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The Par-3/Baz family of polarity determinants is highly conserved across

metazoans and includes C. elegans PAR-3, Drosophila Bazooka (Baz),

human Par-3 (PARD3), and human Par-3-like (PARD3B). The C. elegans

PAR-3 protein localises to the anterior pole of asymmetrically dividing

zygotes with cell division cycle 42 (CDC42), atypical protein kinase C

(aPKC), and PAR-6. The same C. elegans ‘PAR complex’ can also localise

in an apical ring in epithelial cells. Drosophila Baz localises to the apical

pole of asymmetrically dividing neuroblasts with Cdc42-aPKC-Par6, while

in epithelial cells localises both in an apical ring with Cdc42-aPKC-Par6

and with E-cadherin at adherens junctions. These apical and junctional

localisations have become separated in human PARD3, which is strictly

apical in many epithelia, and human PARD3B, which is strictly junctional

in many epithelia. We discuss the molecular basis for this fundamental dif-

ference in localisation, as well as the possible functions of Par-3/Baz family

proteins as oligomeric clustering agents at the apical domain or at adherens

junctions in epithelial stem cells. The evolution of Par-3 family proteins

into distinct apical PARD3 and junctional PARD3B orthologs coincides

with the emergence of stratified squamous epithelia in vertebrates, where

PARD3B, but not PARD3, is strongly expressed in basal layer stem cells –
which lack a typical apical domain. We speculate that PARD3B may con-

tribute to clustering of E-cadherin, signalling from adherens junctions via

Src family kinases or mitotic spindle orientation by adherens junctions in

response to mechanical forces.

Introduction

Cell polarity is a fundamental feature of most eukary-

otes [1–8]. Pioneering genetic screens in yeast (S. cere-

visiae) [9–11], worms (C. elegans) [12–15] and flies

(D. melanogaster) [16] have uncovered a set of molecu-

lar polarity determinants that function to organise the

polarisation of all other molecules in the cell [17]. A

central player in most eukaryotes is the cell division

cycle 42 (Cdc42) GTPase [9–11], which in metazoans

forms the Cdc42-aPKC-Par6 complex [18–20] that can
be recruited to the plasma membrane by the Par-3/Baz

protein [21–23], which then forms oligomeric clusters

at one pole of asymmetrically dividing stem cells, or in

an apical ring in polarised epithelial cells [24–29].
Here, we review the various roles of Par-3/Baz family

proteins in different cell types and different species,

including the remarkable ability of some Par-3/Baz

family members to separate from the Cdc42-aPKC-

Par6 complex and localise instead to adherens junc-

tions [30,31]. Finally, we speculate on the possible

functions of Par-3/Baz family proteins at either the
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apical domain or adherens junctions in both stem cells

and their differentiated daughter cells.

The discovery of PAR proteins in
C. elegans

The partitioning defective (PAR) genes were first iden-

tified by Ken Kemphues and colleagues at Cornell

University and James Priess at the MRC-LMB in

Cambridge [13]. Both Kempheus & Priess had previ-

ously trained in early C. elegans development in David

Hirsh’s lab at the University of Colorado [14,32,33].

The PAR mutations affected the intracellular localisa-

tion and asymmetric partitioning of cytoplasmic ‘P

granules’ during early embryonic cleavage in C. ele-

gans [13]. Subsequent work from the Kemphues labo-

ratory showed that PAR-1 encodes a Ser/Thr kinase

that is localised to the posterior of the zygote with

PAR-2, while PAR-3 is localised to the anterior of the

zygote by PAR-6 [12,15,34–36]. Atypical protein

kinase C (aPKC or PKC-3) was then shown by the

Ohno and Kemphues laboratories to act with PAR-3

and PAR-6 at the anterior pole of the cell [12,36,37].

Together, these results supported a model of mutual

antagonism between the anterior PAR-3, PAR-6 &

aPKC and posterior PAR-1 & PAR-2 polarity deter-

minants [12], a dynamic state of polarisation which

has more recently been modelled computationally

[38,39]. Recent work indicates a key role for the CDC-

42 GTPase-activating protein (GAP) in inhibiting

CDC-42 activity at the posterior in parallel with PAR-

1 inhibition of PAR-3 [40].

The discovery of Cdc42 in yeast

In parallel with the characterisation of PAR proteins

in C. elegans, Douglas Johnson, John Pringle and col-

leagues discovered a key role for the Cdc42 protein in

cell polarity during asymmetric cell division (budding)

of the yeast S. cerevisiae [9,10,41,42]. A similar role

for Cdc42 in cell polarity was later demonstrated in

the fission yeast S. pombe [11,43]. Subsequent work in

S. cerevisiae has been crucial for understanding how

the Cdc42 GTPase can become polarised through two

distinct mechanisms: first, a positive feedback loop

involving scaffolding proteins and GEF proteins that

functions by clustering the complex and then activat-

ing kinases of the p21-activating kinase (Pak) and ster-

ile-20 kinase (Ste20) family [5,44]; second, a positive

feedback loop involving polarised cytoskeletal traffick-

ing of Cdc42 to the location on the membrane where

it is already most concentrated [45–47]. Recent findings

indicate that the ability of Cdc42 to activate

Pak-family kinases is conserved in Drosophila and

mammalian epithelial cells [48], acting in parallel with

the more famous Cdc42-aPKC-Par6 complex, whose

discovery is described below.

Early biochemical and genetic links
between Cdc42, PAR-6, aPKC and
PAR-3

The early genetic findings in model organisms led to

experiments in mammalian epithelial cells, which sug-

gested a possible role for Cdc42 in some aspects of

epithelial polarity [49]. Biochemical experiments in

mammalian cells from Tony Pawson’s, Steven Mar-

tin’s and Ian Macara’s laboratories then decisively

demonstrated direct interactions between mammalian

Cdc42, Par6, aPKC (also called PKC iota or zeta in

mammals) and Par3 (also called PARD3 in mammals)

as well as a role for this complex at apical tight junc-

tions [18–20,50]. Subsequently, RNAi knockdown of

the C. elegans Cdc42 homolog CDC-42 demonstrated

a key role in the proper localisation of PAR proteins

and a direct interaction between CDC-42 and PAR-6

[51,52].

A junctional role of Bazooka in
D. melanogaster epithelia

By 1984, genetic screens in the embryo by Eric

Wieschaus & Christiane Nusslein-Volhard had identi-

fied mutants affecting epithelial morphogenesis and

cuticle formation such as crumbs, stardust, shotgun (en-

coding E-cadherin) and armadillo (encoding beta-cate-

nin) as reviewed in Ref. [16]. Later, others sequenced

these mutations and characterised the Drosophila

Crumbs, E-cadherin and Arm/beta-catenin proteins

[53–61]. A double mutant, stardust (sdt) bazooka

(baz) was found to have a similar phenotype to ar-

madillo, failing to establish a zonula adherens and dis-

rupting formation of a polarised monolayered

epithelium [23]. Removing the maternal contribution

revealed an early phenotype for baz single mutants,

suggesting a key role for baz in establishment of

epithelial polarity and a redundant role for baz and

sdt in maintenance of epithelial polarity [23].

An apical role of Bazooka in
D. melanogaster neuroblasts

Sequencing and characterisation of the baz gene

revealed it to be the ortholog of C. elegans PAR-3 and

led to the Baz protein being found at the apical pole

of asymmetrically dividing neuroblasts [27] (Fig. 1A).
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The neuroblast is a round stem cell that derives from

epithelial cells by delamination, lacks adherens junc-

tions, Crumbs or Stardust, and thus resembles the

C. elegans zygote [60]. Neuroblasts divide asymmetri-

cally to produce a self-renewing daughter cell and a

smaller differentiating daughter cell. Subsequent work

showed a fundamental similarity between the molecu-

lar mechanisms of asymmetrically dividing Drosophila

neuroblasts and C. elegans zygotes, both organised by

polarisation of the Cdc42-Par6-aPKC-Baz/Par3 com-

plex, which then directly phosphorylates lethal giant

larvae and fate determinants such as Miranda and

Numb to exclude them from the apical pole

[25,28,29,60,62-66].

Unlike in epithelial cells, polarisation of Baz to api-

cal pole of neuroblasts only occurs during mitosis. The

Aurora A cell cycle kinase plays a key role in trigger-

ing apical localisation of Baz during early pro-meta-

phase [67] (Fig. 1A,B). It was proposed that Aurora A

acts by phosphorylating Par6 in neuroblasts [67], but a

more likely target would be a neuroblast-specific pro-

tein that is not found in epithelial cells. The evolution-

arily novel Inscuteable protein, which is uniquely

expressed in neuroblasts, plays a key role in recruiting

Baz apically in mitosis, and in retaining a memory of

the apical pole during interphase, when Baz is cyto-

plasmic [68]. Notably, in specialised neuroblast-like

sensory organ precursor (SOP) cells, the entire apical-

basal axis of the cell is tilted during mitosis in a pla-

nar-polarised fashion by interactions between Baz,

Inscuteable and the Frizzled system [69–71], confirm-

ing that this spontaneously polarising system can ori-

ent itself in response to external cues.

In addition to its role in recruiting Cdc42, Par6 and

aPKC, the Baz protein is also responsible for the

proper orientation of the mitotic spindle in neurob-

lasts. Baz associates apically with Inscuteable (Insc)

[27,29,68,72], which in turn builds a complex of Baz,

Fig. 1. Role of Par-3/Baz in cell polarity in

neuroblasts and epithelia. (A) The

Drosophila Par-3 homolog Baz localises with

the Cdc42-Par6-aPKC complex to the apical

pole of neural stem cells at mitosis.

Clustering of complexes via oligomeric

interactions is crucial for formation of a

polarised apical plasma membrane domain.

(B) Protein–protein interactions upon

activation of the Drosophila Cdc42-Par6-

aPKC complex and its association with Baz.

(C) Localisation of the Baz and Cdc42-aPKC-

Par6 complex in an apical ring just above

adherens junctions in epithelial cells (where

it acts in parallel with Crumbs (Crb) protein,

shown at the right).

598 The FEBS Journal 289 (2022) 596–613 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

The Par-3 family B. J. Thompson



Partner of Inscuteable (Pins) and Gai. The apical

localisation of Pins-Gai orients the spindle at the

proper angle and thereby positions the cleavage fur-

row, which would be randomly positioned otherwise

[71,73–75]. One report claims that mammalian Baz/

Par3 (PARD3) functions similarly to recruit Pins/LGN

in parallel with Gai to orient the mitotic spindle in

skin basal layer stem cells [76] – although this model

remains controversial as the effect of PARD3 condi-

tional knockout is very mild in skin (and PARD3 may

not actually be expressed in skin – see below).

Structural basis for PAR-3/Baz
clustering at the plasma membrane

Molecularly, several mechanisms can promote cluster-

ing of PAR-3/Baz at the plasma membrane. Firstly,

head-to-tail oligomerisation of the N-terminal PB1-like

domain [26,77,78], association of the CR3 domain with

membrane lipids and interaction of Baz with a motif

with aPKC’s kinase domain collectively promote clus-

tering of Baz [26,31,79–83] (Figs 1B and Fig 2A,B).

Secondly, Par6 and aPKC each have a C-terminal

PDZ-binding motif that can bind the first and second

PDZ domains in Baz, respectively (Fig. 2A,B), provid-

ing an additional molecular connection that ensures

stable Baz-aPKC-Par6 complex formation at the apical

domain [84,85]. Thirdly, active Cdc42 binds to the

Par6 semi-CRIB domain [18,20,86,87] to induce an

open conformation that promotes the aPKC-Par6

interaction (PB1:PB1 heterodimer), apical localisation

of aPKC and activation of the aPKC kinase by

removal of a pseudosubstrate region from the kinase

cleft [88,89] (Fig. 2A,B). The displaced pseudosub-

strate region then binds to membrane lipids to further

promote association of aPKC with the plasma mem-

brane [90]. Recent evidence suggests that Drosophila

Baz clustering at the apical pole involves phase-separa-

tion [91], which can occur when certain proteins con-

centrate above a critical point and is a common

characteristic of proteins with a PB1-like head-to-tail

oligomerisation domain [77] or intrinsically disordered

regions of low complexity [92]. Since Par-3/Baz protein

has both an N-terminal PB1-like head-to-tail

oligomerisation domain and C-terminal low complex-

ity ‘coiled-coil’ domain, it may enable oligomers to

self-assemble into clusters that undergo phase separa-

tion (Fig. 2B).

In Drosophila epithelial cells, Baz clusters were

observed in discrete puncta during the establishment

of epithelial polarity, but form a continuous apical

ring shortly thereafter (Fig. 1B). In Drosophila neurob-

lasts, at the onset of mitosis, the resulting clusters of

Baz-aPKC-Par6-Cdc42 rapidly enlarge and coalesce

within minutes to form a uniform apical pole, which

then spreads out into smaller clusters upon the

mechanical enlargement of the apical domain at telo-

phase, before returning to the cytoplasm in daughter

cells [93] (Fig. 1A). In C. elegans, clusters of PAR-3

were also recently observed by imaging the zygote at

high resolution, with distinct CDC-42-Par-6-aPKC,

PAR-3-PAR-6-aPKC and PAR-3 homomeric clusters

detected [94,95].

Parallel roles for Bazooka & Crumbs in
D. melanogaster epithelia

In the polarised cuboidal/columnar epithelial cells of

Drosophila, the Cdc42-Par6-aPKC-Baz complex loca-

lises primarily in an apical ring (sometimes called the

‘subapical region’) just above the ring of adherens

junctions, which it is required to position in the early

embryo [23,96–98]. Throughout embryonic develop-

ment, maintenance of epithelial polarity requires

Cdc42-Par6-aPKC [21,22,63,99], but the Baz protein is

only redundantly required with Crumbs-Sdt, which

becomes expressed in all epithelial cells after polarity

establishment and can also recruit the Cdc42-Par6-

aPKC complex in an apical ring [23,100,101] (Fig. 1B).

This redundancy enables Crumbs to have other func-

tions independent of maintaining epithelial polarity,

such as acting with Spectrins to regulate the Hippo

signalling pathway [102,103], or in planar polarisation

of Rho-kinase activity during morphogenesis [104,105].

In addition, the redundant relationship allows Baz to

have an independent role at adherens junctions,

including in planar polarisation of Rho-kinase [106].

Notably, the apical localisation and planar polarity

functions of Drosophila Baz within cuboidal/columnar

epithelial cells are clearly conserved in the vertebrate

PAR-3 / Baz homologs (PARD3) in frogs [107], chick-

ens [108,109] and mice [110–112]

The distinct apical and junctional
pools of Bazooka in D. melanogaster
epithelia

Close examination of how the Drosophila Baz protein

localises in epithelial cells revealed that some portion

of the total pool of Baz was not colocalised with Par6-

aPKC but rather colocalised with E-cadherin upon

phosphorylation by aPKC at S980 (S827 in humans)

[30,96–98,113] (Fig. 3A-C). Overexpression of Baz

S980A disrupts the apical domain, suggesting that this

construct might bind to and abnormally inhibit aPKC

function [30,31,114]. In contrast, overexpression of
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Baz S980E phosphomimic simply causes localisation to

adherens junctions without any epithelial disruption

[31]. Thus, Baz can be in a complex with aPKC at the

apical ring as long as it manages to avoid becoming a

substrate for aPKC’s kinase activity, at which point it

is released to junctions (Fig. 3A–C). Accordingly,

there is some in vivo evidence for Baz inhibiting aPKC

when it forms a stable complex with it [115]. The

structural basis for this unusual mechanism was exam-

ined with human homologs of Baz (PARD3) and

aPKC (PKC iota) [31] (Fig. 3D) and has important

implications for understanding the apical vs junctional

localisation of PAR-3 / Baz family proteins.

The distinct roles of apical PARD3 and
junctional PARD3B in human epithelia

There are two orthologs of PAR-3 / Baz in vertebrates:

PARD3 (also known as PAR-3 or PAR3) and

PARD3B (also known as PAR-3-like or PAR3L). Ver-

tebrate PARD3 resembles C. elegans PAR-3 in its

aPKC binding site, with conserved Phe-X-Arg (FXR)

and Lys-Arg (KR) motifs flanking the key S827 residue.

In a crystal structure of the interaction between human

aPKC iota kinase domain and a human PARD3 pep-

tide, the FXR and KR motifs insert tightly into the

kinase domain to form an inhibitory complex that pre-

vents phosphorylation of S827 in vitro [31] (Fig. 3D,E).

Another crystal structure with a peptide lacking the KR

motif (which can be phosphorylated on S827) revealed a

far looser binding conformation [31,116] (Fig. 3D,E).

These findings suggest that mutations in PAR-3 / Baz

family proteins that weaken the binding affinity to

aPKC kinase domain will allow aPKC to phosphorylate

PAR-3 / Baz and thereby allow the protein to be loca-

lised to adherens junctions (Fig. 3E).

In the case of Drosophila Baz, the KR motif is

altered to Lys-His (KH), which is associated with a

Fig. 2. Molecular mechanisms of Par-3/Baz

clustering at the apical domain. (A) The Par-

3/Baz N-terminal PB1-like oligomerisation

domain may either undergo dynamic and

transient homomeric interactions or form a

stable helical structure as observed in

crystallographic studies (PDB: 3ZEE).

Crystal structures of several key protein

domains and their interactions have been

determined in the Baz-Par6-aPKC-Cdc42

complex (PDB: 5OAK, 2OGP, 1NF3, 2K1Z,

5LI1, 1WMH). (B) Higher order oligomeric

clustering of Par-3/Baz complexes may

involve not only the N-terminal PB1-like

oligomerisation domain, but also

interactions between the low complexity

‘coiled-coil’ domain (which may instead

function an intrinsically disordered region) at

the C-terminus of Par-3/Baz.
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fractional pool of Baz being phosphorylated by aPKC

and thus localising to adherens junctions with E-cad-

herin [30,31,113] (Fig. 3E,F). In the case of vertebrate

PARD3, which has intact FXR and KR motifs

(Fig. 3E), antibody staining reveals localisation solely

in an apical ring where aPKC is normally found, sug-

gesting they form a stable complex [18,19,108,117–120]
(Fig. 3G).

In the case of vertebrate PARD3B, both the FXR

and KR motifs are mutated (Fig. 3E), suggesting likely

disruption of the interaction with aPKC, and accord-

ingly, antibody staining reveals localisation primarily

to lateral membranes, where E-cadherin is normally

found [121] (Fig. 3F,G). Thus, PARD3 and PARD3B

have diverged such that PARD3 remains tightly asso-

ciated with aPKC apically, while PARD3B localises to

adherens junctions. Consequently, the classical func-

tions of PARD3 at the apical domain, including

recruitment of Cdc42-Par6-aPKC and polarisation of

membrane trafficking along the apical-basal axis via

Fig. 3. Role of Par-3/Baz proteins at

adherens junctions. (A) Drosophila Baz can

separate from the apical PAR complex and

localise to adherens junctions when

phosphorylated by aPKC. (B) Diagram of

interactions between Baz, Par-6 and aPKC.

(C) aPKC phosphorylation of human Par-3

(PARD3) occurs on S827 within the aPKC

interaction site. (D) A loosely bound

substrate conformation may promote

phosphorylation by aPKC. (E) Comparison of

aPKC kinase interaction sites of Par-3/Baz

family members from different species

suggests that tight binding promotes stable

complex formation with aPKC-Par6 apically,

while loose binding promotes

phosphorylation and dissociation from the

aPKC-Par6 complex (such that it colocalises

with E-cadherin). (F) Baz-GFP can be

detected both apically (with aPKC) and

laterally (with E-cad). (G) Human PAR-3

(PARD3) localises apically, while PAR-3-like

(PARD3B) localises laterally in monolayer

columnar epithelial cells from colorectal

cancer biopsies. Data from the www.prote

inatlas.org database.
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the exocyst complex [122–130], appear not to be

shared by PARD3B [121].

Importantly, the apical localisation of vertebrate

PARD3 and junctional localisation of PARD3B are

found across a wide variety of monolayered

cuboidal/columnar epithelial tissues (Fig. 4). In strati-

fied epithelia, PARD3 is present apically in the

polarised columnar cells of the bronchus, but is not

found in stratified squamous epithelia where no api-

cal domain is formed (Fig. 5). Because junctional

PARD3B is strongly expressed in the basal layer of

stratified epithelial cells, while E-cadherin is ubiqui-

tously expressed in this tissue (Fig. 5), PARD3B

cannot have an essential general function in

Fig. 4. PARD3 overlaps with CRB3 apically, while PARD3B overlaps with E-cadherin and Src laterally in monolayered columnar epithelia.

Images of CRB3, PARD3, E-cadherin, PARD3B and SRC from the www.proteinatlas.org database. Four different monolayered columnar

epithelial tissues are shown, with PARD3 always apically localised and PARD3B always laterally localised with E-cadherin and Src. Note that

bladder urothelium is a monolayered pseudostratified epithelium.
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E-cadherin trafficking to the plasma membrane or in

adherens junction maintenance, but is instead likely

to have a specialised function that is necessary in

polarised monolayer epithelia and the basal layer of

stratified epithelia – where most stem cell popula-

tions reside (Figs 4 and 5) and are the cells of origin

for many epithelial cancers (Fig. 6). In an important

breakthrough, Ian Macara’s laboratory showed that

PARD3B is essential for stem cell maintenance in

the mammary gland through a mechanism involving

signal transduction rather than polarity [121].

The possible implications of this important finding

for PARD3B function in stem cells are discussed

below.

Fig. 5. PARD3B overlaps with E-cadherin and Src in basal layer cells of various stratified epithelia. Images of CRB3, PARD3, E-cadherin,

PARD3B and SRC from the www.proteinatlas.org database. Four different stratified epithelial tissues are shown. Note that PARD3 is not

expressed in stratified squamous skin, but remains expressed and apical in stratified columnar epithelia. PARD3B and Src are restricted to

the basal layer cells of skin, prostate, epididymis and bronchus.
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Potential molecular functions of Baz
and PARD3B at adherens junctions

What are the molecular functions of Drosophila Baz

and vertebrate PARD3B at adheres junctions? In con-

sidering the possible roles of Drosophila Baz at junc-

tions, it is not always easy distinguish between its role

in complex with Par6-aPKC and its solo function at

adherens junctions. For example, there is evidence that

Baz helps to directly position adherens junctions dur-

ing polarity establishment in the early embryo [96,97],

in line with a possible role for Baz in directing

polarised membrane transport and delivery of E-cad-

herin to the apical/lateral junction [122–130]. However,

the early embryonic phenotype of baz maternal and

zygotic mutants is likely to reflect a loss of both the

protein’s apical and junctional functions, since Crumbs

is not yet expressed at the very beginning of embryoge-

nesis to sustain apical identity in the absence of Baz.

Once Crumbs becomes expressed and helps recruit

Cdc42-Par6-aPKC to the apical ring of epithelial cells,

the unique functions of Baz at junctions can be

assessed genetically. Zygotic bazGD21 mutants manage

to build a polarised ectodermal epithelium, but fail to

normally complete morphogenetic movements such as

ventral furrow formation or germ band extension

[106,131]. These defects appear to reflect a direct func-

tion of Baz at junctions during cell intercalation,

which is partly driven by planar polarisation of myo-

sin-II-mediated contractility to promote remodelling of

adherens junctions [106,131]. Baz itself becomes planar

polarised in an opposite fashion to myosin-II during

this process, and Baz planar polarisation depends on

Rho-kinase polarisation [106,131]. Thus, it is possible

Fig. 6. PARD3B expression in tumours

arising from basal layer stem cells and

monolayer epithelia. Images of PARD3B

from the www.proteinatlas.org database.

Four different tumour types are shown. The

role of PARD3B in tumour growth and

progression remains unknown.
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that Baz functions to antagonise excessive myosin-II

recruitment and to stabilise adherens junctions, such

that strong planar activation of Rho-kinase on the

remaining sides constricts the junction and ultimately

removes E-cadherin as the junction collapses. Junc-

tional Baz may have a similar role during photorecep-

tor morphogenesis [113], malpighian tubule

morphogenesis [132], and segment boundary morpho-

genesis [133].

The role of Drosophila Baz during embryonic ventral

furrow and dorsal fold formation is to help reposition

adherens junctions in response to force as the epithe-

lium folds [134,135]. Baz colocalises with E-cadherin

during this repositioning, and experimentally blocking

phosphorylation of Baz by Par-1, which normally

excludes Baz from basal-lateral membranes [136], is

sufficient to cause ectopic basal movement of adherens

junctions along lateral membranes [134]. These find-

ings again suggest that Baz may help stabilise adherens

junctions in this context.

After the morphogenetic events of ventral furrow

formation and germ-band extension, it is unclear

whether Drosophila Baz has any essential function in

stabilising adherens junctions in most other tissues.

For example, silencing Baz expression by RNAi or in

mutant clones has no effect on development of wing

epithelial cells or follicle cells owing to maintenance of

apical identity by the Crumbs-Sdt complex [103,137].

This might reflect the fact that apical-basal polarity

directs formation of the apical myosin-II contractile

ring, which normally acts to maintain adherens junc-

tions in the absence of major morphogenetic move-

ments. Hence, Baz may be required to stabilise

junctions only during specialised events where myosin-

II contractility becomes strongly polarised in order to

drive tissue morphogenesis [106,134,138]. Notably,

very strong myosin-II-mediated contractility during

mitotic rounding is isometric, rather than polarised,

and leads to downregulation of both adherens junc-

tions and Baz in the Drosophila wing [139,140] and

even more dramatically in mitotic Nematostella epithe-

lial cells [141] and Xenopus neuroepithelial cells [142].

In vertebrates, the apical and junctional roles of Baz

have been split between apical PARD3 and junctional

PARD3B, an evolutionary shift that coincides with the

striking relocalisation of vertebrate E-cadherin along

the entire lateral membrane of epithelial cells in vivo

(Figs 1G and 3). In Drosophila, E-cadherin is clustered

primarily in an apical-lateral ring with Baz, rather

than uniformly spreading along the lateral membrane

(Fig. 1F), suggesting that membrane trafficking of E-

cadherin may be apically directed in this organism,

possibly via polarised microtubules and the exocyst

complex [123,126,133,143–146]. In mammalian cells, E-

cadherin appears to traffic primarily through the later-

ally directed AP1-dependent pathway to the lateral

membrane, [129,147–154], where it then localises with

PARD3B. In Drosophila, E-cadherin can also traffic

via AP-1 in nonepithelial germline cells that lack an

apical-basal axis or Baz expression [155]. In mam-

malian epithelial cells, apically directed trafficking via

the exocyst is instead promoted by apical PARD3

[125], likely in parallel with other apical/tight-junction

determinants such as CRB-PALS1 [128,156,157]. Fur-

ther work is necessary to determine whether the dis-

tinct roles of apical PARD3 and junctional PARD3B

contribute to the trafficking or stabilising of E-cad-

herin in polarised mammalian epithelial cells.

Aside from a function in directly stabilising adhe-

rens junctions, it is also possible that Drosophila Baz

and mammalian PARD3B might have a role in regu-

lating signalling from adherens junctions. Src family

kinases can function with Baz to recruit certain tran-

scription factors to adherens junctions in Drosophila

[158]. In human epithelia, Src is co-expressed and colo-

calised with PARD3B at adherens junctions (Figs 3

and 4), suggesting that PARD3B might participate in

E-cadherin-Src signalling. Interestingly, it was shown

that PARD3B antagonises liver kinase B (Lkb1/

STK11) signalling to help maintain mammary stem

cells [121], and Src kinases have also been proposed to

antagonise Lkb1 [159]. E-cadherin-Src signalling is

thought to be mechanosensitive [160], and Src can sig-

nal to activate the YAP/TAZ family of mechanotrans-

ducers to control gene expression in the nucleus [161–
164] as well as acting at the cell cortex to regulate

mechanical tension and stability of adherens junctions

[160,165–169]. Since most E-cadherin, PARD3B and

Src are localised along the entire lateral membrane of

columnar cells, while the contractile ring forms at the

apical-lateral adherens junction, it may be that

PARD3B and Src antagonise contractile ring forma-

tion (promoting relaxation) [170]. Both E-cadherin and

Src also have key roles in planar mitotic spindle orien-

tation during symmetric cell divisions in epithelial cells

[171–173]. In future, it will be of great interest to

determine the contribution of mammalian PARD3B to

E-cadherin trafficking, adherens junction stability, E-

cadherin-Src signalling and planar mitotic spindle ori-

entation in various tissues and tumours (Fig. 6) using

mouse conditional knockouts.

Conclusion and perspectives

In summary, PAR-3/Baz family proteins can have dis-

tinct roles at the apical domain (in polarity) and at
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adherens junctions (in signalling). In mammals, these

roles are separately performed by PAR-3 (PARD3;

apical) and PAR-3-like (PARD3B; junctional). In Dro-

sophila, there is a single PAR-3/Baz homolog (Baz)

which performs both of these functions by localising

apically yet having a fractional pool that can localise

to adherens junctions. In C. elegans, the PAR-3 pro-

tein appears to be solely dedicated to cell polarity,

rather than signalling from adherens junctions.

These differences may reflect the fundamental differ-

ences in development between invertebrates and verte-

brates: particularly that C. elegans develops almost

exclusively via the mechanism of asymmetric cell divi-

sions in almost all lineages, while Drosophila develop-

ment employs both asymmetric cell divisions (e.g.

neuroblasts, SOPs, muscle progenitors, intestinal stem

cells) and symmetric cell divisions (in epithelial tis-

sues). There are relatively few examples of asymmetric

cell divisions in mammalian development, including

haematopoietic progenitors [174–178], T cells in con-

tact with antigen-presenting cells [179], muscle satellite

cells [180], neural progenitors [181–183] and skin stem

cells [76,184] – and more evidence is needed for an

instructive role of asymmetric division in determining

cell fate through inheritance of localised determinants,

rather than cell fate determination by positional infor-

mation or stochastic events after cell division. For

example, asymmetric cell division is thought to be

important in neural progenitor cells, where PARD3

localises apically and is required for apical Notch sig-

nalling, which determines the fate of stem cells (high

Notch) vs differentiating daughters (low Notch) [181–
183]. However, PARD3 becomes transiently cytoplas-

mic during mitosis in the frog neuroepithelium [142],

which argues that this stem cell fate decision could be

made after cell division depending on whether or not a

daughter cell delaminates from the epithelium and

thereby loses its apical domain – in which case the ori-

entation of the mitotic spindle and asymmetric division

would not be directly responsible to fate determina-

tion. Thus, the importance of asymmetric cell division

in vertebrate stem cells is still controversial.

In contrast to the asymmetric cell division model,

most mammalian stem cells undergo symmetric cell

divisions within monolayered columnar epithelia

(Fig. 4), or as basal layer cells within stratified epithelia

(Fig. 5), whose spindle orientation is organised by adhe-

rens junctions rather than apical determinants. In basal

layer stem cells of stratified epithelia, there is no recog-

nisable apical domain or polarised localisation of apical

proteins (Fig. 5). Indeed, basal layer stem cells actually

lack expression of PARD3 and other apical proteins

altogether, and instead have strong expression of

junctional PARD3B, which localises with adherens

junctions around the entire plasma membrane (Fig. 5).

To the extent that basal layer cells may divide asymmet-

rically, it is primarily orchestrated by cell shape and

mechanical forces acting on adherens junctions

[185,186] rather than by the presence of an apical

domain that orients the spindle [76]. Furthermore, the

consequence of disrupting mitotic spindle orientation in

basal layer stem cells of the skin is relatively mild [187].

Thus, further work would be necessary to establish that

asymmetric division itself has an important and instruc-

tive role in basal layer stem cell fate decisions, which

could instead be primarily controlled by whether daugh-

ter cells remain attached to the basement membrane

after symmetric cell division. In polarised monolayered

columnar epithelia, which always divide symmetrically

in the plane of the epithelium, PARD3 and PARD3B

are co-expressed but differently localised, with PARD3

being apical and PARD3B being junctional (Fig. 3). It

will be interesting to learn whether PARD3B plays a

role in symmetric cell division, assisting spindle orienta-

tion by adherens junctions or influencing E-cadherin

trafficking, stability or signal transduction in response

to force.

While the apical role of PAR-3/Baz family proteins

in maintaining cell polarity via the Cdc42-Par6-aPKC

complex is well understood, much less is known about

the role of these proteins at adherens junctions in

either Drosophila or mammals. Further genetic experi-

ments are necessary to specifically knockout the adhe-

rens junction pool of Baz in Drosophila, and the

PARD3B protein in mice. Such experiments will shed

light on the functions of these proteins at adherens

junctions in both epithelial stem/progenitor cells dur-

ing normal development, regeneration and in the for-

mation of tumours.
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