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Abstract. Neurons consume the highest amount of oxygen, depend on oxidative metabolism for energy, and survive for the
lifetime of an individual. Therefore, neurons are vulnerable to death caused by oxidative-stress, accumulation of damaged
and dysfunctional proteins and organelles. There is an exponential increase in the number of patients diagnosed with neu-
rodegenerative diseases such as Alzheimer’s (AD) as the number of elderly increases exponentially. Development of AD
pathology is a complex phenomenon characterized by neuronal death, accumulation of extracellular amyloid-� plaques and
neurofibrillary tangles, and most importantly loss of memory and cognition. These pathologies are most likely caused by
mechanisms including oxidative stress, mitochondrial dysfunction/stress, accumulation of misfolded proteins, and defective
organelles due to impaired proteasome and autophagy mechanisms. Currently, there are no effective treatments to halt the
progression of this disease. In order to treat this complex disease with multiple biochemical pathways involved, a complex
treatment regimen targeting different mechanisms should be investigated. Furthermore, as AD is a progressive disease-causing
morbidity over many years, any chemo-modulator for treatment must be used over long period of time. Therefore, treatments
must be safe and non-interfering with other processes. Ideally, a treatment like medicinal food or a supplement that can be
taken regularly without any side effect capable of reducing oxidative stress, stabilizing mitochondria, activating autophagy
or proteasome, and increasing energy levels of neurons would be the best solution. This review summarizes progress in
research on different mechanisms of AD development and some of the potential therapeutic development strategies targeting
the aforementioned pathologies.
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ALZHEIMER’S DISEASE

Alzheimer’s disease (AD) is a debilitating dis-
ease which can be characterized by severe memory
loss and confusion, and can lead to stark changes in
mood and personality which may lead to depression
[1]. This disease presumably makes up an estimated
75–90% of all dementia cases in Canada [1]. It has
been projected that by the year 2030, the number of
dementia patients is expected to double. With this
in mind, it is now imperative that effective agents
are developed, and new therapeutic strategies are
employed to combat the progression and devastating
outcomes (or aftermath of) AD.

The etiology of this disease is not well understood
but is distinguished by the presence of neurofibril-
lary tangles (NFTs) and amyloid-� (A�) plaques in
the brain which lead to loss of synapses and death of
neurons found in the hippocampus and cerebral cor-
tex. The lesions seen in these areas seem to precede
the clinical manifestations of the disease [2]. There
are many risk factors associated with the progression
of this disease, most being sporadic in origin and are
related to both external factors and genetic predispo-
sitions [3]. It has been postulated that genetic factors
may be contributing to familial type AD, but only
make up approximately 1% of all cases [4].

GENES ASSOCIATED WITH AD

There are three autosomal dominant genes asso-
ciated with familial forms of AD, including genes
coding for: amyloid precursor protein (APP),
presenilin-1 (PS-1), and presenilin-2 (PS-2). The
APP gene is on chromosome 21q21, and when the
gene product, amyloid-� protein precursor (A�PP),
is proteolytically cleaved, it yields the A� protein
[5]. In the absence of any mutation in the APP gene,
the A� protein functions without adverse effects and
may be a regulator in synapse formation [4]. Sev-
eral other studies have suggested possible functions
of A� including reduction of oxidative stress and
a pro-inflammatory response during microbial inva-
sion, although further validation is required [6]. The
mutated protein (A�40 and A�42) arises through mis-
sense mutations, most of which are located in the
secretase cleavage sites or the A�PP transmembrane
domain [4]. Mutant A� is able to form aggregates
that are translocated inside the membrane of the
mitochondria leading to mitochondrial dysfunction
[7]. The 32 discovered mutations in these areas are

responsible for 10–15% of early onset familial AD
[8]. PS-1-related AD is the most common form of
familial AD and is responsible for 20–70% of cases
[8]. The PS-1 gene, found on chromosome 14q24.3,
produces a major component in atypical aspartyl
protease complexes that forms the catalytic core of
the membrane bound �-secretase. This �-secretase
in turn cleaves A�PP [4, 9] and is found in small
amounts in the endoplasmic reticulum, Golgi, and
mitochondrial membranes [9]. Missense mutations
found along one of the 12 exons on this gene were
found to produce amino acid substitutions which
translate to an increase in the A�42 isoform [4]. The
last of the familial type AD genetic variants is the PS-
2 mutation. This gene is found on chromosome 1q42
and similar to PS-1, its function is to form a portion of
the �-secretase responsible for splicing A�PP [10].

There are other genetic predispositions that can
lead to an increased incidence of AD that are
not familial in nature. Sporadic forms of AD may
be attributed to mutations in the genes coding
for apolipoprotein E (APOE) and microtubule-
associated protein tau. Tau is a protein that assists in
microtubule assembly and stabilization [11]. Its gene
is on chromosome 17q21 containing 16 exons with
2, 3, and 10 which is capable of being alternatively
spliced generating 6 different isoforms [12]. Disease
related to tau abnormalities (tauopathies) seem to be
localized but not limited to exon 10 (some are on exon
19 and others between 8–12), which encode for pro-
tein sites that allow for hyperphosphorylation [12].
The hyperphosphorylated tau proteins are no longer
able to bind to microtubules and form aggregates
known as NFTs [11]. Although NFTs are a classic
marker in the diagnosis of AD, their role in the disease
remains poorly understood. It has been suggested that
they may be involved in a protective mechanism dur-
ing times of high oxidative stress, as these tangles
have been observed in healthy long-lived neuronal
cells [13]. The brain has the highest expression lev-
els of APOE in the body aside from the liver [14]. Its
gene is located on chromosome 19q13.2 which con-
tains 5 exons that encodes a single protein [4]. The
APOE gene contains three different alleles; �2, �3,
�4, which leads to four different potential isoforms
[4]. The normal function of this protein is related to
the metabolism of lipids and their transport within
and between cells [15]. It has recently been eluci-
dated that the cause of APOE related AD is due to
the isoform APOE �4 which appears to promote the
A� aggregation and the hyperphosphorylation of tau
[16]. The effects that these genes have on the neural
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cells and tissue are very widespread but one notable
target that is evidently influenced by these patholo-
gies is the mitochondria. In addition, genes involved
in the regulation of autophagy and those involved
in detoxification mechanisms could also be poten-
tially involved in the development neurodegenerative
diseases including AD [17].

AD-RELATED MITOCHONDRIAL
DYSFUNCTION

The mitochondrion is a double membrane bound
organelle within the cell which is vitally responsi-
ble for the generation of the majority of the cells’
energy reserves. This work is achieved through var-
ious intracellular pathways which rely on proton
gradients named mitochondrial membrane potential
(MMP) formed along the inner membrane of the
organelle. A way that mitochondrial function is reg-
ulated is through intracellular levels of Ca2+ which
also aids in generating pH gradients for proper MMP
[18]. When the aberrant forms of A� are present,
they are able to traverse the mitochondrial mem-
brane and block the function of complex 1 thus
decreasing the mitochondria’s ability to produce ATP
[19]. Another more devastating effect of pathogenic
A�, through mechanisms not well understood, is
the large influx of calcium ions into the cell cyto-
plasm by activation of voltage gated ion channels or
excitatory amino acid channels, such as glutamate
activated channels [20]. This influx of excessive or
non-physiological levels of Ca2+ leads to a destabi-
lization of Ca2+ homeostasis and mitochondrial Ca2+
overload [21]. Furthermore, increased activity of
mitochondria associated endoplasmic reticular (ER)
membranes and ER-mitochondrial communication
have been observed within PS-1 mutated fibroblasts
leading to excess ER calcium and further contribu-
tion to breakdown of Ca2+ homeostasis [22]. This
overload triggers the formation of a transition pore
leading to the release of cytochrome C, and MMP col-
lapse [21]. In addition, it seems that Ca2+ increases
the amount of reactive oxygen species (ROS) by
two main pathways: generation of nitric oxide which
inhibits complex IV of the electron transport chain,
and increase of the rate of turn over for the citric
acid cycle and electron transport chain leading to
increased leakage of ROS [21]. These pathological
cellular events of AD are summarized in Fig. 1. A
notable feature in AD is the accumulation of defec-
tive mitochondria and rapid degradation of healthy

Fig. 1. Presenilin-1 (PS-1) mutation leads to several changes in the
cell due to improper cleavage of the amyloid-� protein precursor
(A�PP). PS-1 mutation causes the improper cleavage of A�PP
leading to aberrant forms of amyloid-� (A�) which occurs in both
the cell and mitochondrial membrane. Accumulation of aberrant
A� proteins form A� plaques which cause increased intracellular
oxidative stress and influx of calcium ion. Both of these events
lead to mitochondrial dysfunction which in turn increases oxidative
stress and cellular damage.

mitochondria. As mitochondrial injury escalates, they
enlarge due to improper fission and take up more
space in the cell contributing to cellular hypertro-
phy [23]. Consequently, this enlargement renders
nutrient transport to the cell’s center inefficient lead-
ing to starvation and death [23]. Collectively, these
mitochondrial events generate a chaotic intracellular
condition propelling cell death.

AD-RELATED OXIDATIVE STRESS

Oxidative stress is a cellular pathological phe-
nomenon produced when cell detoxification mech-
anisms are unable to compensate with increases in
oxidative free radicals. This is especially important
in AD as studies have suggested that the increase in
free radicals precedes any other hallmark of AD [24,
25]. The origin of the initial increase in ROS in AD is
still unknown, but in some cases, the initial influx has
been seen to originate in the mitochondria [25–27]. It
has been shown that mutations of the CO1 and CO2
genes, which encode subunits I and II of cytochrome
c found in mitochondrial DNA, are responsible for
mitochondrial dysfunction in some late onset AD
patients [27]. Such dysfunction was seen to yield
increases in ROS which preceded any of the mark-
ers attributed to AD. Enhanced ROS production
leads to the oxidation of major biomolecules includ-
ing nucleic acids, proteins, and lipids, thus creating
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increased amounts of dysfunctional mitochondria.
This creates a loop which amplifies oxidative stress
as these damaged mitochondria continue to produce
ROS [28]. The brain is extremely vulnerable to oxida-
tive imbalances due to its high demand for energy,
large amounts of oxygen consumption, relatively low
amounts of antioxidants, and its high levels of easily
oxidizable polyunsaturated fatty acids and ROS cat-
alyst iron [29]. It has been demonstrated that when
there are high concentrations of H2O2, ROS interacts
with iron (II) and converts it to iron (III) and (OH·)
via the Fenton reaction pathway [30]. The newly
formed iron (III) has been associated with forma-
tion of senile plaques, NFTs, and neuropil threads
[30]. Another metal that seems to play a role in
AD is Cu2+, which associates with A�. When in
high concentrations, the A�-Cu2+ complex is able
to convert phospholipids in to phospholipid hydrox-
ides which then get degraded to reactive aldehydes
[31]. These aldehydes also contribute to ROS insult
and can lead to cell death [31]. Another marker in AD
produced by oxidative stress is the formation of pro-
tein carbonyls (aldehydes and ketones) [32]. These
carbonyls are most often formed on the side chains
of Pro, Arg, Lys, and Thr and resulting in aberrant
protein function [32, 33]. Another cause of oxida-
tive stress-associated protein dysfunction is protein
glycation, considered a hallmark of AD. Protein gly-
cation is a modification that occurs when proteins are
in contact with reducing sugars and become oxidized
when unmediated by appropriate enzymes [34]. Each
of these processes all seem to affect common pro-
teins, these being: �-actin, �-tubulin, p-Tau, ApoE,
and most often A� [30–34]. Speculations suggest A�
and NFTs to be compensatory mechanisms as neu-
rons seen with more plaques had succumbed to less
oxidative damage than those that had fewer deposits
[24]. This positive feedback mechanism produced
by oxidative stress and the change in macromolec-
ular function leads to devastating changes in cell
compensatory mechanisms and cell cycle eventually
leading to the induction of cell death. It has also been
observed that hyperhomocysteinemia is another risk
factor that contributes to ROS damage in AD. Indi-
viduals with AD and mild cognitive impairment had
increased levels of total homocysteine (tHcy) with
a negative correlation of total antioxidant capacity
(TOC). Furthermore, there was a negative correla-
tion observed between disease duration and TOC in
patients. Levels of tHcy, TOC, and ROS were also
measured in patients with vascular dementia. While
tHcy and ROS were similar to AD patients, the same

decrease in TOC in AD patients was not observed
in patients with vascular dementia. Thus, it is possi-
ble that oxidative imbalance in AD could be due to a
decrease in TOC [35].

AUTOPHAGY INHIBITION IN AD

Autophagy is a cellular mechanism of recycling old
or damaged cytoplasmic constituents and organelles
through a degradative pathway [36, 37]. This is gen-
erally a pro-survival response in the cell that is
activated during times of stress such as starvation
and pathogenic invasion but is also imperative in the
maintenance of normal cellular function via elimi-
nation of potentially hazardous materials including
damaged organelles and misfolded proteins [37].
There are three main classifications of autophagy:
macroautophagy, microautophagy, and chaperone-
mediated. Microautophagy consists of a lysosome
surrounding its target followed by target degradation.
In contrast, chaperone-mediated autophagy occurs
when specific chaperones complex with proteins
containing the peptide sequence KFERQ. This com-
plex then binds with lysosome-associated membrane
protein (LAMP) which brings the protein into the
lysosome for degradation [36]. In AD, macroau-
tophagy is the most prominent dysfunctional form
of autophagy, either operating abnormally or totally
nonfunctional [23, 37, 38]. During optimal function-
ing, macroautophagy first involves the formation of
a double membraned vesicle surrounding the tar-
geted cytoplasmic constituents (usually organelles)
followed by a decrease in pH and, ultimately orches-
trating fusion of the vesicle with a late endosome or
lysosome. Subsequently, the acidic pH and degrada-
tive enzymes are able to break down the vesicular
contents which can be recycled or disposed of [36,
37]. As discussed earlier, oxidative stress plays a
prominent role in AD and its effects also influence
autophagic processes. It seems many of the regula-
tory proteins of autophagy such as mTOR, which is
responsible for inhibition of autophagy. In addition,
Atg3, an upstream activator for the conversion of
LC3-I to LC3-II plays a crucial role in the expansion
of the autophagosome and are susceptible to changes
in function due to redox reactions caused by oxida-
tive stress occurring at cysteine residues present in
their active sites [36]. Proteins similar to these as
well as other cell constituents that have been nega-
tively affected by oxidative stress lead to a breakdown
of the chaperone mediated autophagy, which leads
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to an even greater burden on the macroautophagic
mechanism [36]. Another factor, possibly leading
to the decrease in function of autophagy, was pre-
sented by Brunk & Terman (2002), which showed
that over time lysosomes which play a critical role
in autophagy will begin to accumulate a substance
called lipofuscin which is a substance that cannot
be degraded and cannot be removed from the cell
leading to lysosomal dysfunction [23]. The accumu-
lation of lipofuscin is presumably exacerbated during
cellular stress. An interesting suggestion provided
by De Grey (2005) states that mutant mitochondria
have a reduced proton gradient which would lessen
the oxidative damage they would be susceptible to
[39]. In contrast, healthy mitochondria would be more
susceptible leading to their preferential degradation
by autophagic processes, thus increasing the overall
number of defective mitochondria found in the cell.
V-ATPase is a protein located in the membrane of
autophagosomes which function to increase the pro-
ton concentration in the lumen [38]. The decrease in
pH of the autophagosome appear to direct its target-
ing to the lysosome for degradation of its cargo [38,
40]. Lee (2010) has demonstrated that PS-1 mutation
leads to a failure of v-ATPase to target the lysosome
which leads to stagnancy of the autophagic vesicles
within the cell. It was shown that autophagic vesicles
exhibit A�PP secretase activities and other reactants
necessary to generate A� [41]. Yu (2004) had pro-
posed that because of the accumulation of autophagic
vesicles present in AD leads to an increased accumu-
lation of A� within these cells, this would further
exacerbate the problems associated with AD.

Our studies have shown that autophagy is reduced
in fibroblast containing the PS-1 mutation as indi-
cated by reduced LC3-II to LC3-I ratio [42]. This
observed reduction in the LC3-II/LC3-I ratio may
be a contributing factor to the increased levels of
ROS that was also observed. As stated earlier, this
increased oxidative stress may be affecting mTOR
and Atg3 resulting in changes in the LC3-II/LC3-
1 ratio [36]. Furthermore, we have also observed
that PS-1 mutated fibroblasts also exhibited greater
amount of superoxide generated by mitochondria
as indicated by increased MitoSOXTM red mito-
chondrial superoxide indicator [42]. This may be
suggestive of increased dysfunctional/mutant mito-
chondria, which are less targeted compared to healthy
mitochondrial as suggested by De Grey [39].

The role of transcription factor EB (TFEB) in
AD is another topic that has recently drawn con-
siderable attention. TFEB is a major transcriptional

regulator of autophagy highly expressed in the CNS
which is involved in promoting the expression of
genes involved in the formation of autophagosomes
and lysosomal biogenesis and function [17]. Based
on the experimental evidence, it has been proposed
that there are a number of important changes in
TFEB in various models of AD. Subcellular frac-
tions of brain samples of AD patients displayed
selective loss of nuclear TFEB which was inversely
correlated with levels of hippocampal TFEB and
progress of AD pathology [43]. A similar observa-
tion of nuclear TFEB was seen in double presenilin
knock-out cells [44]. Patients with AD also showed
a significantly decreased amount of TFEB expres-
sion in lymphocytes, and monocytes (cells involved
in migrating to damaged areas of the CNS and possi-
bly regulate AD expression) showed decreased TFEB
expression, which may suggest that dysregulation of
TFEB may be involved in dysfunction of lysosome
function in AD [45]. Similar to AD patients, accumu-
lation of A� and paired helical filament p-Tau was
observed in the brains of mice with neuron-specific
TFEB excision [44]. Interestingly, observations have
also been made in contrast to TFEB upregulation.
Fibroblasts from AD patients containing the famil-
iar presenilin-1 A246E mutation displayed increased
TFEB expression [46]. Similar observations were
also made in CA1 pyramidal neurons of AD patients
[47]. Even though these two observations are con-
tradictory, they may not be mutually exclusive
as AD presenilin mutations can reduce lyso-
some function via lysosomal alkalinization, which
can result in TFEB activation as a compensatory
mechanism [17].

Another autophagy protein we have observed in
our laboratory to be implicated in AD is beclin-1.
Beclin-1 is a major regulator of autophagy [48] and
was shown to be downregulated at the genetic and
protein level in fibroblasts with the presenilin-1 muta-
tion compared to non-mutated fibroblasts [42]. One
possible explanation for this activation of beclin-1
could be activation of beclin-1 via JNK-1. JNK-1
has been observed to be involved in a number of
regulatory and stress response pathways with some
including autophagy (via activation/phosphorylation
of beclin-1). It is possible that the reduced JNK-1
activity may be involved in the reduced activity of
beclin-1 and autophagy overall [49, 50]. It is pos-
sible that Ubisol-Q10 could be involved in activating
JNK-1 which in turn activates beclin-1 but more work
is required to investigate/confirm this mechanism.
Current work is being done in our laboratory to elu-
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cidate the mechanism of beclin-1 upregulation due to
Ubisol-Q10.

TRANSGENIC ANIMAL MODELS OF AD

Since AD is a fairly slow progressive neurode-
generative disease, various transgenic models of
AD have been developed in rodents to simulate
the pathology and behavioral symptoms of AD. A
couple examples of the more common transgenic
animal models of AD include double (TgAPEswe,
PSEN1dE9 mice) and triple transgenic mice. Double
transgenic mice express chimeric mouse/human APP
(Mo/HuAPP695swe) and a mutant human PS-1 (PS1-
dE9) which is moth directed to CNS neurons. Both
mutations are associated with early onset AD, and
the mice develop A� deposits in the brain around 6-7
months of age. Triple transgenic mice are homozy-
gous for the following three mutant alleles: Psen1
mutation and APPswe and tauP301L transgenes.
These mice exhibit amyloid-plaque and tau tangle
pathology as soon as 3-4 months. Of the two rodent
models, triple transgenic mice are more representa-
tive of an acute model of AD, while double transgenic
mice are more representative of a chronic model of
AD. Overall, double transgenic mice seem to be a
more precise model of AD as mentioned before since
AD is a slow progressive disease. Also, it has been
observed that there are more confounding compli-
cations (which have been seen in both double and
triple transgenic mice) when more foreign genes are
inserted into an animal’s genome [51]. Furthermore,
along with the above stated biochemical pathologies,
it has been shown that both transgenic models of mice
experience behavioral changes as well with one of
the main pathologies being memory impairment. It
is important that both biochemical and behavioral
changes are measured when working with animal
models of AD as there could be behavioral changes
but no biochemical changes and vice versa. There-
fore, it is important to be able to measure behavioral
differences as well in transgenic mice.

The first signs of memory loss associated with
early stage of AD in humans involve spatial ref-
erence and working memory attributable to initial
neurodegeneration in the hippocampus [52–56]. As
AD progresses, non-spatial working and reference
memory become noticeably poorer due to expan-
sion of neurodegeneration into other cerebral areas
as well in the hippocampus that is also involved
in long-term memory consolidation, episodic mem-

ory, and non-spatial working memory [57–63]. Many
studies involving animal models of AD depend on
robust behavioral measures of spatial memory [64].
Two most frequently used preparations for study-
ing spatial memory, the Morris water maze (MWM)
[65] and the radial arm maze [66], however, involve
strong, negative (escape from drowning) or positive
(finding food) motivational/emotional factors during
trial and error acquisition. Any ancillary changes
with such underlying factors from possible neurode-
generation in subcortical limbic structures (e.g., the
amygdala) [67] or their connections to higher corti-
cal areas could affect motivational/emotional factors
producing a secondary disruptive impact on spatial
cognition performance [68–72]. In view of these
issues, some researchers have utilized rodents’ (rats,
mice) spontaneous, non-reinforced, unlearned pref-
erences for investigating an unfamiliar (novel) object
[73] (Novel Object Recognition – NOR) or a famil-
iar but moved object (Novel Location – NL) among
previously encountered (familiar) unmoved objects
[74] or a combination of both [75] in the open
field. Although such preparations eliminate positive
motivational (food seeking) factors, their testing in
open field environments promotes negative emotional
escape-like tigmotaxtic behavior in mice [76, 77] of
running near distal walls. Such locomotor behavior
can obscure rodents’ spatial cognition [70] especially
in those with compromised hippocampal-amygdala
linkages [78]. The same problem has been pointed
out concerning poorer MWM performance in trans-
genic mice [79]. Badour (2016) [80] attempted to
replicate Benice et al.’s work [75] by exposing wild-
type mice to three objects either in the open field
chamber or in an enclosed transparent 4-arm radial
(X) maze within it. Both groups appeared to explore
an object more when it was moved on the 4th trial to a
corner previously without any object, but this differ-
ence was only significant in the open field group. On
the 5th trial when a novel object replaced one of the
remaining two unmoved objects, only the X-maze
group explored it more than the other two familiar
objects. Thus, open field mice primarily attended to
which corner previously had no object but not to any
object’s specific non-spatial features while they thig-
motaxically ran around the periphery of the chamber.
Our most recent study with a transgenic mouse model
of AD [81], animals were only exposed to an enclosed
Y-maze in a 2-object variation of the NL/NOR task.
Only unprotected transgenic mice failed to explore
the familiar but moved object any more than the other
two unmoved objects (trial 2) but showed heightened
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exploration of the novel object (trial 3) as well as
the wild type and protected transgenic mice. Thus,
as in earlier and perhaps less controlled studies [61,
73, 82–90], we also demonstrated that hippocampal
degeneration decreased rodents’ spatial but spared
their non-spatial working memory. Even though we
may have eliminated or reduced anxiety-induced
behavior in NL/NOR by running mice in an enclosed
maze rather than in an open field, we found in a sub-
sequent research [91] that wild type mice could not
be repeatedly tested on their NL/NOR performance.
Thus, this preparation presents a major challenge to
study the progression of the severity and nature of
the cognitive disintegration over the lifespan of trans-
genic mice that are necessary for comparisons with
human AD [92]. In a current study we have modified
Badour’s preparation [79] to solve this problem by
allowing mice to search for treats (sunflower seeds)
while they were being repeatedly tested for NOR
in the X-maze. Under these conditions, rats demon-
strated reliable working memory across several trials.

IMPLICATIONS OF PRESENILIN-1
MUTATION IN FIBROBLASTS FROM AD
PATIENTS

Since mature neurons are found in the G0 phase
and those affected by AD do not get diagnosed until
after neuronal maturity, it is not possible to do stud-
ies directly on the neurons as they will not divide in
culture. Thus, a model system is needed in order to
get a better understanding of the disease processes.
Fibroblasts obtained from AD patients harboring key
AD mutations are such a model system and have been
used for many years as these cells are highly abun-
dant and are robust [93]. The use of these cells hinges
on the assumption that the disease being studied is a
systemic one, which is so for some cases of familial
AD [94]. Benefits of this system include the ease of
storage and culture, their expression of related genes
to neurons is similar, and they accumulate damage
in a similar way. Fibroblasts also make more inti-
mate contact with each other similarly to neurons
[93, 95]. However, there are some drawbacks of this
system mainly as it is not able to precisely mimic
the physiological conditions of the neurons in the
brain in a living system, and they are a different cell
type and will have slightly different expression levels
of various genes [93, 95, 96]. One interesting dis-
covery discussed by Wray [96] was that these cells
can be reprogrammed to be pluripotent through the

use of exogenous transcription factors allowing them
to obtain gene expression profiles of more similar
neurons in physiological conditions.

We have previously used PS-1 mutated skin fibrob-
lasts from AD patients (PSAF) as a model for AD, as
these cells have lower levels of autophagy as seen in
AD neurons [42]. These AD fibroblasts demonstrated
increased levels of endogenous ROS in comparison
to skin fibroblasts from healthy individuals harboring
wild type PS-1. This is consistent with the mount-
ing evidence of publications demonstrating elevated
levels of oxidative stress in AD neurons [6, 25, 97].
Moreover, we found that these AD fibroblasts, with
respect to their counterparts from healthy individuals,
exhibited a small increase in the expression of p53,
as well as marked increases in p21, p16Ink4A, and
Rb. These cells are unique because they have the abil-
ity to detoxify higher levels of MnSOD, an enzyme
that facilitates the conversion of superoxide to the less
reactive H2O2. Interestingly, MnSOD has been linked
to the onset of senescence [98]. Collectively, our find-
ings suggest the elevated levels of endogenous ROS
in PSAF contribute stress-induced premature senes-
cence (SIPS), a phenomenon well characterized in
fibroblast models [42, 99–101].

Using cells of peripheral tissues from AD patients,
such as lymphocytes and fibroblasts, provides an effi-
cient model to study the effects of the putative gene
mutations of AD etiology and how they are linked to
increases in oxidative stress. However, in the place of
cell death that occurs in neurons of AD patients as a
result of oxidative insult, we have shown AD fibrob-
lasts to undergo SIPS from the exposure of sublethal
doses of endogenous ROS [42]. Such an observa-
tion can be a result of the increased expression of
p21 in AD fibroblasts which is linked to the onset
of senescence and inhibition of apoptosis [102–104].
Furthermore, fibroblasts possess more potent antiox-
idant defense mechanisms to that of neurons [105]
and can tolerate oxidative insult by elevating expres-
sion of vital proteins such as MnSOD, which has been
linked to the onset of senescence [98]. Additionally,
neurons depend heavily on oxidative phosphoryla-
tion to satisfy its higher energy requirements [106]
that can lead to higher levels of ROS generation and
exacerbation of oxidative insult.

BIOMARKERS OF AD

There are a number of difficulties in diagnosing AD
as clinical diagnosis can only be done when patients



638 C. Vegh et al. / Complex Nature of AD and Approaches for Therapeutic Development

already experience cognitive decline. Therefore, it is
imperative that there be reliable biomarkers for early
diagnosis of AD before symptoms begin to show.
A possible diagnosis tool for AD has been the use
of positron emission tomography (PET) with radio-
tracers to detect the presence of fibrillar deposits of
amyloid in the brain that are greater than 1 mm in size.
PET scans are quite expensive and there are issues
in correlating deposits of amyloid with progression
of AD, as its been found that plaques also deposit
in the brains of healthy individual [107]. Detecting
A� via antibodies in serum and cerebrospinal fluid
(CSF) have also shown to be promising biomarkers
but the predicative power of these biomarkers has
not been particularly encouraging [108, 109]. Fur-
thermore, attempts to correlate serum/CSF with PET
are not very convincing as of yet [107]. A poten-
tial minimally invasive variant to measuring amyloid
without the use of expensive radiotracers or immune-
based probes was developed by Tiiman et al. [107].
This technique measures amyloidogenic oligomeric
aggregates (called nanoplaques) in blood via a spe-
cialized ThT (Thioflavin T) fluorescence assay [107].
Tiiman et al. was able to show that there was a
significantly higher amount of larger nanoplaques
in the blood of AD patients compared to control
subjects. While collection of CSF is highly inva-
sive compared to blood collection, biomarkers other
than A� in CSF have been implicated in AD as
well. Levels of neurofilament light chain and visinin-
like protein (VILIP-1), markers of neurodegeneration
were elevated in the CSF of AD patients. Increased
levels of inflammatory proteins YKL-40 and mono-
cyte chemoattractant protein-1 were also observed in
the CSF of AD patients. Indicators of amyloidosis
(apolipoproteins) and synaptic dysfunction (neuro-
granin) were also observed to be implicated in AD.
These biomarkers were shown to indicate the stage
and state of AD progression and using a combination
of these biomarkers could aid pre-clinical diagnosis
and identify early changes in the brain before onset
of the disease [110].

CLINICAL TRIALS OF AD
THERAPEUTICS

While great strides have been made in understand-
ing the pathologies of AD, there have been many
failed attempts at developing effective disease modi-
fying therapies for AD. A multitude of therapies have
been developed that target various different aspects

of AD such as BACE inhibitors, immunotherapy,
gamma/beta-secretase inhibitors, A� aggregation
inhibitors, and alpha-secretase activators [111]. Many
of these types of therapeutics are either undergoing
clinical trials or have failed due to various reason such
as toxicity or lack of efficacy. Some drugs that tar-
get production of A� such as BACE inhibitors were
actually found to accelerate cognitive decline, possi-
bly due to off-target effects [111]. Furthermore, A�
and enzyme associated with it do have a physiologi-
cal role in facilitating neuronal function and therefore
targeting them may have adverse side effects. Another
possible reason that many clinical trials have failed
may be due to many of them only targeting a single
pathology such as A�. It is critical to remember that
AD should be considered a multifactorial disease and
targeting only a single pathology of AD may not be
enough to halt the progression of the disease.

NOVEL THERAPEUTICS FOR AD

Current treatments for AD, such as cholinesterase
inhibitors, are directed at softening the symptoms of
this age-related disease and do not deal with the cause
of the disease [112]. With the increased number of
people entering their later years in life, it is imper-
ative that precise therapeutics targeted at preventing
late onset of AD are investigated and developed. The
treatments listed are still being evaluated for their
efficacy and are geared toward targeting the probable
causes of AD.

Curcumin and other ayurvedic herbs

Curcumin is a polyphenolic compound found in
turmeric spice [113]. Traditionally it has been used
to treat swelling, which in later studies was revealed
to be true as curcumin provides its action by inhibit-
ing nuclear factor kappa B mediated transcription
of inflammatory cytokines [113]. More recently,
curcumin has captured the attention of numerous
investigators as a potent antioxidant where it has been
found to effectively quench nitric oxide-based rad-
icals [113, 114]. A study in 2004 by Yang et al.
showed in a mouse model that curcumin was able
to inhibit A� oligomerization and aggregation and
thus, reduce the deleterious effects associated with
A� plaques [115]. Currently it has been hypoth-
esized that its mode of action is to influence salt
bridges causing global rearrangements in the struc-
ture of A� [116]. It is also important to note that this
was done with a low concentration. Although this
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compound is able to pass the blood-brain barrier, it
has low bio-availability and a short half-life in the
body. To overcome these shortcomings of curcumin,
Mulik et al. [117] designed a vector to transport
curcumin directly to the brain. ApoE3 mediated
poly(butyl) cyanoacrylate nanoparticles were made
that surrounded the curcumin in a vesicle like struc-
ture [117]. This structure utilized the strong affinity
between ApoE3 and low-density lipoprotein recep-
tors which mediated endocytosis of the vesicle. Mulik
et al. reported that this process increased the stabil-
ity of curcumin and provided sustained drug release
[117]. It was also reported that A� and oxidants were
significantly reduced in comparison to the use of cur-
cumin alone although, the increased effects may be
partially attributed to the use of ApoE3 which has
been shown to be an antioxidant and competes with
A� for entry into the cell.

Withania somnifera (ashawagandha) root extract
has been used for thousands of years in ayurvedic
medicine as a promoter of brain health and neu-
rological functions, and thus has been proven to
be at least well tolerated and non-toxic for human
use. Interestingly, several groups have recently used
various forms of ashwagandha extract as a neuropro-
tective agent in vitro and in vivo [118]. Ashwagnadha
extract has shown to ameliorate key inflammatory
cytokines and modulated stress response [119]. In
particular, Seghal et al. in 2012 demonstrated that
ashwagandha reversed AD pathology by enhancing
low-density lipoprotein receptor related protein in
the liver of transgenic mice [120]. Furthermore, the
extract was shown to reduce the amount of oxy-
gen species. Their results showed that the extract
did indeed enhance reduction of amyloid plaques
as well as improving behavior. However, the doses
of the extract administered were unrealistically high
(1 g/kg/day) to be translated for use in humans [120].
Of course, better formulations need to be developed to
increase the bioavailability so that the extract can be
used in humans. Alternatively, lower doses of ashwa-
gandha extract could be combined with other natural
compound/extracts to enhance the neuroprotective
potential as a combination. Based on these recent
findings, ashawagnahda should prove to be a poten-
tial therapeutic to halt the pathogenesis of AD, but
further research is required.

Similarly to ahswagandha, Bacopa monnieri
(brahmi) has also been used as a nerve tonic in
Ayurveda. Extract of brahmi was shown to pro-
tect neurons from A�-induced cell death, and the
mechanism was thought to be via inhibition of acetyl-

cholinesterase activity suppression [121]. In the same
study done by Limpeanchob et al. [121], brahmi
extract was shown to promote cell survival as well
as reduce ROS and lipid peroxidation, leading to
cellular longevity. Brahmi was also shown to signifi-
cantly improve the memory in amnesic mice treated
with diazepam, scopolamine, or phenytoin. In a clin-
ical trial, brahmi improved cognition in patients with
senile dementia of the Alzheimer-type. Alongside
the improved cognition, various biochemical mark-
ers showed reduced inflammation (homocysteine,
C-reactive protein, and tumor necrosis factor alpha)
and oxidative stress (glutathione peroxidase, glu-
tathione, thiobarbituric acid reactive substances, and
superoxide dismutase) [122].

Methylene blue

First discovered as a biological stain, Methylene
blue (MB), has been used to treat several diseases
such as malaria, drug-induced methemoglobinemia
[123], and cyanide poisoning. Several recent discov-
eries strongly suggest that this drug may be very
useful in the combat against AD. Xie et al. [123]
demonstrated that MB is able to induce autophagy
in the hippocampus and cortex in vivo through
the AMPK signaling pathway during serum star-
vation. Interestingly, they found that these effects
were mainly prevalent in mature neurons and not
in neural progenitor cells. MB has also been shown
to be a potent antioxidant but not in the conven-
tional sense. Instead of quenching ROS immediately,
it must accept electrons from NADH reducing MB
to leuco-MB allowing it to then scavenge free rad-
icals reverting it back to MB [124]. Additionally,
MB acts as an electron carrier between NADH and
cytochrome C systems in the mitochondria increas-
ing oxygen consumption and reducing the levels
of ROS that are produced [124, 125]. Callaway et
al. [125] showed that the assistance provided by
MB during oxidative phosphorylation was able to
improve memory retention in rats. MB has also been
shown to prevent oligomerization of A� as well as
its extracellular accumulation forcing aggregates to
go through nucleate fibril formation [126, 127]. This
is done by targeting beta secretase-1 (BACE1) reduc-
ing its stability and reduces �-secretase activity which
decreases the number of A� species [127]. Addition-
ally, MB’s efficacy has been shown to minimize tau
fibrilization through the oxidation of disulfide bonds
of 4-R and 3-R tau promoting disulfide formation
[128]. Mori et al. have demonstrated the ability of MB
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to increase the chymotrypsin and trypsin like activ-
ities of the proteome allowing the degradation and
removal of protein aggregates [127]. Finally, MB has
been shown to be an acetylcholinesterase inhibitor
which is helpful for AD patients as the cholinergic
system has been shown to be a regulator of learning
and memory [127].

Acetyl-L-carnitine

There is little literature surrounding the benefits of
Acetyl-L-carnitine (ACL) as a treatment for AD, and
thoughts are divided as to how beneficial it really is. It
is worthwhile to include ACL in this category because
it appears to have tremendous therapeutic potential in
AD. ACL seems to exhibit most of its effects by sta-
bilizing lipid membrane fluidity by regulating levels
of certain molecules such as phosphomonoesters and
phosphocreatine and decreasing lipid peroxidation
[129]. ACL also seems to aid in the function of aged
mitochondria by supporting oxidative phosphoryla-
tion, increased turnover of mitochondrial membrane
proteins, and reverses the impairment of DNA/RNA
transcriptase [129, 130]. In addition, it was reported
that ACL is able to increase the levels and utilization
of growth factors in the CNS.

Dehydroepiandrosterone

The most abundant steroids in the body are
dehydroepiandrosterone (DHEA) and its sulphated
ester (DHEAS). These work to increase the effects
of excitatory neurotransmitters [131]. Part of its
neuroprotective effects may come from its anti-
glucocorticoid action as high levels of cortisol cause
damage to neurons of the hippocampus [131]. Bas-
tianetto et al. has reported many benefits associated
with the use of DHEA which include, regulation
of Ca2+ channels, and may act as an antioxidant
by reducing lipid peroxidation possibly by increas-
ing glutathione levels [132]. The anti-peroxidative
property of membrane lipids may help to modu-
late membrane fluidity which is commonly found
associated with neurodegenerative diseases [133].
Additionally, DHEA has been reported to increase
levels of acetylcholine, catecholamine, and brain
derived neurotropic factor which were thought to
have led to increased memory and learning in mice
[134]. It should be noted that in a short study done
on humans, there seemed to be very little evidence
to suggest that DHEA had these effects [131]. How-
ever, Malouf and Grimely Evans stated that this may

be due to the length of the study and that the effects
may become more profound past the 3-month mark;
however, it warrants further investigation [131].

Dimebon

Dimebon was initially used in Russia as an antihis-
tamine and has recently been noted to have potential
benefits for treating neurodegeneration. It was first
noted that its relevance for treating these diseases
came from its ability as an inhibitor of acetyl-
cholinesterase, N-methyl-D-aspartate receptors, and
voltage gated calcium channels [135, 136]. Only pre-
liminary studies on this particular drug were done
but the results appear to be extremely promising.
Yamashita et al. reported that dimebon was able to
prevent mitochondrial transition pore in experimen-
tal models of AD [137]. Additionally, they found
that dimebon may act by reducing the production or
accumulation of abnormal protein aggregates. More
recently it was found that treatment of dimebon in
AD transgenic mice lead to a decrease in A� aggre-
gates but without any effect on A�PP or soluble A�
oligomers [138]. This was attributed to the stimulat-
ing effect that dimebon has on glial fibrillary acidic
protein in astrocytes leading to an increase in their
role in A� aggregate clearance. Interestingly, Perez
et al. [138] observed that dimebon had no effect on tau
aggregation. According to Zhang et al. [135], dime-
bon may act as an anti-uncoupling agent and thus,
decreasing proton leakage and would act to increase
mitochondrial membrane potential and ATP produc-
tion. Yamashita et al. [137] noted a delay in cellular
senescence with the treatment of dimebon in SH-
SY5Y cells. Importantly, it was noted that dimebon
only exerted its neuroprotective effects before or dur-
ing stress but was unable to rescue cells after an
insult and after cell death pathways had been trig-
gered [135].

Ginkgo biloba

Ginkgo biloba (GB) is an ancient tree that has been
used in Chinese medicine for thousands of years. It
has been reported that GB works as an antioxidant and
is able to protect neural tissue from lipid peroxidation
and general peroxidative events [139, 140]. It has also
been reported that GB acts as a monoamine oxidase
inhibitor which may be useful in alleviating some of
the symptoms associated with AD [141, 142]. Inflam-
mation seems to be a persisting feature in AD, and it
seems that GB is able to act as an anti-inflammatory



C. Vegh et al. / Complex Nature of AD and Approaches for Therapeutic Development 641

agent by inhibiting platelet activating factor [140].
Luo et al. also discussed the potential for GB to act
as an anti-apoptotic agent [143]. GB seems to have
some effect in abolishing AD symptoms and aided
in improving memory but more studies are needed
to affirm such conclusions; preferably with larger
sample sizes to truly show GB’s effectiveness in
enhancing memory in AD patients [144]. The agents
that seem to be responsible for this are flavonoid
glycosides and terpenoids (bilobalide, ginkgolides)
which are found in the most common GB extract
Eb761 but recently fractions of GB extracts were
analyzed which identified an unknown compound
that may contribute to the benefits of GB [140, 145].
Although GB does have some beneficial effects, there
are some side effects that have been noted such
as prolonged bleeding, hemorrhage, and ulceration
[140]. Further well-controlled multicenter studies are
needed to evaluate the bioavailability of GB and to
determine the proper dosage for AD patients.

Other nutrients

There seems to be levels of a few nutrients
that decrease as age progresses and these nutri-
ents have been consistently found to be reduced
in AD patients. In the adult brain, folate is a
methyl group donor and plays an important role
in normal brain function and DNA repair. In addi-
tion, it acts as a coenzyme in the synthesis of
serotonin and catecholamines [131]. However, few
reports have emerged that suggest decreased lev-
els of folate sensitize neurons to oxidative stress
and A� toxicity although evidence supporting such
effects of folate needs carefully designed studies
[146]. Vitamin B12 (cobalamin) is a cobalt contain-
ing vitamin that is a cofactor for methionine synthase
which converts homocysteine to methionine and 5-
methyltetrafolate to tetra folate. Low levels of this
compound can lead to fatigue depression and poor
memory. Sasaki et al. showed that supplementa-
tion of B12 in acetylcholine-deficient mice increased
acetylcholine synthesis [147]. Thymine and its phos-
phorylated derivative serve as important cofactors in
brain oxidative metabolism. There is also evidence
that suggest thiamine may modulate the cholinergic
status of the brain [148]. It was reported that thiamine
deficiency leads to memory impairment cholinergic
neuronal loss [149]. It was also shown in rodents that
thymine deficiency causes accumulation of A�PP.
However, treatment of AD patients with thymine only
showed cognitive improvement in mild cases [150].

Vitamin E (�-tocopherol) is a lipid soluble molecule
that has been known to act as an antioxidant for some
time. Its main mode of action is to prevent lipid perox-
idation [151]. Some studies have shown that vitamin
E may considerably slow the progression, or at the
very least, provide some symptomatic relief [152,
153]. These results, however, do not provide very
convincing picture of the effectiveness of vitamin E
as a supplement for the attenuation of AD. In our
laboratory, we have used a water-soluble formulation
of vitamin E as a control for our water-soluble co-
enzyme Q10 treatments, as vitamin E is a part of the
construct built to shuttle co-enzyme Q10 though an
aqueous medium. Our results appear to be promising
because vitamin E shows ability to alleviate some of
the AD pathologies [42].

Co-enzyme Q10

Co-enzyme Q10 (CoQ10), also known as
ubiquinone, was discovered in 1957 by Crane et al.
to be a component of the mitochondrial respiratory
chain and acts as an electron carrier between
NADH, succinate dehydrogenase, and cytochrome
c complex [154, 155]. What initially captured the
attention to this effect is that, in its reduced state,
ubiquinol can serve as an effective antioxidant. Later
it was shown that ubiquinol was able to provide
protection against lipid peroxidation and oxidation
against DNA and proteins [154]. Do et al. later
showed in a yeast model that CoQ10 was able to
directly target and protect the mitochondria from the
same stressors. CoQ10 was also found to preserve
mitochondrial respiratory functioning in aged rat
skeletal muscle and protect cerebellar neurons from
glutamate toxicity [156]. It has been observed that in
neurodegenerative diseases there may be a decrease
in production of CoQ10 and therefore, exogenous
supplementation of CoQ10 may hold promise in
ameliorating neurodegenerative diseases such as
Parkinson’s disease (PD), Huntington’s disease, and
AD [157]. Unfortunately, despite its ability cross the
blood-brain barrier, its lipophilic nature makes it a
poorly bioavailable compound [157]. To circumvent
this, researchers developed vectors that would allow
CoQ10 to be soluble in aqueous solutions [157, 158].
The water soluble CoQ10 (WS-CoQ10) is formed by
linking a hydrophobic group (�-tocopherol) and a
hydrophilic moiety (polyethylene glycol) joined by
sebacic acid linker. This molecule, Polyoxyethanyl-
�-tocopheryl sebacate (PTS), associates with CoQ10
via its hydrophobic �-tocopherol component via
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hydrophobic interactions, and this entire complex
spontaneously forms nano-micelles in aqueous
solutions, thus solubilizing CoQ10. This formulation
showed significant protection against MPTP toxicity
in a PD model [159]. Additionally, it was shown
that this method of solubilization brought down
treatment with CoQ10 to a clinically relevant dose
of 5 mg/kg/day, as compared to a required dose 40
times higher with an oil-soluble formulation [160].
We have recently shown in PSAF that WS-CoQ10
was able to prevent the onset of SIPS in these cells by
lowering ROS levels and ameliorating mitochondrial
dysfunction [42]. Additionally, we have shown that
in PSAF there are increased levels of MnSOD, p21,
RB, and p16Ink4A compared to fibroblasts with wild
type PS-1 from healthy individuals. Interestingly,
treatment with WS-CoQ10 decreased levels of these
proteins. Ma et al. also showed a modest increase
of autophagy, a process known to be disrupted in
AD [40], with the supplementation of WS-CoQ10.
Further studies in our laboratory are being conducted
to pinpoint mechanisms as to how WS-CoQ10 is
affecting the senescent and autophagic pathways in
PSAFs.

Autophagy is a cellular mechanism that involves
the removal and recycling of damaged and toxic
intracellular components such as harmful protein
aggregates, dysfunctional mitochondria, and oxi-
dized proteins [36]. When these materials are
detected, the rough endoplasmic reticulum releases
a double membrane, also called a phagophore,
which surrounds and sequesters these materials in
an autophagosome. These vesicles then bind to
a lysosome which is thereafter referred to as an
autolysosome or phagolysosome which then degrade
the engulfed contents with various different lysoso-
mal proteins such as cathepsins and acidic hydrolases
[161]. Lysosomes contain a proton pump vacuolar
[H+] ATPase (v-ATPase) that is required for the acid-
ification of the autolysosome [38]. The low pH is
required for the activation of the degradative enzymes
found within the lysosome. Lee et al. [40] found
that PS-1 was essential for targeting v-ATPase to the
lysosome and thus, mutations in PS-1 lead to defec-
tive lysosomal acidification. Autophagy is especially
important in long-lived cells like neurons which rely
on high basal levels of autophagy for survival [162].
A mutation in PS-1 then would lead to accumulation
of hazardous materials and dysfunctional organelles
laying the foundation for AD development. In this
regard, we found WS-CoQ10 was able to modestly
induce autophagy in PSAF. LC31 to LC3 conversion

seemed to be insignificant, indicating that autophagic
induction may be independent of this phenomenon.
However, beclin-1 did show a difference between
the untreated and the PSAF treated with WS-CoQ10.
Interestingly, this protein may be the link between
mitochondrial dysfunction and autophagic insuffi-
ciency.

Beclin-1 is a protein that is involved in the initial
stages of autophagy but is cleaved by caspases which
are induced during times of cellular stress to activate
apoptosis [48]. Since the mitochondria are responsi-
ble for the activation of caspases and the increase in
oxidative stress in PSAF, it may be that treatment with
WS-CoQ10 aids in the preservation of autophagy.
Additionally, mTOR a protein kinase is activated by
several factors but has been seen to be elevated during
times of cellular stress as it helps to regulate cell cycle
and growth and has been shown to be required for cell
senescence maintenance [163]. mTOR has also been
shown to act as an inhibitor of autophagy through
global transcription regulation and through its hyper-
phosphorylation of Atg13 which is needed in the
initial stages of autophagosome closure [164]. Other
possible mechanisms for the inhibition of autophagy
may be due to increased levels of calcium. It has been
shown that intracellular levels drastically increase in
AD due to aberrant A� accumulation [20]. It seems
that high calcium concentrations inhibit autophagy
through the activation of calpain which cleaves Gs�

allowing cAMP to be produced, a presumed inhibitor
of autophagy [165]. Co-enzyme Q10 has been shown
to normalize serum calcium levels [166] and thus,
may aid in this process, although this hypothesis
needs to be tested. Another possible reason for induc-
tion of autophagy with WS-CoQ10 may be due to
stabilization of the mitochondria membrane which
may allow for surface markers to be presented such as
Nix, allowing recognition by autophagosomes [167].
These attributes, as well as other potential AD-related
causes of autophagic dysfunction, require further
investigation to identify the validity of their role and
the likely potential for WS-CoQ10 to act as a ther-
apeutic agent against them. Furthermore, in some
of our unpublished results, we have observed the
upregulation of various autophagy regulating genes
(including beclin-1) in PSAF that were treated with
water soluble WS-CoQ10. These results where fur-
ther confirmed by western blot analysis. We have
yet to discern the exact mechanism by which WS-
CoQ10 is upregulating these autophagic proteins. In
Fig. 2 below, we have provided a map of the possible
mechanisms of how WS-CoQ10 might be involved
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Fig. 2. Possible mechanism for autophagic reintroduction by
WS-CoQ10 in PS-1 mutated fibroblasts. mTOR is related to
the maintenance of cellular senescence as well as the inhibi-
tion of autophagy through the induction hyper-phosphorylation
of ATG13. Beclin-1 a known inducer of autophagy is degraded
by caspase 8 which is activated during times of oxidative stress
produced in huge quantities by the damaged mitochondria of PS-
1 mutated fibroblasts. A� has been seen to lead to mitochondrial
damage and can increase the influx of Ca2+ which can activate the
antiapoptotic protein calpain. WS-CoQ10 is able to considerably
lessen mitochondrial damage and the levels of ROS that lead to
oxidative stress. Its possible the reduction of oxidative stress may
lead to reduced degradation of beclin-1 via caspase 8 leading to
increased autophagy. This may act as a positive feedback loop as
the reintroduction of autophagy would allow the degradation of
dysfunctional mitochondria and oxidized proteins.

in autophagic reintroduction. Using a cellular model
can be very useful in understanding the basic mech-
anisms of a disease trait, but often they are a far cry
from the actual effect of a drug seen in vivo as drugs
can be differentially metabolized and lead to a dif-
ferent outcome or even toxicity. Mouse models can
provide a better link as to how a drug is going to
impact the body when supplemented in humans.

Recently we have reported unprecedented efficacy
of Ubisol-Q10

® (Next Remedies Inc.) (previously
called WS-CoQ10) in protecting neurons in in
vitro and in vivo models of neurodegenerative
diseases. The formulation contains CoQ10 and
PEG-�-tocopherol forming jointly water-soluble
nano-micelles. We have confirmed bioavailability
of this formulation in the brain. A comprehensive
behavioral analysis of transgenic animals (PD and
AD mice models) fed with this formulation indi-
cated significant improvement in motor activity in
PD and long-term memory and emotional reactiv-
ity in models of AD compared to untreated animals.
These results complemented histochemical analysis
that indicated significant protection of neurons in
substantia nigra region in PD models, lower A� bur-

den (plaques), and increased autophagy in AD mice.
This treatment led to the stabilization of mitochon-
drial functions, decreased oxidative stress in neuronal
cells, and increased autophagy and induction of
pro-survival astroglial cells. Thus, we optimistically
hypothesize that Ubisol-Q10

® could offer a potential
treatment that could halt the progression of disease
in AD and PD patients.

WS-CoQ10 is effective in ameliorating mitochon-
drial dysfunction, increased ROS generation, and
defective autophagic processes, all of which are
reputed principle abnormalities linked to the AD
etiology. Therefore, WS-CoQ10 is a novel poten-
tial prophylactic and therapeutic agent for AD and
may have implications for other mitochondrial and
autophagy-linked disease.

CONCLUSION AND FUTURE
PERSPECTIVES

It has been established that multiple factors
including production of toxic A� peptide, oxidative
stress, mitochondrial dysfunction, accumulation of
damaged proteins, inhibition of autophagy and pro-
teasome mechanisms, and inflammation are involved
in the initiation and development of AD pathol-
ogy. Many of the pathways discussed in this review
appears to be provocative and promising. Some of
these mechanisms are related to each other, for
example, oxidative stress could cause mitochondrial
dysfunction which in turn increases oxidative stress;
thus a vicious cycle could start. However, targeting
any one of these mechanisms has not been success-
ful in halting the progression of the disease. In AD
patients, where the vicious cycle of oxidative stress
and related damages have already begun, blocking
A� production or removal by antibodies could not
block the cycle, and the disease progression contin-
ued despite clearance of A�. Similarly, anti-oxidants
alone or anti-inflammatory regimens have not shown
to be effective. It would be necessary to stabilize mito-
chondria and resume autophagy or protein clearance
coupled with reduction of oxidative stress and inflam-
mation to successfully stop progression of neuronal
cell death. Recent research from cellular and ani-
mal models indicate that combination of tocopherol
containing water-soluble formulation of CoQ10 and
ashwagandha extract together could limit the dam-
age in AD brain by stabilizing mitochondria and
reducing oxidative stress and inflammation while
resuming autophagy. Therapeutic regimens of this
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nature (similar to nutritional supplement) could be
given to patients over a long period of time (possibly
throughout life) without expecting any side effects.
There is urgent need to evaluate efficacy of these
potential therapeutic agents in clinical studies, as well
as investigate novel natural compound and extract-
based therapies for AD.
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[148] Molina JA, Jiménez-Jiménez FJ, Hernánz A, Fernández-
Vivancos E, Medina S, De Bustos F, Gómez-Escalonilla
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[159] Somayajulu-Niţu M, Sandhu JK, Cohen J, Sikorska M,
Sridhar T, Matei A, Borowy-Borowski H, Pandey S
(2009) Paraquat induces oxidative stress, neuronal loss
in substantia nigra region and Parkinsonism in adult rats:
Neuroprotection and amelioration of symptoms by water-
soluble formulation of Coenzyme Q10. BMC Neurosci 10,
88.

[160] Cleren C, Yang L, Lorenzo B, Calingasan NY, Schomer A,
Sireci A, Wille EJ, Beal MF (2008) Therapeutic effects of

coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP
model of Parkinsonism. J Neurochem 104, 1613-1621.

[161] Levine B (2007) Autophagy and cancer. Nature 446,
745-747.

[162] Chakrabarti L, Eng J, Ivanov N, Garden GA, La Spada
AR (2009) Autophagy activation and enhanced mitophagy
characterize the Purkinje cells of pcd mice prior to neu-
ronal death. Mol Brain 2, 24.

[163] Korotchkina LG, Leontieva OV, Bukreeva EI, Demidenko
ZN, Gudkov AV, Blagosklonny MV (2010) The choice
between p53-induced senescence and quiescence is deter-
mined in part by the mTOR pathway. Aging (Albany NY)
2, 344-352.

[164] Levine B, Klionsky DJ (2004) Development by self-
digestion. Dev Cell 6, 463-477.

[165] Fleming A, Noda T, Yoshimori T, Rubinsztein DC (2011)
Chemical modulators of autophagy as biological probes
and potential therapeutics. Nat Chem Biol 7, 9-17.

[166] Papadimitriou A, Hadjigeorgiou GM, Divari R, Papa-
galanis N, Comi G, Bresolin N (1996) The influence
of coenzyme Q10 on total serum calcium concentra-
tion in two patients with kearns-sayre syndrome and
hypoparathyroidism. Neuromuscul Disord 6, 49-53.

[167] Ding W-X, Yin X-M (2012) Mitophagy: Mechanisms,
pathophysiological roles, and analysis. Biol Chem 393,
547-64.


