells evaded the

destruction by immune cells. It might be rationalized by

the concept of immune checkpoints. Immune checkpoint

inhibitors (ICIs) which could change or reverse immune

suppression (Wilky, 2019) have been commonly used for

chemotherapeutic treatments for multiple types of cancers

including breast cancer (Santa-Maria and Nanda, 2018).

Hence, we also assessed the performance of the signature in

therapeutic responses to ICIs in bulk RNA-seq data. Patients

of the high-risk group were more sensitive to ICIs, which

might be due to the lower immune infiltration and

immunosuppression.

The DEGs between normal and tumor cells identified from

the scRNA-seq data were further incorporated into the bulk data

to filter prognosis-related genes. Only 163 genes met the criteria

and were used to construct a prognostic signature through

LASSO. The efficacy of the signature was significant in two

independent cohorts. The AUCs of the united nomogram

could also add new methods for clinical practice. The

18 genes in the signature merit further investigation due to

the fact that they are differentially expressed at a single-cell

level and hold important implications for prognosis. Notably,

many genes were differentially expressed in virtually all cell types,

such as ANXA5, which were downregulated in almost all tumor

cell types. Moreover, virtually, all signature genes that were

differentially expressed at a single-cell level were also

differentially expressed at the bulk level, which could add

evidence for the importance of these genes.

GSEA is amethod that could help us detect subtle changes of the

pathways between different groups (Subramanian et al., 2005). At

the single-cell level, enrichment pathways between normal and

cancer cells displayed a distinct landscape. For instance, pathways

such as E2F targets and G2M checkpoint were more enriched in

epithelial cells of cancer. Moreover, the DNA repair pathway was

enriched more in virtually all cell types of cancer. At the bulk level,

the pathways of the high-risk group were mainly enriched in

metabolism-related pathways such as histidine metabolism and

starch and sucrose metabolisms, which indicated the active

metabolism of the mitochondria. This might suggest a higher

degree of malignancy in the high-risk group and add evidence

for mitochondria as the target in cancer treatment (Liu and Shi,

2020). In the low-risk group, immune-related pathways such as

primary immunodeficiency were enriched, whichmight suggest that

FIGURE 7
GSEA was conducted to investigate the differentially enriched pathways between high-risk and low-risk groups. (A) High-risk group harbored
higher metabolism-related pathways. (B) Immune-related pathways enriched in the low-risk group.
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immune infiltration occurred more in low-risk samples. Moreover,

although the evidence that the intestinal immune network for IgA

production which was enriched in the low-risk group is still

fragmentary, the functions of intestinal microorganisms in the

resistance to tumors are still far beyond our reach and merit

further investigation.

FIGURE 8
Immune infiltration, TMB, TIDE differences, and the expression of the signature genes in TCGA dataset. (A-B) Nearly all immune cells (A) and
activities (B) were higher in the low-risk group. (C) ImmuneScore using the “ESTIMATE” algorithm also supported the immune infiltration advantage
in the low-risk group. (D) TMBwas higher in the high-risk group than that of the low-risk group. (E)Higher TIDE score indicated poorer responses to
the immune checkpoint blockades, and patients in the high-risk group were more sensitive. (F) Nearly all of the signature genes were also
differentially expressed between normal and tumor tissues in TCGA dataset (*<0.05, **: p < 0.01, and ***: p < 0.001).
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FIGURE 9
Gene expression in particular cell types and differences. (A) Expression levels and ratios in the seven corresponding cell type of the signature
genes were displayed in normal and cancer cells, respectively (EXP: expression level). (B–C) Cells were ordered along different trajectories which
meant different developmental states (B) or pseudotimes (C). (D) Genes in the signature were differentially expressed in different developmental
states, and they were classified into three clusters based on their expression profiles.
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As to the biological roles and properties of the genes in the

signature, several genes were annotated. For instance, it has been

reported that a high ARID1B expression is associated with an

increased histological grade and a decreased 5-year disease-free

survival rate (Shao et al., 2015). In our results, ARID1B was

upregulated in stem cells. Hence, it is reasonable to speculate that

high ARID1B might contribute to the malignancy of tumors.

Notably, the expression of ARID1B in the bulk RNA-seq data was

inconsistent with that of the scRNA-seq data. We speculate that

ARID1B might be differentially expressed in different molecular

subtypes, which needs more evidence from experiments.

Notably, ACSL1 was downregulated in the tumor macrophage

in our study. Blocking ACSL1 in TNBC cells markedly

suppressed the secretion of the granulocyte–macrophage

colony-stimulating factor (GM-CSF) (Thomas et al., 2019).

Also, it was reported that TNF-α prompts an M1-like

phenotypic shift in the monocytes through ACSL1 (Al-Rashed

et al., 2019). Moreover, macrophages account for larger ratios in

cancer tissues. Therefore, ACSL1 might be a reflection of

M1 macrophages, and M2 macrophages might be more

prevalent in cancer tissues, especially in TNBC. In our

signature, there are many genes whose functions in breast

cancer have not been annotated and remain to be identified.

For instance, OR51E1 was highly expressed in stem cells of

cancer, and it contributed to an increased risk score in our

signature. Hence, OR51E1 is worth a further study as an

oncogene.

Taken together, these various lines of results indicate the

importance of the signature and the genes in the signature. The

genes might be important for understanding the conversion of

normal cells into tumor cells. Such knowledge that exploits these

differences may provide, in turn, opportunities to develop novel

therapies. We also added evidence for the heterogeneity of the

patients and the importance of immune infiltration. However,

our research was conducted based on transcriptomics data.

Proteomics data are also needed because proteins are the

main executors of functions, and their expression levels are

not always consistent with RNA expression. Hereby, selective

co-targeting of many oncogenes based on the multi-omics

detection of every patient and various types of

immunotherapies would be the most efficient method for

precision medicine in the future.

Conclusion

DEGs between normal and tumor cells were identified

through single-cell transcriptome data. The signature

constructed with these DEGs could stratify patients

efficiently. The signature was also closely correlated with

immune infiltration and TMB. Nearly all the genes in the

signature were also differentially expressed at the bulk RNA-

seq level.
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