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Model-based Meta-Analysis on the Efficacy of
Pharmacological Treatments for Idiopathic Pulmonary
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Recently, the US Food and Drug Administration (FDA) approved the first two drugs (pirfenidone and nintedanib) indicated for
the treatment of idiopathic pulmonary fibrosis (IPF). The purpose of this analysis was to leverage publicly available data to
quantify comparative efficacy of compounds that are approved or in development. An analysis-ready database was
developed, and the analysis dataset is composed of summary-level data from 43 arms in 20 trials, with treatment durations
ranging from 8–104 weeks. A hierarchical multivariable regression model with nonparametric placebo estimation was used to
fit the longitudinal profile of change from baseline of percent predicted forced vital capacity (%predicted FVC) data.
Pirfenidone and nintedanib were the only drugs identified to have significant estimated positive treatment effects. Model
simulations were performed to further evaluate the covariate and time course of treatment effects on longitudinal change from
baseline %predicted FVC to inform future trial designs and support decision making.
CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 695–704; doi:10.1002/psp4.12227; published online 7 September 2017.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?
� The recent approval of pirfenidone and nintedanib
and the paucity of data from direct (head-to-head) com-
parisons among treatments for IPF prompt the need for
indirect comparisons by leveraging data currently
available.
WHAT QUESTION DID THIS STUDY ADDRESS?
� An MBMA was utilized to more fully leverage publicly
available data by incorporating longitudinal information
and to provide more accurate estimates of the true
response and thereby a more valid comparison
between treatments.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� The fixed-effect model with nonparametric placebo esti-
mation, with time-dependent but saturable treatment
effects and baseline %predicted FVC influencing the mag-
nitude of the treatment effects was determined to be the
best and most parsimonious model to describe change
from baseline %predicted FVC for 15 treatment regimens.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� Because MBMA accounts for heterogeneity across tri-
als, this framework can be applied to inform future trial
designs with clinical trial simulations. Therefore, the pre-
sented framework will be adapted and re-used to address
questions related to the development of IPF drugs.

Idiopathic pulmonary fibrosis (IPF) is a fatal, chronic, pro-

gressive fibrosing interstitial pneumonia of unknown cause.

The disease most commonly occurs in persons over the

age of 50 years, more often in men than in women, and the

majority of the patients have a history of cigarette smok-

ing.1 Prevalence estimates of IPF ranged from 14–27.9

cases per 100,000 persons in the general population in the

United States.2

In October 2014, the US Food and Drug Administration
(FDA) approved the first two pharmacological therapies, pir-
fenidone and nintedanib, which demonstrate to slow the
decline of lung function in IPF. In the face of the approval of
the two new drugs, the treatment landscape for drug devel-
opment in IPF is changing rapidly in terms of background

therapy or treatment comparators, and patient enrollment in

placebo-controlled trials will be challenging going forward.
However, the paucity of data from direct (head-to-head)

comparisons among treatments for IPF prompts the need

for indirect comparisons by leveraging data currently avail-

able. Specifically, summary-level information extracted from

the literature can be combined into a meta-analysis frame-

work to compare treatment effects of different drugs across

different patient populations. In recent years, network meta-

analysis (NMA) has been used to estimate the relative effi-

cacy of IPF treatments.3–7 However, one major limitation of

traditional NMAs is the complexity of integrating variable

time courses and placebo effects, as in the case with IPF.8

Therefore, to more fully leverage publicly available data by
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incorporating longitudinal information across different time
points, a model-based meta-analysis (MBMA) could be uti-
lized to allow evaluation of the full time course of the
response in terms of both its speed of onset, and mainte-
nance and magnitude of drug effect, in order to provide
more accurate estimates of the true response and thereby
a more valid comparison between treatments.9 An MBMA
for treatments in IPF had been published previously,10 how-
ever, in light of recent FDA approvals for pirfenidone and
nintedanib and availability of additional data in the public
domain from these two drugs and from other experimental
therapies for IPF, an update of the MBMA and re-evaluation
of the model are warranted.

METHODS
Database construction
A systematic review of publicly available data from the
PubMed database was conducted in September 2015,
according to a prespecified database-building protocol and
based on the relevant identification, screening, and assess-
ment steps described in the Cochrane Handbook for Sys-
tematic Review of Interventions and reporting items in the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement.11,12 The search used
the following keywords: (“idiopathic pulmonary fibrosis”
(MeSH terms) OR “idiopathic” (all fields) AND “pulmonary”
(all fields) AND “fibrosis” (all fields) OR “idiopathic pulmo-
nary fibrosis” (all fields) AND “randomized controlled trial”
(publication type) AND English (language)). Additional
online data sources, including the FDA and ClinicalTrials.
gov websites, were searched for unpublished trials and
additional information on published trials.

Data extracted from each citation included but were not
limited to: publication year, title, journal, author, trial, region,
sponsor, trial year, trial design, and primary treatment.
Patient demographics are captured, as well as randomized
treatment information for each arm, such as dose, dosing
frequency, and routes of administration. The notable clinical
efficacy measures extracted included: forced vital capacity
(FVC; in volume unit), normalized FVC expressed as per-
cent of predicted normal (%predicted FVC; the lower
%predicted FVC, the more severe of the disease in terms
of pulmonary function), diffusing capacity of the lung for
carbon monoxide, total lung capacity, time to IPF exacerba-
tion, time to death or hospitalization, 6-minute walk test dis-
tance, progression-free survival, and forced expiration
volume in 1 second. For continuous measurements, such
as FVC and %predicted FVC, changes from baseline or
percent change from baseline are extracted if reported.

The database was augmented using an R-script that pro-
cesses derivations for trials with missing SD, SE, or confi-
dence interval (CI) from the nonmissing reported statistic
values. The augmentation process also included standardiz-
ing endpoint units, covariate estimates and doses, and addi-
tional database variables were created to facilitate the
MBMA analysis. Transformation was performed to generate
the %predicted FVC from reported observed FVC in the
three nintedanib trials using a standard equation.13 For con-
tinuous measurements, missing baseline value, postbaseline

value, change from baseline, and percent change from base-

line were calculated if any two of these values were reported.

Furthermore, if <60% of trial arms had missing values of a

prespecified covariate, the missing covariate values were

imputed using multivariate linear regression, based on non-

missing clinically relevant trial variables.

Exploratory analysis
Summary tables were prepared to facilitate the systematic

review of the database for the amount of data available for

each treatment and efficacy end point across trials, the dis-

tribution of mean patient characteristics, and for features

that might introduce bias in the analysis. Of the 17 efficacy

end points available in the augmented database, one end

point, namely change from baseline %predicted FVC

(D%predicted FVC), was chosen for further exploratory

analysis based on the extent of availability in the database

and its acceptability as a primary efficacy end point for

drug development in IPF.
Forest plots were utilized to assess and compare placebo

responses of %predicted FVC among trials, to highlight

effect outliers, and to investigate possible explanations for

these differences.14 Additionally, longitudinal profiles of

%predicted FVC as absolute values, as change from base-

line, and as percent change from baseline were explored

using time-course plots.
To account for variability of responses between trials,

covariates of interest were prespecified based on clinical

consideration and physiological plausibility of the estimates

and investigated for their ability to predict differences in SD

values and treatment effects. The prespecified covariates

were mean or median baseline %predicted FVC, disease

duration, and age, as well as proportions of subjects who

were men, white, and current or former smokers in each trial.
The database was further screened, during which dupli-

cate end-point data in the same trial were removed, with a

preference to retain longitudinal data. When multiple sum-

mary statistic values were available for the same time

points, mean values were chosen over the median value,

and intent-to-treat populations were included whenever pos-

sible. Based on these selection criteria, an MBMA analysis

dataset was developed.

Model development
Before modeling the treatment effect, imputation of missing

SD values was explored using linear, log, exponential, and

maximum effect (Emax) models. The model-predicted SD

values were then used in the MBMA model development

for derivation of the study weights.
The longitudinal profile of D%predicted FVC was charac-

terized by a hierarchical regression model using maximum

likelihood estimation. If imbalance exists between the ran-

domized groups at baseline, the change from baseline data

would give the least biased estimate of a causal effect. A

nonparametric approach was implemented to model the

data from the placebo trial arms to allow the placebo esti-

mate to vary unrestrained for each trial and each time

point, so that only the overall estimation of a specific drug

effect would impact the accuracy of the placebo estimate.

The advantage of a nonparametric approach is that no
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arbitrary assumption had to be made on the distribution of
the placebo response15 and that no bias is created due to
placebo model misspecification. This is appropriate for
summary-level data from a therapeutic area that has highly
variable placebo effects across clinical trials but more con-
sistent treatment effects within trials.16

Multiple levels of heterogeneity were described as mixed-
effect variability terms, accommodating between-study vari-
ability and within-study variability. A residual variability term
was used to account for the unexplained deviation from
fixed effects.9 General model components included the
following:

DYijt 5Eoit 1f hkið Þ1gij 1Eijt (1)

In Eq. 1, DYijt is the mean change from baseline response
for the jth arm in the ith trial at time t, Eoit is the placebo
response (using the nonparametric approach) for the ith
trial at time t, f(hki) is the effect due to the kth treatment or
covariate in the ith trial, gij is the random residual due to
between arm variability, and Eijt is the random residual due
to within arm variability, which is assumed to be normally
distributed with a variance dependent on the sample size
and observed SD of the trial arm. The model used the
inverse of the estimated variance as weights, so that more
weight was given to the trials with larger sample size and
less variability in observations.

During model development, the treatment effects were ini-
tially incorporated to be constant over time and described by
a scaling factor, Emax, which was estimated as a single
parameter representing the maximal change in D%predicted
FVC across all treatments. Next, under the assumption that
treatments with a similar mechanism of action (i.e., in the
same treatment class) share a common saturable relation-
ship,17 a single Emax value was estimated for each drug
class. This was followed by a more granular estimation of
separate Emax for each treatment. Because there are 12
drug classes and 14 drugs represented in the analysis data-
set, estimating the maximal effect of each treatment instead
of each treatment class did not drastically increase the com-
plexity of the model. For treatments with dose-ranging data
available, the potential dose-response relationships were
estimated by testing different functional forms.

The model development of the treatment effects in the
model was further refined by investigating nonlinear time-
varying treatment effects. Alternatives to immediate attain-
ment of the maximal treatment effect were evaluated, first
by using a common functional form and estimating one set
of time-varying model parameters for all treatments; and
then by testing different functional forms (e.g., Emax) and
separate time-varying model parameter values for various
drugs and drug classes. This accommodated heterogeneity
in the time of treatment response onset and time to reach
maximal treatment effect among different drugs and drug
classes.15

Summary-level patient population characteristics were
included in the model as covariates to help explain the vari-
ability among trials and treatment arms. Stepwise addition
of the covariates was performed, without accounting for
interaction between covariates, and only the statistically

and clinically relevant covariates were retained in the final

model.
Model development and complexity were driven by the

data and guided by successful convergence of the minimi-

zation routine, comparison of statistical significance using

Bayesian information criterion values against the reference

model results within each successive step of the model

development, and examination of parameter estimate preci-

sion values. All data exploration and model development,

evaluation, and simulation were conducted using the R soft-

ware version 3.1.2 (R Development Core Team, 2008), in

particular, the “gnls” function in the “nlme” package version

3.1–128.

Model evaluation
The adequacy of model fits across trials was evaluated by

visually inspecting goodness-of-fit plots, including time-

course and summary forest plots of observed distributions

vs. predicted values. In addition, a sensitivity analysis was

conducted to assess the impact of using predicted vs. a

mixture of observed and predicted SD values for weighting

purpose in the model.

Model application
Model simulations were performed using fixed and random

effect estimates from the final MBMA model to predict the

treatment effects at hypothetical dose and time points, as

well as to further evaluate typical relationships between

treatment and covariate effects on longitudinal D%predicted

FVC.

RESULTS
Database overview
A total of 89 potentially relevant citations were retrieved

from the initial search and, after review of the abstracts and

full papers, 40 citations were chosen to be included in the

IPF database, according to the inclusion/exclusion criteria

specified in the database protocol. A flow chart of the num-

ber of citations screened and the reasons for exclusion are

displayed in Figure 1.
The final database was constructed from 40 citations

from 32 trials, including 4 medical and statistical reviews

from the FDA and 5 reporting results from

ClinicalTrials.gov.

Exploratory analysis
A summary of the end points available in the final database

showed that %predicted FVC is the second most reported

efficacy end point, after mortality. Therefore, due to its prev-

alence in the database and relevance in phase II clinical tri-

als, of which the drug development stage decisions that the

analysis intended to support, D%predicted FVC was cho-

sen for the MBMA. Further data selection was performed to

construct an analysis dataset, during which additional trials

were excluded based on their lack of availability of the end

point of interest, of the preferred prespecified summary sta-

tistic type, and because of multiple references describing

the same trial. The numbers and reasons that specific cita-

tions were not retained in the dataset are included in the

flow diagram of analysis dataset development (Figure 1).
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Following the data selection process, the analysis dataset
consists of D%predicted FVC summary-level data of 43
arms from 4,919 subjects in 20 trials (Table 1),18–35 17 of
which were double-blinded and placebo-controlled, and none
of the trials had stratified data within trial arms. The trials in
the analysis dataset were conducted across Europe, North
America, and Australia, but none in Asia, and large variabil-
ities were observed in the sample size for each active treat-
ment, as well as in the treatment durations.

In the analysis dataset, the most commonly studied
active treatments in the numbers of trials and subjects were
interferon gamma, pirfenidone, and nintedanib, and the
most common comparator was placebo with 2,035 subjects
(Supplementary Figure S1). There were 8 trials with longi-
tudinal D%predicted FVC data, and the active treatments
with longitudinal data were: etanercept, warfarin, interferon
gamma, ambrisentan, nintedanib, N-acetylcysteine, pirfeni-
done, and colchicine. When comparing placebo arms
across trials, a large variability in D%predicted FVC

response was observed in the exploratory plots, and this
characteristic was consistent with previous observations in
clinical trials for IPF.16 In addition, there was a pattern of
increasingly negative D%predicted FVC in the trials with
longer treatment durations.

In the original database, the values for the prespecified
covariate were missing in 0–36% of the trials and imputa-
tion was performed for the missing covariates, namely
baseline %predicted FVC and smoking status, by leverag-
ing possible clinically relevant information from nonmissing
variables in the database, such as age, region, and publica-
tion year. Weight, height, and body mass index were not
imputed because >60% of trial arms had missing values.
The distributions of the covariate values across trials are
presented in Supplementary Figure S2.

The covariates were also investigated for their potential
to predict SD, in order to derive missing SD values, which
corresponds to 38% of records in the augmented database.
The final SD model included linear time and drug class as

Figure 1 Flow chart of database and analysis dataset development. FDA, US Food and Drug Administration; IPF, idiopathic pulmonary
fibrosis.
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predictors, with the endothelin receptor antagonist treat-

ment class, which consisted of data from ambrisentan,

bosentan, and macitentan, having a higher predicted SD

than other treatment classes. Observed and predicted SD

values were compared and the correlation coefficient

(r 5 0.70) was sufficient for weighting purpose in MBMA

and predicted SD values were used for MBMA model

development.

Model development
The longitudinal D%predicted FVC data was fitted using a

hierarchical effect model with a nonparametric placebo esti-

mation. Model parameter estimates are shown in Table 2.
Treatment effects were estimated for all 14 active treat-

ments in the analysis dataset. In the final model, the dose-

response relationship of pirfenidone was characterized

using a step-function, with the high dose (2,403 mg/day)

having an estimated greater treatment effect than the low

dose (1,197 mg/day) of pirfenidone. For PRM-151, despite

the fact that data from three dose strengths (1, 5, and

10 mg/kg) in a small trial (N 5 15 in the active treatment

arms) were included in the dataset, attempts to model a

dose-response relationship resulted in minimization failures

during maximum likelihood estimation. This indicates that

the models are overparameterized and the maximum treat-

ment effect of PRM-151 was, therefore, described by a sin-

gle Emax parameter. Other treatments reported had only

one dose regimen per treatment in the dataset; therefore,

these treatments were modeled using a single Emax param-

eter to describe the maximum drug effect for each treat-

ment. The final model provided reasonably precise

estimates of the structural model parameters, especially for

pirfenidone and nintedanib (�34.9% relative SE).
The final model also included a time-dependent treat-

ment effect to estimate how rapid the maximum treatment

response is achieved, and this time component of the

drug effect is described by an empirical model function: 1-

exp(-lambda*time), where lambda is the shape parameter

that determines the steepness of the curve. Based on
the estimated value (95% CI) of 23.18 (23.69 to 22.68)
for lambda, 90% of maximum response is achieved and
approaching a plateau at �56 weeks, with the time to
50% maximum efficacy of 16.5 weeks after treatment initi-
ation. Investigations of more complex models to describe
the time component of the treatment effect for the overall
and for specific individual treatments did not result in suc-
cessful minimization of the model run, potentially due to
limited longitudinal data; therefore, the same model

Table 1 Summary of treatments and clinical trials in the model-based meta-analysis dataset

Treatment Class Dose

Total no. of

arms

Total no. of

timepoints

Total no. of

subjects References

Ambrisentan Endothelin receptor antagonist 10 mg 1 7 330 28

Azathioprine Immunosuppressant 3 mg 1 1 14 30

Bosentan Endothelin receptor antagonist 125 mg 1 1 74 22

Colchicine Antigout 1 mg 3 7 39 18,19,33

Co-trimoxazole Antibiotic 960 mg 1 1 95 31

Etanercept Tumor necrosis factor inhibitor 25 mg 1 5 46 29

Interferon-gamma Interferon 200 lg 4 8 607 18,23,32,33

N-acetylcysteine Mucokinetic 1,800 mg/day 1 4 133 24

Nintedanib Tyrosine kinase inhibitor 300 mg/day 3 21 723 34,35

Pirfenidone Antifibrotic 1,197, 2,403 mg/day 4 22 710 20,25

Placebo Placebo Not applicable 17 63 2,035 20–32,34,35

Prednisone Corticosteroid 40 mg 1 1 12 19

PRM-151 Antifibrotic 1, 5, 10 mg/kg 3 3 15 27

Sildenafil Phosphodiesterase inhibitor 20 mg 1 1 14 21

Warfarin Anticoagulant 1.8 mg 1 3 72 26

Total 43 148 4,919

Table 2 Parameter estimates of the final model

Parameter/effect Estimate (95% CI)

Interferon-gamma treatment 20.618 (22.46 to 1.23)

Colchicine treatment 27.63 (213 to 22.3)

Prednisone treatment 211.9 (-25.8 to 1.95)

Sildenafil treatment 2.67 (27.15 to 12.5)

Bosentan treatment 1.75 (24.37 to 7.86)

Ambrisentan treatment 22.03 (24.18 to 0.126)

N-acetylcysteine treatment 20.0568 (22.01 to 1.9)

Warfarin treatment 20.276 (24.89 to 4.33)

Etanercept treatment 1.47 (22.3 to 5.24)

Azathioprine treatment 5.89 (24.14 to 15.9)

Co-trimoxazole treatment 0.172 (23.72 to 4.07)

Nintedanib treatment 3.31 (2.15 to 4.47)

Pirfenidone 1,197 mg/day treatment 2.42 (0.733 to 4.11)

Pirfenidone 2,403 mg/day treatment 3.87 (2.68 to 5.06)

PRM-151 treatment 12.5 (25.13 to 30.1)

Time-varying effect (lambda) 23.18 (23.69 to 22.68)

Baseline FVC effect (embase) 1.48 (22.7 to 5.66)

Between trial-arm variability 1.07 3 1026

CI, confidence interval; FVC, forced vital capacity.

Note: The treatment estimates are maximum effects in %predicted FVC; the

time-varying effect of the treatment is parameterized as 1-exp(-lambda*-

time), in which lambda is the shape parameter that determines the steep-

ness of the curve; the baseline FVC effect on the treatment is

parameterized as (arm level baseline %predicted FVC/74)embase. The SE of

the between trial arm variability was not estimated.
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function and a shared lambda term were used between all

treatments.
Six prespecified covariates were investigated for their

association with the treatment effects. The covariate search

was conducted as part of the model development process,

and only baseline %predicted FVC normalized to the

approximate median value of 74% was included in the final

model. The estimated covariate parameter value (95% CI)

of 3.86 (-0.631 to 8.35) means that the model predicts that

the higher baseline %predicted FVC, the greater the impact

of the treatment effect (i.e., subjects with higher baseline

%predicted FVC are expected to show greater treatment

effect and less disease progression with a positive treat-

ment for IPF than subjects with lower baseline %predicted

FVC).
Ranking of the treatments by the magnitude of the maxi-

mum effect (Figure 2) shows PRM-151 is predicted to have

the numerically highest maximum drug effect, although the

point estimate is associated with a large 95% CI. Among

the 15 treatment regimens evaluated, pirfenidone and ninte-

danib were the only drugs identified to have statistically sig-

nificant positive treatment effects on D%predicted FVC,

with model-estimated 95% CIs not crossing the null.

Model evaluation
Model diagnostic plots in the forms of longitudinal plots from

representative pirfenidone and nintedanib trials (Figure 3)

and from all the trials included in the analysis (Supplemen-

tary Material), as well as a forest plot (Figure 4)

summarized by trial, showed good agreement between pre-
dicted and observed values with no systematic bias. As
such, the model provided a reasonable fit to the observed
data.

A sensitivity analysis was performed to assess the impact
of missing SD and the validity of using predicted values by
comparing the MBMA parameter estimates obtained from
model runs using SD data from solely predicted values and
from a mixture of predicted and observed SD values. The

sensitivity analysis results showed that the parameter esti-
mates were similar when a mixture of observed and pre-
dicted SD was used. Furthermore, even with some
changes of the model parameters, the model predictions
were virtually indistinguishable.

Model application
Hypothetical scenarios of interest were simulated by vary-
ing combinations of treatment effect, treatment duration,
and covariate ranges. Simulated time-courses of pirfeni-
done and nintedanib effects based on the observed
medians (66% and 76%) of the stratified high and low
baseline %predicted FVC groups shows that effect differ-
ence is small between the two baseline groups within each
treatment (Figure 5).

DISCUSSION

Using model-based meta-analysis principles, a hierarchical
effect model was developed based on publicly available

DRUGS MAXIMUM EFFECT [95% CI] 

(%PRED FVC)
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ambrisentan

n−acetylcysteine

warfarin

etanercept

azathioprine

co−trimoxazole

nintedanib
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1.75 [−4.37;7.86]
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Figure 2 Model estimate and 95% confidence interval (CI) of saturable (maximum) effect for each active treatment. %PRED FVC, per-
cent predicted forced vital capacity; IFN, interferon.
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clinical trial data in this analysis to describe the longitudinal

profiles of D%predicted FVC.
To better describe the longitudinal data, a time-course

effect model was used in the analysis. The functional form

describing a steady increase to a maximal level is consis-

tent with the time-dependent treatment effect defined in a

previous MBMA10 and the incorporation of the time-course

effect greatly improved the fitting. With diverse drug classes

included in the analysis, different treatment durations might

be needed to attain the maximal efficacy for each drug or

drug class. However, the result of analysis suggested that a

common time-course effect model is sufficient to fit longitu-

dinal data from eight different treatments and unique treat-

ment classes.
Among the 14 distinct treatments included in the analy-

sis, pirfenidone and nintedanib are of primary interest, as

they are the only two approved IPF therapies to date.

Therefore, the understanding of their comparative efficacy

is crucial for designing future clinical trials in IPF. Further-

more, the combined sample sizes from the trials of each of

these two treatments are greater than any of the other 12

treatments in the database. However, the analysis was not

limited to only these two approved drugs because the pla-

cebo arms from other trials contributed to more precise

identification of the time-course of treatment effects for IPF.

The ranking of model-predicted treatment effects indicated

that PRM-151 has the largest estimated drug effect (Figure

2), but given the small sample size (N 5 15) and only one

observed time point at 8 weeks from the PRM-151 trial, the

Emax estimate of this compound was not precise or reliable.

The evaluation of the time-course effect for the PRM-151

treatment was, therefore, limited and the simulations results

in a very wide CI. Additional longitudinal data for PRM-151

will be needed to generate more reliable drug-time course

estimates to compare with other treatments.
Between the two drugs, pirfenidone and nintedanib, that

showed definitive positive response in the analysis, the

model estimates a numerically greater treatment impact

from pirfenidone at the recommended dose of 2,403 mg/day

over nintedanib 300 mg/day, although their 95% CIs overlap

(Figure 2). This finding is consistent with results from

NMA3,6 and from a previous MBMA,10 which suggest that no

significant difference between the two drugs was detected

with respect to pulmonary function decline or survival bene-

fit. In order to confirm these findings, a head-to-head com-

parison between pirfenidone and nintedanib is needed.
Model evaluation plots for representative pirfenidone and

nintedanib trials (Figure 3) showed that the final MBMA

model predicts the observed longitudinal data well, and,

overall, the model was able to capture the observed values
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Figure 3 Model fitted time-course plots of %predicted forced vital capacity (FVC) change from baseline for representative pirfenidone
and nintedanib trials. Note: Symbols and vertical bars are observed mean and SE of the time point, and the fitted line is the model
prediction.
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at the primary time point (Figure 4), despite the large dif-

ferences in treatment duration. Among the 23 treatment

arms from 13 treatments in the forest plot, the observed

effects are fairly consistent across treatment arms for each

of the treatments, in terms of whether or not the treatment

has a generally positive, negative, or no treatment effect,

and this finding agrees with previous observations in clinical

trials for IPF.16 An obvious outlier is interferon gamma, of

which two trials reported a large positive treatment effect,

and two trials reported no treatment effect. The authors

who reported the results from the INSPIRE trial,23 which

showed no treatment effect and is the most recently pub-

lished of the four and has the largest sample size of the

interferon gamma trials, contrasted its results with the three

previous interferon gamma trials that showed different out-

comes, and they hypothesized that the difference in the

treatment effects between the interferon gamma trials was

due to large dropout rates, shorter treatment duration, or

smaller sample size in the previous three trials. The results

from the INSPIRE trial were also leveraged for the estima-

tion of treatment effects of colchicine and prednisone.

These two treatments lacked placebo-controlled trial data in

subjects with IPF but were indirectly compared to placebo

through small active-control trials18,19,33 with interferon

gamma that showed worse efficacy than interferon gamma,

which showed no treatment effect in the INSPIRE trial.

Therefore, colchicine and prednisone were estimated to

have the most negative treatment effects in the analysis

with wide CIs.
In the current MBMA model, only the baseline

%predicted FVC showed significant correlation with the

treatment effect. Although baseline disease severity typi-

cally influences the Emax of the dose-response relation-

ship17 and, thus, would be expected to be included in the

final model as a significant covariate, the inability of the

model to identify other covariates could be attributed to a

common limitation among meta-analyses, stemming from

the nature of summary-level mean or median values.17,36

Limited covariate distributions in the analysis dataset also

reflect the similar entry criteria for many of the clinical trials

included in the analysis. Additionally, some covariates could

be correlated, making it difficult to isolate the independent

effects of these covariates,8 especially in an analysis data-

set that included only a small number of trials.
Using the database search algorithm stated in the Meth-

ods section, two additional randomized controlled trials pub-

lished in 2016 were identified. As more data are published

based on administration of pirfenidone and nintedanib as

TRIAL TREATMENT N WEEK VALUE [95% CI]

shulgina 2013 co−trimoxazole 960 mg 95 52 0.14 [−3.19 to 3.47]

ace−ipf warfarin 1.8 mg 72 48 −0.89 [−3.38 to 1.6]

pipf−004/capacity 2

pipf−004/capacity 2

pipf−006/capacity 1

pipf−016/ascend

prm151f−12gl
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marketed products, continuous enhancement of the data-
base in the future could help improve the understanding of
the efficacy responses of these two new standard-of-care
pharmacotherapies.
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