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Abstract Missense variants represent a significant proportion
of variants identified in clinical genetic testing. In the absence
of strong clinical or functional evidence, the American
College of Medical Genetics recommends that these findings
be classified as variants of uncertain significance (VUS).
VUSs may be reclassified to better inform patient care when
new evidence is available. It is critical that the methods used
for reclassification are robust in order to prevent inappropriate
medical management strategies and unnecessary, life-altering
surgeries. In an effort to provide evidence for classification,
several in silico algorithms have been developed that attempt
to predict the functional impact of missense variants through
amino acid sequence conservation analysis. We report an anal-
ysis comparing internally derived, evidence-based classifica-
tions with the results obtained from six commonly used algo-
rithms. We compiled a dataset of 1118 variants in BRCAI,
BRCA2, MLHI, and MSH?2 previously classified by our
laboratory’s evidence-based variant classification program.
We compared internally derived classifications with those ob-
tained from the following in silico tools: Align-GVGD,
CONDEL, Grantham Analysis, MAPP-MMR, PolyPhen-2,
and SIFT. Despite being based on similar underlying princi-
ples, all algorithms displayed marked divergence in accuracy,
specificity, and sensitivity. Overall, accuracy ranged from 58.7
to 90.8% while the Matthews Correlation Coefficient ranged
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from 0.26-0.65. CONDEL, a weighted average of multiple
algorithms, did not perform significantly better than its indi-
vidual components evaluated here. These results suggest that
the in silico algorithms evaluated here do not provide reliable
evidence regarding the clinical significance of missense vari-
ants in genes associated with hereditary cancer.
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Background

Accurate variant classification is of significant importance to
patient care. In particular, clinically actionable variants have
the potential to help guide medical management decisions. In
such cases, these decisions are guided by the National
Comprehensive Cancer Network (NCCN) guidelines
(https://www.nccn.org/professionals/physician_gls/f
guidelines.asp). For example, due to the high risk of
developing breast and/or ovarian cancer women with patho-
genic variants in BRCAI and BRCA2 are recommended to
receive increased screening, chemoprevention, and prophy-
lactic surgeries (Daly et al. 2016). Similarly, individuals with
pathogenic variants in MLH1 and MSH?2 are recommended to
receive more frequent colonoscopies starting at an earlier age
due to the risk of developing colorectal cancer (Provenzale
et al. 2016).

Given the importance of accurate clinical variant classifi-
cation, the American College of Medical Genetics (ACMG)
have published guidelines for the interpretation of sequence
variants that often require multiple lines of evidence (Richards
et al. 2015). For some classes of variants, such as missense
variants, obtaining this evidence can be a challenge. Missense
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variants result in amino acid substitutions in the protein prod-
uct that may affect protein structure and/or function and, in
rare cases, RNA splicing. However, commonly used criteria,
including co-segregation analysis, population frequency data,
in-trans observations with a deleterious mutation, and direct
evidence of the functional impact, are often not available for
these rare variants. As a result, in silico prediction tools are
frequently used to evaluate the pathogenicity of missense var-
iants (Pesaran et al. 2016; Thompson et al. 2014).

These computational tools are based on the premise
that the evolutionary conservation of an amino acid in a
protein reflects its absolute requirement for protein func-
tion. In hereditary cancer testing, several in silico tools are
available to evaluate the pathogenicity of missense vari-
ants based on sequence conservation across multiple
mammalian species (Ng and Henikoff 2001). Some algo-
rithms also incorporate biochemical and/or biophysical
parameters of the protein in order to improve their predic-
tive accuracy (Adzhubei et al. 2010; Chao et al. 2008;
Mathe et al. 2006; Tavtigian et al. 2006).

In silico tools were initially developed for academic re-
search, where computational methods are often used to
screen large amounts of data to identify candidate genes/
variants for further investigation. With the increased use of
clinical genetic testing and the challenges of classifying mis-
sense variants, in silico tools are now incorporated into pro-
fessional society guidelines for variant classification (Easton
et al. 2007; Plon et al. 2008; Richards et al. 2015) and are
used for clinical variant classification. However, several
studies have demonstrated that the specificity (correct iden-
tification of benign variants) of these tools can be as low as
13% (Chan et al. 2007; Doss and Sethumadhavan 2009;
Flanagan et al. 2010; Gnad et al. 2013; Leong et al. 2015;
Miosge et al. 2015; Ng and Henikoff 2002; Schiemann and
Stowell 2016; Thusberg et al. 2011; Valdmanis et al. 2009)
and with poor correlation between results from multiple pro-
grams (Thusberg et al. 2011). While these limitations may
be acceptable in selecting variants for research, false posi-
tives and variability between methods may compromise pa-
tient care in a clinical setting.

Existing comprehensive reports on the clinical use of in
silico tools have been limited to small cohorts (Hicks
et al. 2011; Thompson et al. 2013) or variant datasets that
are poorly curated (Thusberg and Vihinen 2009). In order
to provide a comprehensive evaluation of their clinical
use, we evaluated the predictive functionality of several
in silico tools in a large cohort of individuals who
underwent clinical genetic testing. Classifications for mis-
sense variants in BRCAI, BRCA2, MLHI, and MSH? that
were based on independent lines of evidence were com-
pared to classifications from six commonly used in silico
tools: Align-GVGD, CONDEL, Grantham Analysis,
MAPP-MMR, PolyPhen-2, and SIFT.
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Materials and methods
Variant selection

All missense variants identified in BRCAI, BRCA2, MLH]I,
and MSH?2 by a commercial testing laboratory (Myriad
Genetic Laboratories, Inc., Salt Lake City, UT) as of August
2013 were evaluated here. Variation in these high penetrance
genes has the potential to significantly affect medical manage-
ment. These variants were classified as pathogenic or benign
based on multiple, independent lines of evidence that did not
include sequence conservation (Eggington et al. 2013;
Richards et al. 2015). This includes statistical methods
(Pruss et al. 2014), biochemical/biophysical assays in the lit-
erature, population allele frequency thresholds, and co-
occurrences with mutations in the same gene or pathway.
Variants whose pathogenicity may arise from a mechanism
not purely related to the amino acid substitution (variants that
impact mRNA splicing, translation from the initiating 5" AUG
start codon, silent mutations) were excluded. This resulted in a
final dataset of 1118 missense variants.

In silico classification tools

The final set of variants was classified using the following
commonly used in silico tools: SIFT, PolyPhen-2 (two avail-
able models: HumDiv and HumVar), Grantham matrix score,
Align GVGD, MAPP-MMR, and CONDEL server. For
Align-GVGD, an additional 316 BRCA! and 434 BRCA?2 var-
iants were excluded from analysis, as they were used to train
the algorithm and represent a possible source of statistical
bias.

A brief summary of these algorithms is provided in Table 1
and the full details can be found in Online Resource 1. Briefly,
these tools base variant classifications on sequence homology
(SIFT, PholyPhen-2, MAPP-MMR, CONDEL), structural
features (PolyPhen-2, CONDEL), and/or physiochemical
properties (Grantham, Align-GVGD, MAPP-MMR). All in
silico tools were applied to variants in BRCAI, BRCA2,
MLH1, and MSH?2 with the exception of MAPP-MMR, which
is only applicable for MLHI and MSH?2 variants. Each in
silico classification tool utilizes different parameters for vari-
ant classification, the full details of which are in Online
Resource 1.

Evaluation of in silico classification tool performance

For all genes and algorithms, we calculated the overall accu-
racy (ratio of overall correct predictions to the total number of
predictions), specificity (correct identification of benign vari-
ants; true negative rate), and sensitivity (correct identification
of pathogenic variants; true positive rate) relative to the testing
laboratory classifications. Classifications were evaluated in
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Table 1 Description of in silico
tools In silico tool

Algorithm parameters

Notes

SIFT
PolyPhen-2

* Sequence conservation

* Sequence conservation

« Structure-based features

Grantham matrix score

Align-GVGD

MAPP-MMR

* Biochemical properties
of amino acids

* Sequence/biochemical variation

* Sequence conservation

* Consideration of composition, polarity, and
molecular volume of amino acids

* Extension of Grantham matrix score to
sequence alignments

* Requires a large training set of variants with
known classifications

* Only used for MLH1 and MSH?2

* Biochemical properties

CONDEL server

* Sequence conservation
« Structure-based features

» Weighted combination of SIFT, PolyPhen-2
and MutationAssessor scores

SIFT sorting intolerant from tolerant, PolyPhen-2 polymorphism phenotyping v2, MAPP-MMR multivariate
analysis of protein polymorphism, mismatch repair, CONDEL server CONsensus DELeteriousness score of

missense SNVs

three tiers (benign, uncertain, and pathogenic), and those of
the same pathogenicity were considered concordant. For ex-
ample, a laboratory classification of deleterious and an in
silico classification of damaging would be considered concor-
dant while a laboratory classification of benign and an in silico
classification of unclassified would be considered discordant.

The positive predictive values (PPV, the proportion of pos-
itive results that were true positives) and negative predictive
values (NPV, proportion of negative results that were true
negatives) were also calculated.

As variant cohort size varied between algorithms, the
Matthews correlation coefficient was used to provide a
balanced comparison between in silico tools. This metric
is not affected by sample size or the proportion of neutral
to pathogenic variants in each dataset. A value of +1 in-
dicates a perfect prediction while a value of —1 indicates a
total disagreement between the in silico predicted classi-
fication and the laboratory classification. The full details
of all statistical evaluations performed here can be found
in Online Resource 1.

Results

Overall, a maximum of 1118 variants were available for
analysis. Table 1 shows the distribution of variants eval-
uvated by gene and by in silico method. Aside from
MAPP-MMR, which was only available for MLHI and
MSH?2, Align-GVGD had the lowest number of evaluable
variants (n = 368). This was due to the large number of
variants that were used to initially train the algorithm and
that we eliminated from our analyses to mitigate possible
statistical bias.

Overall in silico algorithm performance

Table 2 shows the results of the in silico classification evalu-
ation for the overall analysis, with the highest accuracy being
observed for Align-GVGD (90.8%). This algorithm also
showed the least divergence between specificity (91.7%) and
sensitivity (84.1%). Still, approximately 1 in 10 patients
would receive a false negative with this tool and about 1 in
5 would receive a false positive. The number of true negatives,
true positives, false positives, and false negatives are provided
in Online Resource 2. While the NPV for Align-GVGD was
97.7%, the PPV was only 57.8%.

SIFT, PolyPhen-2, CONDEL, and Grantham had overall
accuracies ranging from 58.7% (PolyPhen-2 HumDiv) to
71.1% (PolyPhen-2 HumVar) (Table 2). Although the sensi-
tivity of these algorithms ranged from 78.2% (Grantham) to as
high as 99.0% (SIFT), the specificities were much lower,
ranging from 55.6% (PolyPhen-2 HumDiv) to 70.1%
(PolyPhen-2 HumVar). The performance of the CONDEL al-
gorithm (69.8%), which is a weighted average of SIFT,
PolyPhen-2, and MutationAssessor, was not superior to
SIFT and PolyPhen-2 in isolation. In addition, the NPVs for
all algorithms were >95%; however, the PPVs were substan-
tially lower at 16-20% (Table 2). Both the low specificities
and PPVs reflect the high frequency of false positives for these
in silico tools.

MAPP-MMR, which is specific to MLH1 and MSH?2, had
an overall accuracy of 74.6% (Table 2). There was a large
discrepancy between the sensitivity (100.0%) and specificity
(56.1%). As such, the PPV was 62.5%.

As the number of variants available for analysis for each
in silico tool ranged from 71 (MAPP-MMR) to 1118 (SIFT,
PolyPhen-2), we compared the performance of each algo-
rithm in a manner that is independent of cohort size.
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Table 2 Performance of in silico

tools Algorithm Total variants Accuracy Sensitivity Specificity PPV NPV
Overall performance
Align-GVGD 368 90.8% 84.1% 91.7% 57.8% 97.7%
SIFT 1118 60.2% 99.0% 56.4% 18.2% 99.8%
PolyPhen-2 HumDiv 1118 58.7% 90.0% 55.6% 16.6% 98.3%
PolyPhen-2 HumVar 1118 71.1% 81.0% 70.1% 21.0% 97.4%
CONDEL 1109 69.8% 84.4% 68.4% 20.2% 97.9%
Grantham 866 67.1% 78.2% 66.0% 18.5% 96.8%
MAPP-MMR?* 71 74.6% 100.0% 56.1% 62.5% 100.0%
BRCAI
Align-GVGD 103 97.1% 91.7% 97.8% 84.6% 98.9%
SIFT 419 48.9% 100.0% 41.5% 19.9% 100.0%
PolyPhen-2 HumDiv 419 55.6% 83.0% 51.6% 19.9% 95.5%
PolyPhen-2 HumVar 419 69.2% 67.9% 69.4% 24.3% 93.7%
CONDEL 414 67.4% 76.0% 66.2% 23.6% 95.3%
Grantham 329 69.0% 90.2% 66.0% 27.4% 97.9%
BRCA2
Align-GVGD 165 92.1% 100.0% 92.1% 7.1% 100.0%
SIFT 599 60.9% 100.0% 59.9% 6.4% 100.0%
PolyPhen-2 HumDiv 599 73.6% 100.0% 72.9% 9.2% 100.0%
PolyPhen-2 HumVar 599 67.8% 100.0% 66.9% 7.7% 100.0%
CONDEL 596 71.8% 100.0% 71.0% 8.7% 100.0%
Grantham 455 64.4% 53.8% 64.7% 4.3% 97.9%
MLHI
Align-GVGD 49 79.6% 76.2% 82.1% 76.2% 82.1%
SIFT 49 71.4% 100.0% 50.0% 60.0% 100.0%
PolyPhen-2 HumDiv 49 59.2% 95.2% 32.1% 51.3% 90.0%
PolyPhen-2 HumVar 49 67.3% 95.2% 46.4% 57.1% 92.9%
CONDEL 49 69.4% 90.5% 53.6% 59.4% 88.2%
Grantham 39 71.8% 68.8% 73.9% 64.7% 77.3%
MAPP-MMR 36 86.1% 100.0% 68.8% 80.0% 100.0%
MLH?2
Align-GVGD 51 84.3% 90.0% 82.9% 56.3% 97.1%
SIFT 51 52.9% 90.0% 43.9% 28.1% 94.7%
PolyPhen-2 HumDiv 51 56.9% 100.0% 46.3% 31.3% 100.0%
PolyPhen-2 HumVar 51 60.8% 90.0% 53.7% 32.1% 95.7%
CONDEL 50 66.0% 88.9% 61.0% 33.3% 96.2%
Grantham 43 76.7% 75.0% 77.1% 42.9% 93.1%
MAPP-MMR 35 62.9% 100.0% 48.0% 43.5% 100.0%

#Only used for MLH1 and MSH2

Figure 1 (top) shows the overall Matthews correlation coef-
ficients, where a value of 1 indicates complete concordance
with the laboratory classifications. The highest degree of
correlation was observed for Align-GVGD (0.65) then
MAPP-MMR (0.59). The remaining in silico tools showed
lower correlation with the laboratory classifications, which
utilized multiple, independent lines of evidence, as detailed
in the “Materials and methods,” with correlation coefficients
ranging from 0.26 to 0.32.
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Classification of BRCAI and BRCA?2 variants

All algorithms except MAPP-MMR were used to classify
missense variants in BRCA/ and BRCA2. As observed for
the overall algorithm performance, Align-GVGD had the
highest overall accuracy for classification of BRCA{ variants
(97.1%) (Table 2). Again, the sensitivity and specificity were
consistent, at 91.7 and 97.8%, respectively. As such, both the
PPV (84.6%) and NPV (98.9%) were high. However, this
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Fig. 1 Overall (top) and gene- = Align-GVGD
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silico tools relative to laboratory 1.0

classification

Matthews Correlation Coefficient

Overall

Matthews Correlation Coefficient

same degree of predictive accuracy was not observed for the
classification of missense variants in BRCA2. Although the
overall accuracy, sensitivity, and specificity are relatively
high, the PPV is only 7.1%. This means that there will be a
very high frequency of false positives for BRCA2 variants
classified with Align-GVGD. This discrepant algorithm per-
formance between BRCA 1 and BRCA? is also clear in Fig. 1,
which shows the correlation between the algorithm classifica-
tions and the laboratory classifications. Despite a relatively
high degree of correlation for BRCA1 (0.86), the correlation
coefficient is only 0.26 for Align-GVGD classification of
BRCA?2 variants.

All other algorithms were poor predictors of the clinical
classification of both BRCAI and BRCA?2 variants (Table 2).
For BRCAI variant classification, overall accuracies ranged
from 48.9% (SIFT) to 69.2% (PolyPhen-2 HumVar). Again,
algorithm specificities (41.5-59.2%) and PPVs (19.9-27.4%)
were low, which is representative of a large number of false
positives (Online Resource 2). For example, BRCAI
¢.5317A>T (p. Thr1773Ser) was classified as benign by the
reference laboratory based on published literature showing
that the variant does not affect gene function (Lee et al.
2010) and phenotypic evidence from a family history
weighting algorithm (Pruss et al. 2014) (Table 3). Although
the variant was classified as benign by PolyPhen-2, it was
classified as pathogenic by Align-GVGD and SIFT.

For BRCA?2 variant classification, SIFT, PolyPhen-2,
CONDEL, and Grantham had overall accuracies ranging from

MLH1

60.9 to 71.8%. Although nearly all algorithms had a sensitiv-
ity of 100%, the specificities ranged from 59.9% (SIFT) to
72.9% (PolyPhen-2 HumVar) (Table 2). Again, this was ac-
companied by extremely low PPVs (4.3-9.2%) due to a high
frequency of false positives. For example, BRCA2
c.7994A>G (p. Asp2665Gly) was classified as benign by
the reference laboratory based on an in-trans observation (oc-
curring in the same gene but different allele) with a known
pathogenic BRCA?2 variant (Table 3). However, all four in
silico tools that produced a classification for this variant called
it either pathogenic or likely pathogenic.

The analysis in Fig. 1, which is independent of cohort size,
shows that there was low correlation between the remaining
algorithms and laboratory classifications. Most in silico tools
had lower correlation coefficients for BRCA2 classifications
than for BRCA1 classifications. This was most significant for
Grantham, which dropped from 0.38 for BRCA! to 0.06 for
BRCA2.

Classification of MLHI and MSH?2 variants

The highest overall accuracy for MLHI missense variants
was observed for MAPP-MMR (86.1%) (Table 2).
However, the sensitivity and specificity were not consis-
tent, at 100.0 and 68.8%, respectively. As a result, the
NPV was high (100.0%) while the PPV was only
80.0%. Align-GVGD also had a relatively high overall
predicative accuracy for the classification of MLH]I
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Table 3 Case examples of

discrepant classifications Laboratory classification

In silico classification(s)

BRCAI ¢.5317A>T (p. Thr1773Ser)

Benign

* Phenotypic evidence based on family history weighting algorithm
(Pruss et al. 2014) shows the variant is associated with less sever
family history of BRCAI-associated cancers.

* No folding defect in BRCA! protein; peptide binding activity normal;

Benign

* PolyPhen-2
(HumDiv and HumVar)

Pathogenic
* Align-GVGD, SIFT

peptide binding specificity normal; transactivation activity uncertain

(Lee et al. 2010).

BRCA2 ¢.7994A>G (p. Asp2665Gly)

Benign

* in trans observation with BRCA2 ¢.4398_4402del (p. Leul466Phefs*2),
which results in premature truncation of the BRCA2 protein at amino

Pathogenic/Likely Pathogenic

* Align-GVGD, PolyPhen-2
(HumDiv and HumVar), SIFT

acid position 1467 and is classified as pathogenic. The patient lacked
symptoms of the recessive phenotype associated with biallelic BRCA2

mutations.

* Phenotypic evidence based on family history weighting algorithm
(Pruss et al. 2014) shows the variant is associated with less severe
family history of BRCA2-associated cancers.

MLH1 ¢.394G>C (p. Asp132His)

Benign

* Phenotypic evidence based on family history weighting algorithm
(Pruss et al. 2014) shows the variant is associated with less severe
family history of MLHI-associated cancers.

Pathogenic/Likely Pathogenic

* Align-GVGD, PolyPhen-2
(HumDiv and HumVar),
SIFT, MAPP-MMR

* in trans observation with the pathogenic MLH] variant, ¢.1731G>A
(p. Ser577Ser), which is a silent variant that causes skipping of exon
15 (Pagenstecher et al. 2006) and has been described in multiple
HNPCC families (Kohonen-Corish et al. 1996; Pagenstecher et al.
2006; Wu et al. 1997). The patient lacked symptoms of the recessive
phenotype associated with biallelic MLH1 mutations.

variants at 79.6%. This algorithm also had similar sensi-
tivity (76.2%) and specificity (82.1%). SIFT, PolyPhen-2,
CONDEL, and Grantham had overall accuracies ranging
from 59.2 to 71.8%. Algorithm specificities (32.1-73.9%)
and PPVs (51.3-64.7%) were relatively low due to a high
frequency of false positives (Online Resource 2). For ex-
ample, MLHI ¢.394G>C (p. Asp132His) was classified as
benign by the reference laboratory based on an in-trans
observation with a known pathogenic variant and pheno-
typic evidence from a family history weighting algorithm
(Pruss et al. 2014) (Table 3). However, this variant was
classified as pathogenic or likely pathogenic by Align-
GVGD, PolyPhen-2, SIFT, and MAPP-MMR.

For MSH?2 variant classification, the overall accuracy
of MAPP-MMR dropped to 62.9%. Align-GVGD had
the highest overall accuracy for MSH?2 variant classifica-
tion, at 84.3%. SIFT, PolyPhen-2, CONDEL, and
Grantham had lower overall accuracies, which ranged
from 52.9 to 66.0%. Again, the specificity for nearly all
algorithms was much lower than the sensitivity. As such,
the PPVs ranged from 28.1% (SIFT) to 56.3% (Align-
GVGD) (Table 2). This again shows that the use of in
silico tools for MSH2 missense variant classification
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results in a high incidence of false positives. Figure 1
shows that the correlation coefficients for MLHI were
generally higher than those for MSH?2; however, all algo-
rithms showed relatively low degrees of correlation with
the reference laboratory classifications, with the exception
of MAPP-MMR for MLHI classification.

Discussion

We assessed the predictive functionality of six commonly
used in silico tools for the assessment of missense variants
in a large dataset of BRCAI, BRCA2, MLHI, and MSH?2
variants identified during the course of clinical genetic
testing. All algorithms in this study generated high error
rates (high frequency of false positives, low correlation
coefficients) when compared to the reference classifica-
tions. These results are consistent with previous studies
that also reported a high rate of error from in silico-
derived classifications (Flanagan et al. 2010; Gnad et al.
2013; Hicks et al. 2011; Martelotto et al. 2014; Miosge
et al. 2015; Thusberg et al. 2011).
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Sources of error for in silico tools

There are several sources of error that may contribute to the
inconsistent and unreliable performance of in silico tools. First
is the need for accurate sequence alignments in order for the
algorithm to accurately assess conservation. As this process is
essentially heuristic, the accuracy of the alignment and the
predicted result falls off dramatically in poorly conserved re-
gions of the protein. As demonstrated by Align-GVGD, se-
quence alignments may be corrected by incorporating infor-
mation from available protein structures; however, it is likely
that many homologous structures would be required to suffi-
ciently improve the accuracy for clinical use. It would be more
appropriate to perform a full structural analysis, which would
also provide direct evidence regarding the effect of the variant
on protein structure and function. While attempts may be
made to manually curate sequence alignments, this can lead
to misaligned regions of the proteins in the absence of addi-
tional information to help guide the process. For this reason,
manual sequence conservation analysis should be avoided as
it is likely to incorporate even more uncertainty.

The second source of error is the assumption that a con-
served position in multiple sequence alignments is more im-
portant for protein function than one that is less well con-
served. As recently alluded to by MacArthur et al., this hy-
pothesis is limited by a lack of proper biological context
(MacArthur et al. 2014). Pathogenic variants can be observed
at sites of relatively low conservation while benign variants
may be found in areas of the protein sequence that are highly
conserved throughout mammalian evolution (Hicks et al.
2011).

Challenges with training in silico tools

The poor overall predictive accuracy of the in silico tools
assessed here may be related to the challenges in “training”
the algorithms. Given the rarity of individual missense vari-
ants and the resulting limited available evidence of pathoge-
nicity, it is challenging to obtain enough robustly classified
variants to both train and independently evaluate the algo-
rithm. When these two datasets overlap, the data can be
“overfit” and the reported predictive accuracy of the tool is
often artificially inflated. A recent study by Grimm et al.
highlighted that accurate predictions from in silico tools are
less frequently observed for variants which overlap between
the training dataset and the evaluation dataset (Grimm et al.
2015). This overfitting may also occur when predictions from
tools are combined (i.e., CONDEL).

For Align-GVGD, we were able to selectively evaluate the
algorithm on a curated set of variants, to maximize the overall
predictive accuracy. As such, while this in silico tool had the
best overall performance, it is unlikely that this accuracy could
be replicated outside of the current study. Additionally, this

approach is not feasible for genes in which few discrete mis-
sense variants have been identified and robustly, clinically
classified.

The exclusion of a large number of BRCA! and BRCA?2
variants that were used to train Align-GVGD resulted in the
smallest cohort size in this study. In the case of BRCAI, this
may have affected the specificity, which is seemingly the
highest across all genes studied using any of the six in silico
tools employed. However, the PPV indicates that the ratio of
true positives (TP) to the total number of positives (TP + FP)
in the BRCA] dataset was still only 84.6% for Align-GVGD.

For the remaining algorithms, we were unable to avoid any
potential overfitting, instead relying on the built-in algorithm
training. As such, it is not surprising that the performance of
these in silico tools in this study was much lower than previ-
ously reported. The low PPVs observed for all algorithms
across all genes investigated here indicate that there is a high
frequency of false positive results when using in silico tools
for the classification of variants in cancer-risk genes. This is
exemplified by the three case examples given in Table 3,
where independent evidence of pathogenicity including pub-
lished literature and in-trans observations with a pathogenic
variant resulted in a benign classification. In the absence of
additional evidence, these false positives may result in inap-
propriate clinical management. This is especially troubling for
BRCA1I and BRCA2, as pathogenic variants in these genes are
potential indications for prophylactic surgeries (Daly et al.
2016).

Academic vs clinical utility

Establishing the relationship between genotype and phe-
notype is a fundamental principle of genetics. In an aca-
demic research laboratory, biological samples and corre-
sponding phenotypic data are used to gain knowledge of
this relationship. Given the size of the human genome,
spectrum of variation, and ever decreasing costs of
genotyping, researchers may be left with large volumes
of candidate variants after association analysis. In such
situations, in silico prediction tools are useful for contex-
tualizing and prioritizing candidate variants for further
follow-up, especially when functional experimental assays
are not readily available or are cost prohibitive. One of
the consequences of using these tools is that relevant data
points may be discarded. However, the knowledge gained
from these studies is often used to guide further research
and not direct the medical management of a patient.

In a clinical laboratory, samples are tested due to clinical
suspicion of hereditary cancer risk. Accurate variant classifi-
cation using multiple lines of evidence is vital for appropriate
clinical management based on NCCN guidelines. In this set-
ting, incorrect variant classification based on in silico tools
comes with more immediate consequences to the patient.
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Additional considerations for clinical use

We have outlined many challenges associated with the use of
several specific in silico tools in the clinical setting. As
discussed previously, this includes the requirement of large
training sets, unclear variant classification, and inaccurate bi-
ological assumptions. Caution must also be used when se-
quence conservation information is included in multifactorial
models to establish posterior probability. Such methods calcu-
late a prior probability of causality (calculated from in silico
sequence conservation), which is then combined with various
likelihoods of causality including co-segregation analysis, in-
trans observations, family history, and histopathology data to
give a final probability of causality for a variant (Lindor et al.
2013; Lindor et al. 2012).

The inherent problem with these methods is that the sepa-
rate probabilities and likelihoods are combined (i.e., the vari-
ous lines of evidence are never truly considered
“independent” of one another). The analysis is therefore
weighted by the prior sequence conservation analysis, which,
as we have shown here, is a poor predictor of the clinical
significance of a variant. In addition, any thresholds for path-
ogenicity used in such a multifactorial analysis would have to
be thoroughly clinically validated.

Conclusions

Classification of missense variants can be a challenging pro-
cess, particularly for clinical use. Prediction of their possible
cancer association is especially difficult in pleiotropic genes
such as BRCA1, where disruption of a specific function or
domain may not necessarily affect downstream tumor sup-
pression activity (Shakya et al. 2011). One must therefore be
careful to ensure that a loss of function associated with a
missense variant correlates with increased predisposition to a
given cancer syndrome. In general, the shortcomings of in
silico sequence conservation analysis may be described as
applying a one- or two-dimensional solution to a much more
complex, three-dimensional problem. While some algorithms
may incorporate biochemical features or limited structural
analysis, these additions were insufficient to overcome the
inherent low accuracy in these methods for variant classifica-
tion in the cancer-risk genes evaluated here. Although a full
structural analysis is far more appropriate, this must be care-
fully undertaken by a trained structural biologist.

The low specificity of these methods is of particular con-
cern given the potential for more aggressive medical manage-
ment strategies including prophylactic surgeries following a
false-positive result. Since the primary aim of clinical testing
is to provide results to inform medical management, variant
classification techniques must reach an exceptionally high
level of confidence compared to academic research use. For
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the purposes of purely academic research, the rates of false-
positives and false-negatives are less problematic as long as
the results are not applied to patient care. However, to confi-
dently inform a clinical decision, the thresholds for accuracy
need to be exceedingly high, well above the average
sensitivity/specificity seen in this study (Akobeng 2008). We
therefore conclude from this analysis that the error rates of
commonly used in silico tools are too high to warrant use as
primary evidence to further assess variants of unknown sig-
nificance in a clinical setting.
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