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 17 

Abstract 18 

Simulations of tissue-specific effects of primary acute viral infections like COVID-19 

19 are essential for understanding disease outcomes and optimizing therapies. Such 20 

simulations need to support continuous updating in response to rapid advances in 21 

understanding of infection mechanisms, and parallel development of components by 22 

multiple groups. We present an open-source platform for multiscale spatiotemporal 23 

simulation of an epithelial tissue, viral infection, cellular immune response and tissue 24 

damage, specifically designed to be modular and extensible to support continuous 25 

updating and parallel development. The base simulation of a simplified patch of epithelial 26 

tissue and immune response exhibits distinct patterns of infection dynamics from 27 

widespread infection, to recurrence, to clearance. Slower viral internalization and faster 28 

immune-cell recruitment slow infection and promote containment. Because antiviral drugs 29 

can have side effects and show reduced clinical effectiveness when given later during 30 
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infection, we studied the effects on progression of treatment potency and time-of-first 31 

treatment after infection. In simulations, even a low potency therapy with a drug which 32 

reduces the replication rate of viral RNA greatly decreases the total tissue damage and 33 

virus burden when given near the beginning of infection. Many combinations of dosage 34 

and treatment time lead to stochastic outcomes, with some simulation replicas showing 35 

clearance or control (treatment success), while others show rapid infection of all epithelial 36 

cells (treatment failure). Thus, while a high potency therapy usually is less effective when 37 

given later, treatments at late times are occasionally effective. We illustrate how to extend 38 

the platform to model specific virus types (e.g., hepatitis C) and add additional cellular 39 

mechanisms (tissue recovery and variable cell susceptibility to infection), using our 40 

software modules and publicly-available software repository.  41 

 42 

Author summary 43 

This study presents an open-source, extensible, multiscale platform for simulating 44 

viral immune interactions in epithelial tissues, which enables the rapid development and 45 

deployment of sophisticated models of viruses, infection mechanisms and tissue types. 46 

The model is used to investigate how potential treatments influence disease progression. 47 

Simulation results suggest that drugs which interfere with virus replication (e.g., 48 

remdesivir) yield substantially better infection outcomes when administered 49 

prophylactically even at very low doses than when used at high doses as treatment for 50 

an infection that has already begun. 51 
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 52 

Introduction  53 

The current global pandemic of COVID-19, caused by the novel coronavirus 54 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has motivated the 55 

study of beta coronavirus diseases at multiple spatial and temporal computational 56 

modeling scales [1]. The time course, severity of symptoms and complications from 57 

SARS-CoV-2 infection are highly variable from patient to patient [2]. Mathematical 58 

modeling methods integrate the available host- and pathogen-level data on disease 59 

dynamics that are required to understand the complex biology of infection and immune 60 

response to optimize therapeutic interventions [3–5]. Mathematical models and computer 61 

simulations built on spatial and ODE frameworks have been extensively used to study in-62 

host progression of viral infection [6], with a recent acceleration in the development of 63 

spatial COVID-19 viral infection models in response to the global pandemic [7,8].  64 

Building multiscale models of acute primary viral infection requires integration of 65 

submodels of multiple biological components across scales (e.g., viral replication and 66 

internalization, immune system responses). Non-spatial, coupled ordinary differential 67 

equation (ODE) models can represent many aspects of pathogen-host interaction. In the 68 

context of viral infection dynamics, specialized ODE models can describe both the entire 69 

virus-host response at the tissue and organ levels and different stages of the viral 70 

replication cycle within cells, such as binding and internalization [9,10], viral genome 71 

replication and translation [11,12], assembly, packaging and release [13,14]. By fitting 72 

ODE models to clinical or experimental data, researchers have been able to estimate 73 

important parameters, such as the turnover rate of target cells, average lifetimes of viral 74 
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particles and infected cells and the rate of production of new viral particles by infected 75 

cells [15]. Other ODE models include pharmacokinetic models of drug availability [16].  76 

The simplest non-spatial models assume that the distribution of the modelled 77 

quantities (e.g., cells, viruses, chemical species) are uniformly distributed in space and 78 

time [17]. This assumption might not be realistic in solid tissues, where viruses and host 79 

immune cells are not usually distributed homogeneously and infection propagates locally 80 

[15] or in situations where transport limits the dynamics (e.g. the migration of antigen 81 

presenting cells to lymph nodes, the transmission of virus between organs or the 82 

microdosimetry of a drug therapy). By averaging over spatio-temporal and individual cell 83 

variations, non-spatial models may not accurately reflect the effects of tissue 84 

heterogeneity and resulting viral infection dynamics [18]. Compartmental ODE models, 85 

like physiologically based pharmacokinetic models (PBPK) models or multi-compartment 86 

tissue infection models, maintain some of the simplicity of single-compartment ODE 87 

models, while recognizing the critical role transport can play in viral infection, immune 88 

response and treatment [19].  89 

However, the spread of, and response to, some viruses is highly spatially localized, 90 

both in vitro and in vivo [20,21]. For example, COVID-19 often begins with infection 91 

localized to the nose and throat and then spreads to the lungs [22], with the specific 92 

location, size and distribution of lesions affecting clinical outcomes [23]. Spatial models 93 

have been increasingly used to address such issues [24], including partial differential 94 

equations [25,26] fluid-dynamic models [27] and agent-based models (ABM) [28]. ABMs 95 

represent host cells as spatially located, individual agents, and propagation of the 96 

infection emerges from individual interactions between agents. ABMs are also well suited 97 
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for extending existing models by modular integration of biological subcomponents, and 98 

their model parameters should be validated by experiment and studied through sensitivity 99 

analysis [17]. ABMs have been developed to account for infection dynamics in different 100 

biological compartments (such as the lung and lymph nodes [29,30]) and to model 101 

disease progression of HIV [15,25,31–33] and dissemination of influenza virus to the 102 

lower respiratory tract [18,34].  103 

Spatial models often predict significantly different viral and immune dynamics, 104 

parameter estimates and therapy efficacies from their non-spatial counterparts. 105 

Stochastic effects arising from spatial conditions, such as local availability of target and 106 

immune cells, greatly influence establishment of infection and lead to different infection 107 

outcomes [15]. Non-spatial models generally produce viral load titers higher than spatial 108 

models, and the peaks of infection happen significantly earlier [17,18]. Homogenous 109 

recruitment of immune cells in spatial models matches ODE models when the number of 110 

infected is large, but not at the beginning of the infection when the number of infected 111 

cells is small [18]. These differences can lead to inaccurate estimates of important 112 

parameters such as viral infectivity [35], viral diffusion [17] and the basic reproductive 113 

ratio [35]. The basic reproductive ratio is clinically needed to determine therapeutic 114 

effectiveness [35]. Microdosimetry is another area where spatial modeling is important, 115 

since spatial variation in bioavailability can lead to low concentrations in some regions of 116 

an infected tissue, which can promote the evolution of resistant viral strains [15].  117 

In this paper, we consider primary infection, that is, infection by a virus which the 118 

immune system has not previously encountered, so that there is no initial adaptive 119 

immune response. We focus on acute cases (cases with relatively rapid onset and short 120 
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duration), in which a properly functioning immune system eventually eliminates the virus 121 

completely (clearance). Here we review relevant components of the immune system. 122 

Some of these components are included in this work and some are not modeled. 123 

However, by constructing a modular, extensible modeling framework and computational 124 

implementation, we enable the modeling of all these components.  125 

While the details of infection vary by virus and patient [36], infection generally 126 

begins when a virus breaches the barrier of one or more tissues causing a limited number 127 

of target cells to be exposed and then internalize the virus (Fig 1). The virus begins to 128 

replicate within the initially infected target cells, but cells do not release any newly 129 

synthesized virus for a period of hours to days (the eclipse or lag phase of infection). 130 

Within hours, infected cells release proinflammatory cytokines and complement proteins 131 

as warning signals to neighboring cells [37,38]. Some of these cytokines, like Type 1 132 

interferons, can induce autocrine and paracrine anti-viral responses (e.g., inhibiting viral 133 

replication, viral entry or inducing cell death) [39]. Cytokines recruit circulating immune 134 

cells from the blood to the infected tissue and attract immune cells within the tissue by 135 

chemotaxis [40–42]. The early innate immune response activates a number of cell types 136 

including dendritic cells, macrophages, neutrophils, mast cells, basophils, eosinophils, 137 

leukocytes, and natural killer (NK) cells [43]. Many of these immune cells themselves 138 

release both pro- and anti-inflammatory signals. Immune signals also recruit circulating 139 

neutrophils in the blood and, later, activate cytotoxic innate immune cells like NK cells 140 

within the tissue, which kill infected cells through release of diffusible factors and contact-141 

mediated interactions, respectively.  142 
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The temporal dynamics of the concentration of extracellular virus varies greatly 143 

among virus families, tissues and host species [44]. However, for many viruses, including 144 

influenza and coronaviruses, once infected cells begin to release virus, the amount of 145 

extracellular virus increases exponentially over a period of a few days, reaching a peak 146 

during an early phase of infection [45]. As the viral load increases, immune signaling 147 

increases rapidly (this increase is associated with the onset of fever and other symptoms) 148 

recruiting more circulating cells of the innate immune system to the infection site [46].  149 

Immune signals from infected cells and innate immune cells help trigger the 150 

adaptive immune response. Macrophages and dendritic cells that have engulfed and 151 

degraded viral pathogens or fragments of dead infected cells (i.e., phagocytosis) migrate 152 

over a period of days to nearby lymph nodes and serve as viral antigen presenting cells 153 

(APCs) to naive T-cells. Antigen presentation induces naive T-cell proliferation and 154 

differentiation into pathogen-specific memory and effector T-cells [47]. Effector T-cells 155 

migrate to the site of infection and induce apoptosis of infected cells by antigen 156 

recognition and contact killing. Both infected and uninfected cells in contact with dying 157 

cells can die through bystander-effect mechanisms. In acute infections, adaptive immune 158 

response leads to pathogen neutralization and clearance [48]. Viral loads usually 159 

decrease rapidly as adaptive immune cells like CD8+ T-cells enter the tissue and 160 

eliminate infected cells. Cells also begin to send out anti-inflammatory signals, shutting 161 

down the immune response as viral clearance proceeds. Antigen presentation within the 162 

immune system also induces activation of naive B-cell lymphocytes into antibody-163 

producing memory B-cells and plasma cells, which leads to the production of antibodies. 164 

The adaptive immune response remembers its exposure to previous pathogens and 165 
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provides the body with pathogen-specific effector cells and antibodies which neutralize 166 

and clear them, providing long term immunity [49]. Tissue damage results from virus and 167 

cytokine-induced cell death (which is first noticeable after 2 or 3 days) and from killing of 168 

infected and uninfected cells by immune cells, which increases steadily until the end of 169 

viral clearance (7-10 days). Tissue recovery and healing start around the time of viral 170 

clearance and may last for several weeks.  171 

 172 

 173 

Fig 1. Schematic of the innate and adaptive immune response during primary acute viral infection.  174 

Exposure to the virus occurs at time 0 and extracellular viral load begins to rise (shaded green curve). Initial innate 175 

immune responses include phagocytosis of virus by neutrophils and macrophages, Type I interferon-induced antiviral 176 

resistance (IFN) (dark blue) and killing of infected cells by Natural Killer (NK) cells and other cell types (red). The black 177 

vertical dashed line denotes the transition between innate and adaptive immune responses. The adaptive immune 178 

response is triggered both by cytokine signaling to the lymph nodes and the migration of antigen-presenting cells from 179 
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the tissue to the lymph nodes (not shown). In the later phases of infection, innate immune responses continue, but 180 

additional adaptive immune components come into play, including virus-specific cytotoxic T-cells (light blue) kill infected 181 

cells directly and also kill nearby cells through a variety of mechanisms. The orange vertical dashed line denotes the 182 

onset of the humoral adaptive immune response. B-cells produce virus-specific antibodies (orange line) which bind and 183 

inactivate virus directly and also allow its clearance and clearance of infected cells by other cell types. Tissue damage 184 

(shaded purple curve) accumulates due to cell death from direct responses to virus and from immune-cell killing by 185 

contact-mediated, diffusible factor-mediated and bystander-mediated mechanisms and eventually dissipates as cells 186 

proliferate to repair the damage (Adapted from [50,51]). The specific time course of all components varies among 187 

viruses, host tissues and host species, but the general sequence of events and immune response components are 188 

generally preserved. 189 

 190 

In this paper we develop a framework for the multiscale multicellular 191 

spatiotemporal simulation of the complex processes of infection and immune response in 192 

a small patch of epithelial tissue. The model provides a representation of the complex 193 

biology that reproduces key observed emergent behaviors of infection dynamics. We 194 

create representations of the main types of components and biological mechanisms 195 

associated with acute, primary viral infection and immune response, with a special 196 

emphasis on modularity of mathematical forms and computational implementation to 197 

support the development of more detailed models in future work (e.g., the creation of 198 

additional cell types, signals and detailed cell responses of various aspects of the immune 199 

response). We illustrate such an activity of development by integrating a detailed viral 200 

replication model for hepatitis C virus as an extension to the framework (see Integration 201 

of an explicit RNA synthesis model allows the spatiotemporal modelling of hepatitis C 202 

virus infection).  203 

Our base model consists of three interconnected components (Fig 2A): an 204 

epithelium component, an extracellular environment component and a lymph node 205 
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component. The model represents the epithelium as a compact monolayer of initially 206 

identical immobile (which is appropriate for an epithelium) epithelial cells that it classifies 207 

by their current state of viral infection (i.e., uninfected, infected, virus releasing, dead, Fig 208 

2C). These epithelial cells are initially identical in their number of viral receptors (though 209 

we show how to include heterogeneity in Heterogeneous susceptibility inhibits spread of 210 

infection). The cells internalize extracellular virus, modulate their number of surface 211 

receptors, replicate virus, release virus and die in response to virus production, and 212 

release an extracellular cytokine signal when infected. Our model omits interferon-213 

induced antiviral resistance, which can be implemented as a model extension using 214 

mechanisms demonstrated in this work (e.g., secretion of cytokine, modulation of 215 

internalization parameters, see Developing a Model Extension in CompuCell3D). 216 

The model represents the extracellular environment as a space above the 217 

epithelium which provides the space in which immune cells are recruited and move, and 218 

into which cells release viruses and chemicals. We include a single type of immune cell 219 

that exhibits many key immune-cell behaviors associated with macrophage, neutrophil, 220 

NK cell and T-cell roles, including activation, chemotaxis, relaying and amplification of 221 

cytokine signals, contact killing, secretion of diffusible killing factors, and bystander killing, 222 

to represent the main types of immune-cell mediated cell killing, rather than any particular 223 

immune cell phenotype. We omit macrophages, neutrophils and their phagocytosis and 224 

signaling, which can be represented using simple extensions of the immune-cell type. We 225 

do not model contact interactions between immune cells (e.g., by T-cells and APCs). We 226 

also do not model tissue recovery, though we demonstrate examples of adding tissue 227 

recovery models in Model extensions. 228 
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 229 

 230 

Fig 2. Full model schematic.  231 

(A) Model objects, processes and interactions: Conceptual model of an epithelial tissue and lymph node. Schematic 232 

representation of the model objects, processes and interactions. Epithelial and immune cells refer to the two main 233 

classes of cells. Interactions occur within an extracellular environment, and a compartmental model of a lymph node 234 

controls immune-cell recruitment to the tissue. Together the epithelial-cell, extracellular-environment and immune-cell 235 

components represent the epithelial tissue. Each model object has associated processes that dictate its states and 236 

behaviors. Epithelial-cell processes include viral internalization (E1), viral replication (E2), viral release (E3) and cell 237 

death (E4). Immune cell processes include activation (I1), chemotaxis (I2), contact cytotoxicity (I3) and oxidative 238 

cytotoxicity (I4). Activated immune cells participate in oxidative cytotoxicity (I4) and secrete oxidative agents into the 239 
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oxidizing-agent field (T3). Activated cells become inactive after 1 hour. The virus field (T1), cytokine field (T2) and 240 

oxidizing-agent field (T3) describe spatially-varying densities of extracellular components. Field processes describe 241 

diffusive transport and clearance of material in the extracellular environment and activated transport to the lymph nodes. 242 

The lymph node is a single-compartment model whose pro- or anti-inflammatory state specifies the recruitment or 243 

removal rate (L1) of immune cells in the epithelial tissue. The transport of cytokines to the lymph node promotes its 244 

proinflammatory state. (B) Viral Life Cycle: Interactions in the viral internalisation, replication and release models. 245 

Schematic representation of inputs, outputs and interactions between stages of the viral replication model. Extracellular 246 

viral particles (represented as continuous fields) are internalized by the viral internalization model and initiate the viral 247 

replication model. The main stages of the viral replication model are: unpacking, viral genome replication, protein 248 

synthesis and viral assembly and packaging. The output of the viral replication model passes to the viral release model, 249 

which transfers newly assembled viral particles from the cells into the extracellular environment. (C) Cell types and 250 

transitions. Epithelial cells are of type uninfected if they have not yet internalized any virus (E1). They are of type 251 

infected if they have internalized virus, but are not releasing virus into the virus field (viral release E3 is inactive). They 252 

are of type virus releasing if they are releasing virus into the extracellular virus field (i.e., viral release E3 is activated). 253 

Immune cells are initially inactive and do not participate in the oxidative cytotoxicity (I4) or chemotax towards higher 254 

concentrations of the cytokine field (I2). They become activated when they experience activation (I1). In all panels, 255 

dashed arrows with barbed heads represent transformations, solid arrows with barbed heads represent transport and 256 

solid arrows with lollipop heads represent regulation. 257 

 258 

We simulate extracellular-virus particle density as a continuum field and particle 259 

transport and clearance as continuous diffusion and decay. We approximate the discrete 260 

process of a cell’s internalization of a virus particle by a stochastic virus internalization 261 

event (E1) determined by time elapsed, the local concentration of the virus field, and the 262 

number of available cell-surface receptors on the cell. We simplify the complexity of viral 263 

replication into four steps: unpacking, viral genome replication, protein synthesis and 264 

packaging/assembly (E2, Fig 2B) [7,52–54]. The subcellular kinetics of viral replication 265 

determine the rate of release of new virus particles into the extracellular environment (E3). 266 

To represent the combined effect of the many types of virus-induced cell death, each 267 
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infected epithelial cell has a probability of dying that depends on the number of assembled 268 

viral particles inside the cell per unit time (E4).  269 

We simplify the complex biochemistry of the many molecular signals active in 270 

epithelial tissues, which include chemokines, interferons and viral fragments, into a single 271 

generic extracellular cytokine field that acts both as a tissue-local and systemic pro-272 

inflammatory signal. Infected epithelial cells and immune cells both secrete cytokine (T2). 273 

The cytokine field produces local immune effects such as activation (I1) and chemotaxis 274 

(I2) of immune cells. Activated immune cells can revert back to inactive immune cells 275 

when the cytokine signal ceases. The cytokine field also recruits immune cells to the 276 

tissue through long-distance signaling via the lymphatic system (L1). We model 277 

recruitment of immune cells to the simulation domain using an ordinary differential 278 

equation for the immune signal (𝑺), which represents the balance between pro- and anti-279 

inflammatory signaling and the delay due to antigen-presenting cell transport from the 280 

tissue through the lymphatic system to the lymph node and due to the time required for 281 

T-cell amplification. In the absence of infection, the lymph node maintains a small resident 282 

immune cell population in the tissue. Immune cells can cause epithelial cell death (E4) by 283 

three mechanisms: 1) contact cytotoxicity; 2) the bystander effect; and 3) through the 284 

release of an oxidative agent. Immune cells kill infected epithelial cells by contact 285 

cytotoxicity, in which case neighboring uninfected, infected and virus-releasing epithelial 286 

cells can also die through a bystander effect (I3). In regions of the tissue with high cytokine 287 

levels, immune cells secrete a diffusive oxidative agent to the environment (T3) that kills 288 

uninfected, infected and virus-releasing epithelial cells (I4).  289 

 290 
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Results 291 

We begin by presenting our base multicellular model of viral infection in an 292 

epithelial tissue, along with a simulation for a baseline set of parameters and basic 293 

analyses. We then explore the simulation’s dependence on critical parameters that are 294 

important to the dynamics of acute primary viral infection in airway epithelial cells. All 295 

simulations and spatial, population and system-level metrics presented in this section 296 

follow the specifications in Simulation Specifications. We performed simulations using the 297 

open-source modeling environment CompuCell3D [55]. Downloading and running the 298 

simulation provides instructions on how to run these simulations. 299 

We initialize the simulations with periodic boundary conditions parallel to the plane 300 

of the sheet and Neumann boundary conditions perpendicular to the plane of the sheet. 301 

Initially, the extracellular environment does not contain any extracellular virus, cytokines, 302 

oxidative agents or immune cells. We introduce infection by creating a single infected 303 

epithelial cell at the center of the epithelial sheet, comparably to (but less than) initial 304 

conditions of similar works that model discrete cellular distributions [18,31] . To illustrate 305 

the full range of dynamics of viral infection in the presence of an immune response, we 306 

established a baseline set of parameters (Table 1) for which the immune response is 307 

strong enough to slow the spread of the infection, but insufficient to prevent widespread 308 

infection and death of all epithelial cells (Fig 3). While we have adjusted the parameters 309 

for the viral replication model to agree with reported time scales for SARS-CoV-2 310 

replication in vitro [56], and we have selected parameter values in physiologically 311 

reasonable ranges, we have not attempted to match other model parameters to a specific 312 

tissue, virus or host species. Furthermore, this baseline parameter set is not unique with 313 
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respect to its purpose, in that many sets of parameters can generate appreciable but 314 

insufficient inhibition of spread of infection (see Figs S17-S22). Rather, as is shown in 315 

subsequent sections, this parameter set presents emergent dynamics of a theoretical 316 

virus and host immune response near, but not in, a regime of successful prevention of 317 

widespread infection, which is critical to showing the effects of underlying mechanisms 318 

on emergent dynamics and resulting outcomes.  319 

 320 
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Fig 3. Simulation of the progression of infection in a patch of epithelial tissue of size 360 μm x 360 μm starting 322 

from a single infected cell for a representative simulation using the baseline parameters given in Table 1.  323 

(A) Snapshots of spatial configuration vs time, showing progression of a simulated infection. Columns, left to right: 0 324 

minutes (time of initial infection), 4000 minutes (67 hours, 2 ¾ days) after infection, 8000 minutes (133 hours, 5 ½ 325 

days), 12000 minutes (200 hours, 8 ⅓ days), 16000 minutes (267 hours, 11 days), and 20000 (333 hours, 14 days) 326 

minutes. First row: epithelial-cell layer composed of uninfected (blue), infected (green), virus-releasing (red) and dead 327 

epithelial cells (black). Second row: position of immune cells in the extracellular environment layer. Third row: 328 

concentration of extracellular virus field. Fourth row: concentration of extracellular cytokine field. Fifth row: concentration 329 

of extracellular oxidative agent field. Fields are shaded on a logarithmic scale: red corresponds to the chosen maximum 330 

value specified in the first panel and blue corresponds to six orders of magnitude lower than the maximum value; colors 331 

saturate for values outside this range. (B-D) Simulation time series. (B) Number of uninfected (orange), infected (green), 332 

virus-releasing (red) and dead (purple) epithelial cells vs time on a logarithmic scale (0 values are overlaid at a non-333 

logarithmic tick for clarity). (C) Total extracellular cytokine (magenta) and total extracellular virus (brown) vs time on a 334 

logarithmic scale. (D) Value of the immune recruitment signal 𝑆 (yellow) and number of immune cells (grey) vs time on 335 

a linear scale. Simulations use periodic boundary conditions in the plane of the epithelial sheet, and Neumann 336 

conditions [57] normal to the epithelial sheet.  337 

 338 

The infected cell immediately starts releasing cytokines into the extracellular 339 

environment. After an incubation period (~150 minutes, 2 ½ hours), the first infected 340 

epithelial cell (green) transitions from infected to virus releasing (red), and starts releasing 341 

viruses into the extracellular environment. Initial release of extracellular virus causes 342 

additional epithelial cells to become infected. Release of cytokines leads to delayed 343 

addition of immune cells to the simulation domain (Fig 3D). By 4000 minutes (67 hours, 344 

2 ¾ days), the number of infected cells increases 10-fold and the epithelial cells start 345 

undergoing virally-induced death as the infection spreads radially outward from the initial 346 

site. The increase in the number of infected cells and the local cytokine concentration is 347 

accompanied by a similar increase in the local immune cell population. By 8000 minutes 348 
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(133 hours, 5 ½ days), the number of dead epithelial cells around the initial infection site 349 

increases sharply. Following this phase of rapid cell death, the number of infected, virus-350 

releasing and dead epithelial cells continues to increase exponentially but at a slower 351 

rate. This transition results in the formation of an annular region of infected cells spreading 352 

radially outwards from the initial infection site (Fig 3A), analogous to the Fisher equation 353 

for deterministic front propagation [58]. Total extracellular virus and cytokine continue to 354 

increase exponentially. The increase in cytokine results in continued recruitment of 355 

additional immune cells. By 16000 minutes (267 hours, 11 days), the number of 356 

uninfected epithelial cells reaches zero and the number of infected and virus-releasing 357 

cells peaks. Despite the declining number of infected and virus-releasing epithelial cells, 358 

the delayed immune response continues to add immune cells to the tissue. After about 359 

16000 minutes (267 hours, 11 days), the extracellular virus and the amount of cytokine 360 

decrease exponentially as the remaining virus-releasing epithelial cells die. By 20000 361 

minutes (333 hours, 14 days), all epithelial cells die and many immune cells leave the 362 

tissue.  363 

 364 

Classification of spatiotemporal infection dynamics 365 

The rate at which infection propagates and the strength (speed and amplitude) of 366 

the immune response depend on multiple model parameters. Interplay between these 367 

rates leads to a wide spectrum of qualitatively-distinct spatiotemporal dynamics. The 368 

virus-receptor binding affinity 𝑘𝑜𝑛 and the immune response delay coefficient 𝛽𝑑𝑒𝑙𝑎𝑦 are 369 

critical parameters affecting the rate of infection of epithelial cells and the strength of the 370 
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immune response, respectively. Larger 𝑘𝑜𝑛 corresponds to a higher rate of infection 371 

propagation (increasing 𝑘𝑜𝑛 increases the rate of internalization of extracellular viral 372 

particles into epithelial cells, see Equation (3) in Models and methods). Larger 𝛽𝑑𝑒𝑙𝑎𝑦 373 

corresponds to weaker immune response (decreasing 𝛽𝑑𝑒𝑙𝑎𝑦 increases the strength of 374 

immune-cell recruitment, see Equations (12)-(14) in Models and methods).  375 

Varying these two parameters around the baseline simulation values yields six 376 

patterns of spatiotemporal infection dynamics, ranging from unopposed infection to 377 

clearance (Fig 4). We defined these classes based on the transient dynamics and the 378 

final state of the simulation at 20000 minutes (333 hours, 14 days). We terminated the 379 

simulations at 20000 minutes (333 hours, 14 days) because we assume that, in real 380 

tissues, additional adaptive immune responses at this time generally lead to rapid viral 381 

clearance. As a result, any epithelial cells uninfected at the end of the simulation would 382 

likely remain uninfected if we included these additional immune mechanisms. We define 383 

the six patterns (classes) of infection dynamics as follows: 384 

 385 

No immune response: a limiting case (corresponding to in vitro and organoid 386 

culture experiments on viral infection, which lack immune cells) that serves as a 387 

reference simulation showing the spread of unopposed infection. When the cellular 388 

immune response is absent, an infection front travels across the epithelium until 389 

all epithelial cells have died due to intracellular virus (Figs 4A and S1).  390 

Widespread infection: when the immune response is weak (large 𝛽𝑑𝑒𝑙𝑎𝑦) or the 391 

rate of infection propagation is large (large 𝑘𝑜𝑛), the immune cells kill enough 392 

infected epithelial cells to reduce both the concentration of extracellular virus and 393 
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the propagation of the infection front. However, at the end of the simulation no 394 

uninfected epithelial cells survive (Figs 3 and 4B). 395 

Slowed infection: for moderate immune response (moderate 𝛽𝑑𝑒𝑙𝑎𝑦) and a 396 

moderate rate of infection propagation (moderate 𝑘𝑜𝑛), both uninfected and 397 

infected epithelial cells and some extracellular virus remain at the end of the 398 

simulation (Fig 4C). These cases are functionally distinct from widespread 399 

infection, since even a single remaining uninfected epithelial cell could initiate 400 

tissue regeneration. In most cases of slowed infection, the numbers of infected 401 

cells and the extracellular virus continue to increase. A special case of slowed 402 

infection occurs when oscillations in the amount of virus (Fig S2A). 403 

Containment: for strong immune response (small 𝛽𝑑𝑒𝑙𝑎𝑦) and low to moderate rate 404 

of infection propagation (moderate 𝑘𝑜𝑛), a few infected and virus-releasing cells 405 

are present for most of the simulation. However, the immune cells eventually kill 406 

all infected and virus-releasing epithelial cells. At the end of the simulation, no 407 

infected or virus releasing cells remain, while uninfected cells survive and some 408 

extracellular virus remains in the extracellular environment (Fig 4D). 409 

Recurrence: for strong immune response (small 𝛽𝑑𝑒𝑙𝑎𝑦) and a fast infection 410 

propagation (large 𝑘𝑜𝑛), relatively few epithelial cells become infected early in the 411 

simulation. All infected and virus-releasing epithelial cells die. However, the 412 

remaining extracellular virus infects additional epithelial cells later on, restarting 413 

the spread of infection (Fig 4E). 414 

Clearance: for strong immune response (small 𝛽𝑑𝑒𝑙𝑎𝑦 ) and a slow infection 415 

propagation (small 𝑘𝑜𝑛), the number of infected and virus-releasing epithelial cells 416 
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goes to zero without recurrence and the extracellular virus drops below a threshold 417 

(of 1/900 per cell in our analysis), rendering the frequency of recurrence negligible 418 

(Fig 4F). A special case of clearance (Failure to infect) occurs when the initially 419 

infected epithelial cells fail to infect any other epithelial cells (Fig S2B).  420 

 421 

To quantitatively characterize simulation results, we measured the number of 422 

uninfected, infected, virus-releasing and dead epithelial cells, the total number of immune 423 

cells, the number of activated immune cells, the total amount of extracellular virus 424 

(integral over the virus field), the total diffusive cytokine (integral over cytokine field), the 425 

maximum total extracellular virus (over all simulation time) and the maximum total 426 

diffusive cytokine (over all simulation time). Fig 4 shows these quantitative metrics, 427 

together with a series of spatial configurations for all model components, corresponding 428 

to each pattern of infection dynamics. 429 

 430 
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 431 

Fig 4. Patterns (classes) of spatiotemporal infection dynamics.  432 

First row: snapshots of spatial configurations of the epithelial cells. Color coded: uninfected (blue), infected (green), 433 

virus releasing (red), dead (black). TImes from left to right 4000 minutes (67 hours, 2 ¾ days), 8000 minutes (133 434 

hours, 5 ½ days), 12000 minutes (200 hours, 8 ⅓ days), 16000 (267 hours, 11 days) and 20000 minutes (333 hours, 435 

14 days). The right border of each snapshot aligns with the corresponding time in the time series. Second row: number 436 

of uninfected (orange), infected (green), virus-releasing (red) and dead (purple) epithelial cells vs time on a logarithmic 437 

scale (with 0 included for clarity). Third row: total extracellular cytokine (magenta) and total extracellular virus (brown) 438 

vs time on a logarithmic scale. Fourth row: value of the immune recruitment signal 𝑆 (yellow) and number of immune 439 

cells (grey) vs time on a linear scale. (A) No immune response: infection propagates unopposed until all epithelial cells 440 

have died from intracellular virus. (B) Widespread infection: weak immune response slows propagation of the infection, 441 
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but no uninfected cells survive at the end of the simulation. (C) Slowed infection: uninfected and infected epithelial cells 442 

coexist at the end of the simulation. (D) Containment of infection: no infected or virus-releasing epithelial cells remain, 443 

uninfected cells survive and virus remains in the extracellular environment at the end of the simulation. (E) Recurrence: 444 

the number of infected and virus releasing epithelial cells goes to zero, but persistent extracellular virus infects new 445 

epithelial cells later on. (F) Clearance: the number of infected and virus-releasing epithelial cells goes to zero and the 446 

level of extracellular virus is negligible at the end of the simulation. The model in (A) omits the immune response 447 

(components L1, I1-I4). All parameter values are as in Table 1 and Fig 3 except for 𝑘𝑜𝑛 and 𝛽𝑑𝑒𝑙𝑎𝑦 (Table S1). 448 

 449 

In the absence of an immune response, spread of the infection follows the diffusion 450 

of extracellular virus, resulting in concentric rings of different types of epithelial cells (see 451 

Fig 4A top row for epithelial cell types, Fig S1B shows the extracellular virus field). The 452 

viral propagation front, where uninfected epithelial cells transition to infected epithelial 453 

cells, moves radially outwards from the initial site of infection. Due to the stochastic 454 

internalization events, the front’s outer contour is diffuse, with scattered infected epithelial 455 

cells ahead of the front, followed by a dense rim of infected and virus-releasing epithelial 456 

cells and a core of dead epithelial cells at the center. Similar waves, with a slower speed, 457 

are seen in the other cases where infection has occurred (Fig 4B and C top row). 458 

 459 

Stronger immune response and lower rates of virus internalization promote 460 

containment of infection  461 

To explore the effects of the rate of virus internalization and the strength of the 462 

immune response, we performed a multidimensional parameter sweep of the virus-463 

receptor association affinity 𝑘𝑜𝑛 and immune response delay coefficient 𝛽𝑑𝑒𝑙𝑎𝑦. Variations 464 

in virus receptor association affinity represent factors that affect the binding affinity of 465 

cellular viral receptors (e.g., ACE2 and TMPRSS-2 in the case of SARS-CoV-2) with a 466 

.CC-BY 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted September 26, 2020. . https://doi.org/10.1101/2020.04.27.064139doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.27.064139
http://creativecommons.org/licenses/by/4.0/


24 
 

virus (e.g., mutations in viral coat protein or drugs to block viral entry). Variations in 467 

immune response delay coefficient represent factors that affect the strength of the 468 

systemic immune response (e.g., anti-inflammatory corticosteroids, IL-7 treatment or age, 469 

since older individuals tend to have slower adaptive immune responses)[36].  470 

We ran ten simulation replicas for each parameter set, increasing and decreasing 471 

the baseline parameter values 10-fold and 100-fold (Figs 5-7). For each simulation 472 

replica, we examined the number of uninfected epithelial cells (Fig 5), the number of 473 

infected epithelial cells (Fig 6), the total extracellular virus (Fig 7), the number of dead 474 

epithelial cells (Fig S3), the number of virus-releasing cells (Fig S4) and the number of 475 

immune cells (Fig S5). We identified regions of the parameter space where all ten 476 

simulation replicas resulted in either containment/clearance (green-shaded subplots) or 477 

widespread infection (orange-shaded subplots). In the intermediate regions (unshaded 478 

subplots) different replicas for the same set of parameters exhibited other (and sometimes 479 

multiple) classes of dynamics.  480 

 481 
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 482 

Fig 5. Sensitivity analysis of the number of uninfected epithelial cells vs time for variations in virus-receptor 483 

association affinity 𝒌𝒐𝒏 and immune response delay coefficient 𝛽𝑑𝑒𝑙𝑎𝑦, showing regions with distinct infection 484 

dynamics.  485 

Logarithmic pairwise parameter sweep of the virus-receptor association affinity 𝑘𝑜𝑛 and the immune response delay 486 

𝛽𝑑𝑒𝑙𝑎𝑦 (× 0.01,×  0.1,×  1,×  10,×  100) around their baseline values, with ten simulation replicas per parameter set (all 487 

other parameters have their baseline values as given in Table 1). The number of uninfected epithelial cells for each 488 

simulation replica for each parameter set, plotted on a logarithmic scale, vs time displayed in minutes. See Fig 4 for 489 

the definitions of the classes of infection dynamics. 490 

 491 

For large 𝑘𝑜𝑛 and large 𝛽𝑑𝑒𝑙𝑎𝑦 (Figs 5-7, orange-shaded regions), all simulation 492 

replicas result in widespread infection and variability between simulation replicas is small. 493 

In this region, the initial release of virus into the extracellular environment results in a 494 

rapid increase in the number of infected and virus releasing epithelial cells early during 495 

the simulation, between 0 and 2000 minutes (0 to 33 hours, 0 to 1 ½ days) (Figs 6 and 496 

S4). Between 5000 and 20000 minutes (83 to 333 hours, 3 ½ to 14 days), the number of 497 
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uninfected epithelial cells rapidly decays to zero. As in all simulation replicas with a large 498 

𝛽𝑑𝑒𝑙𝑎𝑦, the immune recruitment signal (Fig S6) is less responsive to the cytokine signal 499 

produced by infected and virus-releasing epithelial cells and no significant recruitment of 500 

immune cells occurs throughout the simulations (Fig S5). The number of virus-releasing 501 

epithelial cells peaks around 7500 minutes (125 hours, 5 days), the level of extracellular 502 

virus peaks around 9000 minutes (150 hours, 6 ¼ days) and the number of dead epithelial 503 

cells peaks around 10000 minutes (167 hours, 7 days, Fig S3). With no remaining 504 

uninfected epithelial cells to infect, all remaining infected epithelial cells become virus-505 

releasing epithelial cells, which then die, causing the total amount of extracellular virus to 506 

decrease.  507 

 508 

 509 

Fig 6. Sensitivity analysis of the number of infected epithelial cells vs time for variations in virus-receptor 510 

association affinity 𝒌𝒐𝒏 and immune response delay coefficient 𝛽𝑑𝑒𝑙𝑎𝑦, showing regions with distinct infection 511 

dynamics.  512 
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Same parameter sweep as Fig 5. The number of infected epithelial cells for each simulation replica for each parameter 513 

set, plotted on a logarithmic scale, vs time displayed in minutes. See Fig 4 for the definitions of the classes of infection 514 

dynamics. 515 

 516 

For small 𝑘𝑜𝑛 and small 𝛽𝑑𝑒𝑙𝑎𝑦 (Figs 5-7, green-shaded subplots), all simulation 517 

replicas result in either clearance or containment and variability between simulation 518 

replicas is small. Initial release of virus to the extracellular environment results in a small 519 

change in the number of uninfected and infected epithelial cells. As in all simulation 520 

replicas with a small 𝛽𝑑𝑒𝑙𝑎𝑦, the immune recruitment signal (Fig S6) is very sensitive to 521 

the cytokine produced by virus-releasing epithelial cells, resulting in rapid recruitment of 522 

immune cells and an early first peak in the population of immune cells around 2000 523 

minutes (33 hours, 1 ⅓ days, Fig S5). In these simulations, the increase in the number of 524 

immune cells is followed by a rapid increase in the number of dead epithelial cells (Fig 525 

S3). The number of immune cells and the number of dead epithelial cells peak around 526 

the same time (2000 minutes, 33 hours, 1 ⅓ days), after which the number of immune 527 

cells decreases. With no remaining virus-releasing epithelial cells, the total extracellular 528 

virus decays until the infection is cleared. Increasing 𝛽𝑑𝑒𝑙𝑎𝑦 primarily increases the time 529 

when all infected epithelial cells have died.  530 

 531 
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 532 

Fig 7. Sensitivity analysis of the total amount of extracellular virus vs time for variations in virus-receptor 533 

association affinity 𝒌𝒐𝒏 and immune response delay coefficient 𝛽𝑑𝑒𝑙𝑎𝑦, showing regions with distinct infection 534 

dynamics.  535 

Same parameter sweep as Fig 5. The total amount of extracellular virus for each simulation replica for each parameter 536 

set, plotted on a logarithmic scale, vs time displayed in minutes. See Fig 4 for the definitions of the classes of infection 537 

dynamics. 538 

 539 

For moderate to high 𝑘𝑜𝑛 and moderate to low 𝛽𝑑𝑒𝑙𝑎𝑦 (right unshaded subplots in 540 

Figs 5-7), the rate of new infection nearly balances the rate of elimination of infected and 541 

virus-releasing epithelial cells, resulting in replicas showing clearance, contaminant, 542 

recurrence and slowed infection for the same parameter values, with very few cases of 543 

widespread infection. The initial release of virus into the extracellular environment by the 544 

first virus-releasing epithelial cell infects a moderate number of uninfected epithelial cells. 545 

The resulting cytokine secretion elicits a moderate to high response of the immune 546 

recruitment signal (Fig S6) and number of immune cells (Fig S5). The early recruitment 547 
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of immune cells leads to many epithelial cells dying before 4000 minutes (66 hours, 2 ⅔ 548 

days) (Fig S3). For a high probability of virus internalization (high 𝑘𝑜𝑛), even low amounts 549 

of extracellular virus are sufficient to cause recurrence. For moderate to low 𝑘𝑜𝑛 and 550 

moderate to high 𝛽𝑑𝑒𝑙𝑎𝑦 (upper left unshaded subplots in Figs 5-7), rate of new infection 551 

of epithelial cells is slightly faster than the immune system’s response, resulting in a 552 

combination of widespread infection, slowed infection and containment, and a few cases 553 

of clearance. The immune system is only moderately responsive to the cytokine signal, 554 

resulting in a slow to moderate increase in the immune recruitment signal (Fig S6) and in 555 

the number of immune cells (Fig S5). Cases of clearance and containment occur for a 556 

smaller final number of dead epithelial cells (Fig S3) compared to previously discussed 557 

cases. 558 

 559 

Even moderate inhibition of genomic replication by antiviral therapies significantly 560 

reduces the spread of infection, but only when initiated soon after infection 561 

Optimal therapeutic use of antiviral drugs requires considering the relationship 562 

between molecular efficacy (how effectively the drug blocks a particular aspect of the viral 563 

life cycle at saturation concentration), potency of therapy (the effect of the drug at a 564 

molecular level at a given dose) and clinical effectiveness (how well the drug reduces the 565 

severity or duration of the infection), as well as the tradeoff between side effects and 566 

bioavailability. One drug might have moderate efficacy but have few side effects. Another 567 

drug might have high efficacy, but have severe side effects at high doses that limit the 568 

maximum tolerated dose or use of even moderate doses in prophylaxis. A drug might 569 

also have a combination of beneficial and adverse effects (e.g., it might reduce viral 570 
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replication early in infection, but also be immunosuppressive) [13,37]. Antiviral drugs like 571 

Tamiflu retain their ability to block aspects of the viral life cycle (efficacy), but become 572 

much less clinically effective as the time before treatment increases: (in adults Tamiflu is 573 

most effective when given within 48 hours after exposure and thus is often used 574 

prophylactically) [38].  575 

In this section we use our model to show the trade-offs between time-of-use and 576 

potency of a drug that targets viral genome replication in a host cell. Several antiviral 577 

medications for RNA viruses reduce the net viral replication rate by inhibiting synthesis of 578 

viral RNA by the viral RNA polymerase. We focus on RNA-synthesis blockers in this paper 579 

because viral genome synthesis exponentially increases the production rate of viruses 580 

per cell, while the other stages of viral replication have linear amplification effects (see 581 

Equations (6)-(9) in Models and methods).  582 

To simulate the effects of treatment that targets RNA synthesis using different drug 583 

efficacies and times of administration, we generated a series of simulations in which we 584 

reduced 𝑟𝑚𝑎𝑥, the replication rate of genomic material in the viral replication model 585 

(Equation (7) in Models and methods), by different amounts and at different times in the 586 

simulation. The “viral replication multiplier” represents the potency of the treatment, the 587 

factor by which 𝑟𝑚𝑎𝑥 is reduced (either a low dose with high efficacy, or a high dose with 588 

a less efficacy). The “time delay of application” is the simulation time at which 𝑟𝑚𝑎𝑥 is 589 

reduced, which corresponds to the time after infection at which the treatment is 590 

administered. To characterize therapeutic effectiveness, we distinguished three classes 591 

of simulation outcomes: 592 

 593 
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Positive outcomes: effective treatment, where at least 50% of the epithelial cells 594 

remain uninfected at the end of the simulation (green-shaded subplots). 595 

Negative outcomes: ineffective treatment, where less than 10% of the epithelial 596 

cells remain uninfected at the end of the simulation (orange-shaded subplots). 597 

Intermediate outcomes: partially effective treatment, where between 10-50% of 598 

the epithelial cells remain uninfected at the end of the simulation (unshaded or 599 

intermediate-shaded subplots). 600 

 601 

To characterize how the potency and time of initiation of treatment affect the 602 

dynamics of the simulation and treatment effectiveness, we examined the time courses 603 

of the number of uninfected epithelial cells (Fig 8), virus-releasing epithelial cells (Fig 9), 604 

the total amount of extracellular virus (Fig 10), the number of dead epithelial cells (Fig S7) 605 

and the number of immune cells (Fig S9). Intensity of green indicates the percent of 606 

simulation replicas that produced positive outcomes for a given set of parameters. 607 

Intensity of orange indicates the percent of simulation replicas that produced negative 608 

outcomes.  609 

 610 
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 611 

Fig 8. Number of uninfected cells vs time in simulations of a hypothetical drug treatment reducing the viral 612 

genome (e.g. RNA for SARS-CoV-2) replication rate (𝑟𝑚𝑎𝑥) as a function of treatment potency and time of 613 

initiation of treatment.  614 

Drug therapy is administered at a fixed time after infection and remains activated for the duration of the simulation. (A) 615 

Sample treatment, showing the time course of 𝑟𝑚𝑎𝑥. 𝑟𝑚𝑎𝑥 is reduced by a multiplier which is one minus the potency of 616 

the drug at the given dose, 75% in (A), at a particular time of initiation of treatment (time delay of application), 12000 617 

minutes (200 hours, 8 ⅓ days) in (A). (B) A parameter sweep of the potency of treatment (reduction in baseline viral 618 

replication rate 𝑟𝑚𝑎𝑥, vertical) and the time of treatment (dashed lines, horizontal) shows parameter regions where the 619 

majority of simulation replicas produce positive outcomes (green-shaded subplots), negative outcomes (orange-shaded 620 

subplots) and intermediate cases (intermediate shading or unshaded). Intensity of green and orange indicates the 621 

number of positive and negative outcome replicas for each parameter combination (treatment effectiveness). Green 622 

regions show that early intervention leads to positive outcomes (is effective) for most ranges of treatment potency, with 623 
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high numbers of uninfected epithelial cells at the end of the simulation for almost all simulation replicas. Orange regions 624 

show that late interventions result in mostly negative outcomes (ineffective treatment) regardless of the potency, and 625 

that outcomes are more variable between replicas, with both positive and negative outcomes for most parameter sets. 626 

The number of uninfected epithelial cells for each simulation replica for each parameter set, plotted on a logarithmic 627 

scale, vs time displayed in minutes. 628 

 629 

When the treatment is given early, while the level of extracellular virus is increasing 630 

rapidly and exponentially (before 6000 minutes, 100 hours, 4 days) after infection, most 631 

of the simulation replica outcomes are positive, showing effective treatment (Figs 9-11, 632 

green-shaded subplots). If the drug is administered prophylactically or very soon after 633 

infection (at 0 minutes) the treatment potency needs to be only 25% to achieve mostly 634 

positive outcomes (effective treatment). Increasing the time to treatment increases the 635 

potency required to achieve similar numbers of positive outcomes: the treatment is 636 

effective for a potency of at least 37.5% if administered by 4000 minutes (67 hours, 2 ¾ 637 

days), and at least 87.5% if administered by 6000 minutes (100 hours, 4 days). For all 638 

potencies greater than 12.5%, early intervention prevents significant increase in the 639 

number of virus-releasing cells (Fig 9, green-shaded subplots), and a small number of 640 

immune cells suffices to stop the spread of infection (Fig S9, green-shaded subplots). In 641 

this region, delaying treatment results both in a higher level of extracellular virus (Fig 10, 642 

green-shaded subplots) and more dead epithelial cells at the end of simulation (Fig 8, 643 

green-shaded subplots). With inhibited viral replication in the infected epithelial cells, the 644 

extracellular virus decays until it is mostly cleared by the end of simulation (Fig 10). 645 

Variability between simulation replicas for a given parameter set increases with both 646 

decreasing potency and increasing time of initiation of treatment.  647 

 648 
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 649 

Fig 9. Number of virus releasing cells vs time in simulations of a hypothetical drug treatment reducing the viral 650 

genome (e.g. RNA for SARS-CoV-2) replication rate (𝑟𝑚𝑎𝑥) as a function of treatment potency (one minus the 651 

viral replication rate multiplier) and time of initiation of treatment.  652 

The number of virus-releasing epithelial cells stays low when the intervention occurs early during infection (when the 653 

amount of extracellular virus is increasing rapidly), but continues to increase when the intervention occurs later (when 654 

the level of extracellular virus is at or near its maximum in the untreated case). Parameter values, axis types and time-655 

scale and shading as in Fig 8. 656 

 657 

If the potency of the treatment is 12.5% (or less), most of the simulation replicas 658 

have negative outcomes (low effectiveness), even if the drug is administered 659 

prophylactically or soon after infection (at 0 minutes) (Figs 9-11, bottom row). In these 660 

cases, the time after infection at which the drug is given makes no significant difference 661 

to the treatment effectiveness. When the treatment is given late (time delay of application 662 

of at least 10000 minutes, 167 hours, 7 days), regardless of the potency of the drug, most 663 

simulation replicas have negative outcomes (Figs 9-11, orange-shaded regions). By the 664 
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time of treatment, a significant number of epithelial cells have been infected (more than 665 

10% in most cases ‒ Fig 9, orange-shaded regions) and a significant amount of virus has 666 

been released into the extracellular environment (Fig 10, orange-shaded regions). In 667 

addition, a significant number of epithelial cells have died (more than 10% in most cases 668 

‒ Fig S7, orange-shaded regions) and significant recruitment of immune cells has 669 

occurred (Fig S9, orange-shaded regions). For higher treatment potency, the level of virus 670 

in the extracellular environment starts decreasing immediately after treatment, even when 671 

a significant number of virus-releasing epithelial cells remain, indicating that viral 672 

replication inside cells has been significantly reduced. Later intervention also increases 673 

variability between simulation replicas and, although most simulation replicas have 674 

negative outcomes, the same set of parameter values produced two distinct qualitative 675 

outcomes (some more and some less favorable) for higher potency (Fig S11, orange-676 

shaded regions). Thus in a few cases, even late treatment can be effective. 677 

 678 
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 679 

Fig 10. Levels of extracellular virus vs time in simulations of a hypothetical drug treatment reducing the viral 680 

genome (e.g. RNA for SARS-CoV-2) replication rate (𝑟𝑚𝑎𝑥) as a function of drug potency (one minus the viral 681 

replication rate multiplier) and time of initiation of treatment.  682 

Extracellular virus is cleared or near-cleared when intervention occurs soon after infection. Parameter values, axis 683 

types and time-scale and shading as in Fig 8. 684 

 685 

When the treatment is given at intermediate times (times between 6000 and 10000 686 

minutes, 100 to 167 hours, 4 to 7 days), most simulation replicas have intermediate 687 

outcomes. For potencies above 50%, the fraction of uninfected epithelial cells at the end 688 

of simulation is relatively high (around 50%) and the treatment is usually moderately 689 

effective (Fig 8). For potencies below 50%, the number of virus-releasing epithelial cells 690 

remains approximately constant or continues to increase after treatment (Fig 9) and 691 

significant levels of extracellular virus remain at the end of the simulation, and so in most 692 
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cases the treatment is ineffective (Fig 10). In this regime, variability between outcomes 693 

for the same parameter values is higher than for potencies above 50%. 694 

 695 

 696 
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Fig 11. Difference in treatment effectiveness for different simulation replicas for perfect treatment potency (0 697 

viral replication rate multiplier) near the time when the extracellular virus amount would reach its maximum in 698 

the untreated case (10000 minutes, 167 hours, 7 days).  699 

(A) Select simulation replicas for this parameter set showing the variety of possible outcomes (treatment effectiveness). 700 

Spatial results show the epithelial and immune cell layers, and the extracellular virus field, at 4000, 8000, 12000, 16000, 701 

and 20000 minutes (67, 133, 200, 267 and 333 hours, 2 ¾, 5 ½, 8 ⅓, 11 and 14 days). Cell type colors are the same 702 

as in Fig 3A. Virus field values are scaled as in Fig 3A. (B) Time series for all simulation replicas for the selected 703 

parameter set: Right column, from top to bottom, number of uninfected epithelial cells, number of infected epithelial 704 

cells, number of virus-releasing epithelial cells, number of dead cells. Left column, from top to bottom: total amount of 705 

extracellular virus, total amount of cytokine, number of immune cells and immune response state variable. All variables 706 

except the immune signal plotted on a logarithmic scale vs time. 707 

 708 

A particular parameter set (time delay of application of 10000 minutes, 100% 709 

potency) produced simulation replicas that had instances of all three outcomes (Fig 11). 710 

In a simulation replica with a positive outcome (Run 2, Fig 11A), the first uninfected 711 

epithelial cell dies (as well as a few uninfected epithelial cells) before 4000 minutes (67 712 

hours, 2 ¾ days), after which the total extracellular virus gradually decreases. At around 713 

4000 minutes (67 hours, 2 ¾ days), an epithelial cell near the initially-infected cell 714 

becomes infected, causing a recurrence of infection, whose spread was stopped by the 715 

treatment. In contrast, simulation replicas with intermediate and negative outcomes (Runs 716 

8 and 4, respectively, Fig 11A) have comparable, and significantly more, numbers of 717 

infected and virus-releasing epithelial cells at 4000 minutes (67 hours, 2 ¾ days), while 718 

total extracellular virus is greater in the replicas with a negative outcome than in the 719 

replicas with an intermediate outcome. For the positive outcome replica, after 10000 720 

minutes (167 hours, 7 days), the remaining extracellular virus infects just a few individual 721 

epithelial cells throughout the tissue. For the intermediate outcome replica, after 10000 722 
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minutes (167 hours, 7 days) the number of infected epithelial cells continues to increase 723 

until around 12000 minutes (200 hours, 8 ⅓ days) and then declines, while the number 724 

of uninfected epithelial cells slightly decreases at the end of the simulation. For the 725 

negative outcome replica, after 10000 minutes (167 hours, 7 days) the already depleted 726 

number of uninfected epithelial cells continues to rapidly decrease to near zero.  727 

 728 

Model extensions 729 

In this section we demonstrate the deployment of extensions to the framework 730 

described in Models and methods, which we will refer to as the “main framework” when 731 

discussing extensions in this and subsequent sections, as well as particularization of the 732 

framework to specific biological problems like a different virus. We accomplish this 733 

through integration of an existing model in the literature of hepatitis C virus (HCV), and 734 

elementary examples of adding models of heterogeneous epithelia and tissue recovery, 735 

one model of which is constructed from another. We include schematic representations 736 

where appropriate of the software implementation according to the architecture we have 737 

developed (and will continue to develop) to support broad scientific use through rapid, 738 

parallel model development, flexible model integration, and model sharing through our 739 

publicly available online repository (see Collaborative viral infection modeling 740 

environment for an overview of basic deployment, implementation, and public distribution 741 

of extensions). 742 

 743 

Heterogeneous susceptibility inhibits spread of infection. To demonstrate basic 744 

extensibility of the framework to model additional complexity associated with viral 745 
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infection, we introduced a basic notion of heterogeneity to the epithelium of simulated 746 

scenario with the premise that not all epithelial cells can be infected (i.e., some cells are 747 

unsusceptible, as in an actual heterogeneous respiratory epithelium) [22]. We 748 

implemented heterogeneous susceptibility by randomly selecting a fraction of the 749 

epithelial cell population at the beginning of simulation and setting the number of surface 750 

receptors of each to zero (i.e., these cells have no surface receptors for internalization of 751 

the virus). Otherwise, all mechanisms and model parameter values used in simulations 752 

of heterogeneous susceptibility were the same as those used to generate results shown 753 

in Fig 3 (i.e., all mechanisms described in Models and methods using the baseline 754 

parameter set). Implementation of randomly selected heterogeneous susceptibility is 755 

available in the add-on modules library and is hosted on our repository for public use with 756 

the module name “RandomSusceptibility”. For each set of replicas we simulated ten 757 

replicas using the RandomSusceptibility module while varying the fraction of 758 

unsusceptible cells (like different locations in the lungs), from 10% to 50% unsusceptible 759 

in intervals of 10% (Fig 12). 760 

 761 
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 762 

Fig 12. Randomly distributed unsusceptible cells inhibit but do not stop spread of infection throughout the 763 

tissue.  764 

(A) Distributions of epithelial cells during simulation time (columns) for varying fraction of unsusceptible cells (rows). 765 

From top to bottom, replicas were simulated with 10%, 20%, 30%, 40% and 50% of epithelial cells unsusceptible to 766 

viral internalization. Cell type colors are the same as in Fig 3A. (B) Number of uninfected cells during simulation time 767 

for ten replicas of each fraction of epithelial cells unsusceptible.  768 
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 769 

For all fractions of unsusceptible cells, infection spread throughout the epithelial 770 

sheet (Fig 12A). No replica produced the exact definition of widespread infection, since 771 

all replicas had at least some remaining uninfected cells at the end of simulation. 772 

However, only eight out of fifty total replicas had a few epithelial cells that were not either 773 

uninfected or dead at the end of simulation (for infected cells, 1 replica for 10% 774 

unsusceptible, and for virus-releasing 1 replica for 10% and 20% unsusceptible, and 2 775 

replicas for 30%, 40% and 50% unsusceptible). The distributions of infected and virus-776 

releasing cells were notably different from all previous simulations with appreciable 777 

infection in that both subpopulations were noticeably intermixed with uninfected 778 

(presumably unsusceptible) cells and increasingly so with increasing fraction of 779 

unsusceptible cells. Most of these intermixed, uninfected cells (particularly those nearer 780 

to the initial site of infection) also died due to immune response mechanisms (i.e., 781 

bystander effect and oxidative killing).  782 

The final number of uninfected cells at the end of simulation increased with an 783 

increasing fraction of unsusceptible cells (Fig 12B). The rate of spread of infection 784 

decreased with an increasing fraction of unsusceptible cells (as observed by inspection 785 

in a rightward shift in the total number of uninfected cells). One replica for 20% 786 

unsusceptible cells exhibited significantly delayed spread of infection, though this was not 787 

observed in other replicas for any other fraction of unsusceptible cells.  788 

 789 

Integration of an explicit RNA synthesis model allows the spatiotemporal modelling 790 

of hepatitis C virus infection. The viral replication model described in Models and 791 
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methods describes the viral life cycle, from internalization to release, as occurring over 792 

four stages and in unitless quantities. As such, it is possible to integrate detailed models 793 

of various stages of the viral life cycle into the main framework through appropriate 794 

substitution of viral replication model terms and assignment of unit quantities as 795 

necessary (i.e., one unit in the original viral replication model corresponds to a physical 796 

unit in an integrated model that explicitly describes a lifecycle process). Integration of a 797 

detailed model of some viral process then particularizes the virus represented in the main 798 

framework to the level of biological information introduced by the integrated model.  799 

As a demonstration of model integration, we particularized viral replication of the 800 

framework to hepatitis C virus (HCV) using an existing model of subgenomic HCV RNA 801 

synthesis in Huh-7 cells [59]. The model of HCV RNA synthesis describes various aspects 802 

of subgenomic HCV replication like translation of HCV polyprotein in the cytoplasm, 803 

replication kinetics in vesicular-membrane structures and availability of host ribosomes, 804 

and explicitly models quantities of HCV RNA molecules, translation complexes, HCV 805 

polyprotein molecules, and necessary enzymes in both the cytoplasm and vesicular-806 

membrane structures.  807 

Integration of the HCV replication model casts the viral genome taking part in 808 

genome replication 𝑅 of the viral replication module described in Models and methods as 809 

the cytoplasmic plus-strand HCV RNA molecules of the HCV replication model (denoted 810 

𝑅𝑃
𝑐𝑦𝑡

, see Integration of an explicit RNA synthesis model). We assumed that internalized 811 

virus from the viral internalization module converts into cytoplasmic RNA, and that some 812 

of the decay of cytoplasmic RNA molecules described in the HCV model leads to the 813 

production of quantities produced by replicating viral genome from the viral replication 814 
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module. To relate the unitless viral replication model described in E2 - Viral Replication 815 

to the biological quantities of the HCV replication model, we assumed that one unit of 816 

replicating viral genome corresponds to 100 HCV RNA molecules, which was found to 817 

produce total infection dynamics comparably to the main framework (for comparison with 818 

results of this work, rather than for reproduction in silico of any specific HCV data) when 819 

using both the baseline parameter set demonstrated in Fig 3 and all model parameters 820 

reported in [59] when the virus-receptor association affinity coefficient 𝑘𝑜𝑛 was increased 821 

by a factor of 100 (Table S2). The integrated HCV model is implemented in the add-on 822 

modules library using the aforementioned software architecture and is hosted on our 823 

repository for public use with the module name “HCVIntegrated” (Fig 13A).  824 

 825 
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 826 

Fig 13. Basic integration of an explicit model of hepatitis C virus subgenomic replication in a spatial context 827 

presents stochastic outcomes in ten simulation replicas.  828 

(A) Schematic of implementing the integrated HCV model using the available modules described in Models and 829 

methods (“Main modules”) and add-on modules libraries hosted in the framework public repository. All main modules 830 
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are imported except Viral Replication, which is replaced with Integrated HCV. Modules used in a simulation are 831 

specified in model specification. The integrated HCV model module is available in the add-on modules library. (B) 832 

Distributions of epithelial cells during simulation time for select replicas (labeled “a”, “b” and “c”) using the integrated 833 

HCV model. Cell type colors are the same as in Fig 3A. (C) Number of uninfected cells (left) and total extracellular virus 834 

(right) during simulation time for ten replicas using the integrated HCV model. Select results shown in (B) are annotated 835 

according to replica labels “a”, “b” and “c”.  836 

 837 

Ten simulations were executed using the integrated HCV model for a simulation 838 

time of two weeks using initial conditions similar to some used in [59], where the initially 839 

infected cell was seeded with 500 cytoplasmic viral RNA molecules (i.e., initial 𝑅 = 5, 840 

rather than initial 𝑈 = 1 as in all other simulations). Spread of infection with the integrated 841 

HCV model produced comparable patterns of spread of infection, where an infection front 842 

radially advanced outward from the initial site of infection (Fig 13B). However, one notable 843 

difference was that the prominent band of virus-releasing cells during spread of infection 844 

only occurred in some simulation replicas (Fig 13B, replica “a”), while in other replicas 845 

only small, isolated groups of cells became virus releasing (Fig 13B, replicas “b” and “c”). 846 

Variability of outcomes was particularly notable among the ten simulation replicas. Some 847 

simulation replicas produced widespread infection at a comparable timescale to that of 848 

the baseline parameter set, between one and two weeks (Fig 13C). Such simulation 849 

replicas were those that produced comparable spatial distributions of infected and virus-850 

releasing cells (specifically, with a prominent band of virus-releasing cells) to those of the 851 

main framework using the baseline parameter set. In other simulation replicas (e.g., Fig 852 

13B, replica “c”), slowed infection occurred due to early elimination of many virus-853 

releasing cells. In such cases, the epithelial sheet had very few virus-releasing cells and 854 

scattered infected cells around the region of dead cells.  855 

.CC-BY 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted September 26, 2020. . https://doi.org/10.1101/2020.04.27.064139doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?E9l1er
https://doi.org/10.1101/2020.04.27.064139
http://creativecommons.org/licenses/by/4.0/


47 
 

Many infected cells remained infected over a period of over a week, which was not 856 

observed using the viral replication model of the main framework. Such infected cells did 857 

not contribute to spread of infection, but rather diminished the likelihood of widespread 858 

infection by increasing the distance between uninfected and virus-releasing cells. By the 859 

end of simulation in replicas that produced slowed infection, total extracellular virus was 860 

negligible despite a significant number of infected cells, which presents an outcome not 861 

described in Classification of spatiotemporal infection dynamics that could be called 862 

“benign infection”.  863 

 864 

An extensible framework architecture enables the inclusion of tissue recovery. As 865 

a demonstration of modularity and extensibility, we developed, implemented and tested 866 

two models of tissue recovery, where dead cells are replaced over time with uninfected 867 

cells. Since epithelial cells in the simulated epithelial sheet are static, removal of dead 868 

cells and proliferation of uninfected cells was modeled as the changing of the type of a 869 

dead cell to uninfected (rather than explicitly modeling mitosis, [18]). To generate a 870 

scenario of viral clearance and significant tissue damage, we simulated the baseline 871 

parameter set with the parameter variations in the top-right corner of Figs 5-7, where viral 872 

internalization is severely inhibited and the immune response is very strong and fast (i.e., 873 

parameters 𝑘𝑜𝑛 and 𝛽𝑑𝑒𝑙𝑎𝑦 were reduced by a factor of 100 so that the virus is cleared but 874 

many uninfected cells die).  875 

In the first model of tissue recovery, called “Simple Recovery”, dead cells are 876 

replaced by an assumed layer of proliferative cells underneath the simulated epithelial 877 

patch, and so each dead cell has a fixed probability of recovering. We approximated the 878 
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probability of recovery based on an assumed onset of tissue recovery of 7 days, in which 879 

case the probability of recovery for each dead cell over a 20-minute simulation step was 880 

1.98⨉10-3. In the second model of tissue recovery, called “Neighbor Recovery”, dead 881 

cells are replaced by nearby uninfected cells similarly to wound healing, and so each 882 

dead cell has a probability of recovery equal to the number of neighboring uninfected cells 883 

multiplied by a coefficient. For comparison of results to those from the Simple Recovery 884 

add-on module, we used the same probability coefficient value such that the probability 885 

of recovery according to Simple Recovery for each dead cell over a 20-minute simulation 886 

step was 1.98⨉10-3 per unit of contact area with neighboring uninfected cell (measured 887 

in number of neighboring lattice sites).  888 

Both models were implemented in CompuCell3D in the add-on modules library 889 

using the aforementioned software architecture and is hosted on our repository for public 890 

use. The Simple Recovery model is hosted with the module name “RecoverySimple”, and 891 

the Neighbor Recovery model is hosted with the module name “RecoveryNeighbor”. 892 

Since the only difference between the two recovery models is the criterion for cell recovery 893 

(i.e., whether a fixed probability, or a probability according to the neighborhood of a cell), 894 

the implementation of the Neighbor Recovery model inherits all features of the Simple 895 

Recovery model implementation using basic Python class inheritance, and required 896 

overwriting only one function that implements a criterion of cell recovery during 897 

development (Fig 14A, see Extending a model in CompuCell3D).  898 

 899 
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 900 

Fig 14. Even simple model extensions and extensions of extensions can produce notably different 901 

spatiotemporal emergent features.  902 

(A) Schematic of implementing a modified epithelial cell model using the available modules described in Models and 903 

methods (“Main modules”) and add-on modules libraries hosted in the framework public repository. Modules used in a 904 
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simulation are specified in model specification. The Simple Recovery and Neighbor Recovery model modules are 905 

available in the add-on modules library. (B) Distribution of epithelial cells during simulation time using the Simple 906 

Recovery (top) and Neighbor Recovery (bottom) models. Cell type colors are the same as in Fig 3A. (C) Number of 907 

uninfected cells during simulation time for ten simulation replicas using the Simple Recovery (left) and Neighbor 908 

Recovery (right) models.  909 

 910 

All simulation replicas for each recovery model began with tissue insult due to 911 

oxidative killing by a strong and fast immune response through the first few days (Fig 912 

14B). All simulation replicas experienced a loss of approximately 100-200 uninfected cells 913 

(Fig 14C). An increasing number of uninfected cells clearly demonstrated immediate 914 

effects of modeling recovery after oxidative killing subsided (a trend not seen in previous 915 

results), where the Simple Recovery model almost completely replenished all killed 916 

uninfected cells by the end of simulation, and the Neighbor Recovery model replenished 917 

all killed uninfected cells between 8,000 and 13,000 minutes. Neighbor-dependence of 918 

the Neighbor Recovery model generated a significantly different distribution of dead cells 919 

after oxidative killing, where dead cells were scattered throughout the original region 920 

where cells died when using the Simple Recovery model while the region where cells died 921 

shrank over time when using the Neighbor Recovery model.  922 

 923 

Discussion 924 

Our spatial, multicellular model of primary acute viral infection of an epithelial 925 

tissue includes key aspects of viral infection, viral replication and immune response. By 926 

investigating sensitivity to model parameters and simulating drug therapies, we identified 927 

six distinct spatiotemporal classes of infection dynamics based on the model’s transient 928 
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behaviors and final configurations. Each of our simulation-defined classes corresponds 929 

to biologically or clinically observable factors and outcomes. The case of no immune 930 

response would be useful for analyzing in vitro experiments (e.g., organoids). Widespread 931 

infection corresponds to an initial infection that is likely to spread to surrounding tissue 932 

and cause major tissue damage. Slowed infection corresponds to an initial infection 933 

whose spread is more likely to be eliminated by the adaptive immune response. 934 

Containment corresponds to immune-cell elimination of all infected cells but where 935 

remaining extracellular virus could result in new sites of infection elsewhere. Recurrence 936 

corresponds to the situation when new lesions form within the observed tissue patch. 937 

Clearance corresponds to immune-cell-based elimination of all infected cells and 938 

extracellular virus (classical viral clearance).  939 

We showed that key parameters of the model, such as those affecting viral 940 

internalization (i.e., virus-receptor association affinity 𝑘𝑜𝑛), can lead to both 941 

containment/clearance (e.g., small 𝑘𝑜𝑛, Figs 5-7) and widespread infection (e.g., large 942 

𝑘𝑜𝑛, Figs 5-7). Multidimensional parameter sweeps showed how the interplay between 943 

immune response (e.g. immune response delay coefficient 𝛽𝑑𝑒𝑙𝑎𝑦) and viral spread could 944 

lead to widespread infection (e.g., large 𝛽𝑑𝑒𝑙𝑎𝑦, large 𝑘𝑜𝑛, Figs 5-7), rapidly cleared 945 

infection (e.g., small 𝛽𝑑𝑒𝑙𝑎𝑦, small 𝑘𝑜𝑛, Figs 5-7) or containment/clearance after substantial 946 

damage (e.g., small 𝛽𝑑𝑒𝑙𝑎𝑦, moderate 𝑘𝑜𝑛, Figs 5-7). Some of these outcomes would be 947 

expected biologically (e.g., very fast internalization with a slow immune response is likely 948 

to lead to widespread infection; faster and stronger immune responses should control the 949 

spread of viral infection within the tissue [Figs 5-7]) and would also occur in deterministic 950 

non-spatial models. Others, like the coexistence of replicas with containment/clearance 951 
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or failure to control for the same parameter set, are less expected, and could not occur in 952 

a deterministic non-spatial model (though they might occur in some stochastic non-spatial 953 

models). We have observed this interplay of parameters, as well as the potential for 954 

stochastic outcomes, in variations of other parameters of the model, whether related to 955 

spatial (e.g., viral and cytokine diffusion coefficients) or deterministic and stochastic 956 

cellular aspects (oxidative agent threshold for death and virally-induced apoptosis 957 

dissociation coefficient, see Figs S17-S22).  958 

We studied the influence of timing and potency of an RNA-polymerization inhibitor 959 

like remdesivir [60] on the spread of viral infection within tissue (Figs 9-11). As expected, 960 

in our model, drugs with this mode of action can improve viral control in tissue if 961 

administered prophylactically at high potency, and their effectiveness decreases the later 962 

they are administered. Less obviously, the lower-left region of Figs 9-11 shows how 963 

therapies with even reduced potency could control the infection when administered 964 

sufficiently early, consistently with predictions from a deterministic, non-spatial ODE 965 

model published after submission of this manuscript for publication (though the mode of 966 

action is not explicitly described) [61]. While we expect prophylactic or early treatment at 967 

the same potency to be more effective than later treatment, our model suggests that, for 968 

antivirals, time of treatment is a more significant factor than potency in determining the 969 

effectiveness of the therapy. Our model thus suggests that drugs that interfere with virus 970 

replication are significantly more effective if used even at very low doses prophylactically 971 

or very soon after infection, than they would be if used even at a high dose as a treatment 972 

given later after exposure. Specifically, a prophylactic treatment in simulation which 973 

reduces the rate of viral RNA synthesis by only 35% (35% potency) is more effective than 974 
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a treatment with 100% potency given two and a half days after infection, and has about 975 

the same efficacy as a treatment with 50% potency given one day after infection. Our 976 

model also showed that because of stochasticity in viral spread, later treatment at 977 

moderate to high potency may still be effective in a subset of individuals. 978 

Both parameter sweeps had regions with little variation in outcome between 979 

replicas (e.g., the upper-right and lower-left corners of Fig 5). In regions of the parameter 980 

space between these extremes (e.g., the unshaded areas in Figs 5 and 9), different 981 

replicas showed dramatically different outcomes. One such parameter set in our drug 982 

therapy simulations produced three distinct qualitative outcomes (i.e., positive, 983 

intermediate and negative outcomes, Fig 11). For these parameters, replica outcomes 984 

were particularly sensitive to stochasticity early in infection when only a few cells were 985 

infected (Fig 11A), with delayed spread of infection from the first infected cell producing 986 

more positive outcomes. Simulation replicas with negative outcomes (Fig 11A, Run 8) 987 

had higher extracellular virus levels at earlier times than those with intermediate 988 

outcomes (Fig 11A, Run 4), even though the fraction of each cell type was similar. Since 989 

the viral replication module is deterministic, the primary cause of this difference is the 990 

spatial distribution of cells. Spatial structure (e.g., infection of neighboring cells), 991 

stochastic events (e.g., early cell death of infected cells before significant virus release) 992 

and cell-to-cell variation (e.g., difference in viral release between cells) all affect the 993 

variation between replicas.  994 

Differences in spatiotemporal dynamics and variability of outcomes thus critically 995 

depend on the ability of the model to resolve the spread of virus and immune response 996 

spatially. The intrinsic stochasticity of many model processes makes the spatial patterns 997 
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of the infection front and distribution of tissue damage nontrivial. The spectrum of 998 

outcomes in our parameter sweeps (Figs 5-7 and 9-11) depends not only on parameter 999 

values and model immune response, but also on the emergent spatial patterns of cytokine 1000 

and virus fields (e.g., variations within the infection front expose different numbers of 1001 

uninfected epithelial cells to the immune response). Such stochastic and spatial aspects 1002 

can also introduce new considerations to ODE models that have been primarily employed 1003 

in a non-spatial context. For example, as described in the original presentation of the HCV 1004 

model that was integrated in Integration of an explicit RNA synthesis model allows the 1005 

spatiotemporal modelling of hepatitis C virus infection, the subgenomic kinetics of the 1006 

HCV model require a minimum number (seven) of cytoplasmic viral RNA molecules to 1007 

reach a saturated state. When employing the HCV model in a multicellular, 1008 

heterogeneous context, insufficient internalization of a spatially heterogeneous 1009 

extracellular viral field for subgenomic replication to produce rampant viral production, 1010 

leading to insufficient cytokine signaling to invoke further immune response, makes 1011 

possible the so-called outcome of benign infection. 1012 

 1013 

Future perspectives 1014 

Our modeling framework can improve with the inclusion of additional cellular and 1015 

immune mechanisms discussed in Fig 1. The modularity of model modules and built-in 1016 

extensibility of the publicly available software implementation enables us, and other 1017 

interested members of the scientific community, to accomplish such activities 1018 

collaboratively or independently, concurrently, and even when in theoretical 1019 

disagreement (see Collaborative viral infection modeling environment). Modules 1020 
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accounting for viral clearance, tissue recovery and persistent adaptive immune response 1021 

can be added to model later stages of disease progression (as demonstrated in Model 1022 

extensions). The current immune model does not include important signaling factors (e.g., 1023 

interferon-induced viral resistance in epithelial cells) and the different roles of tissue-local 1024 

and systemic signals (e.g., various cytokines). It also omits many cell types associated 1025 

with both innate and adaptive immune response and their roles (e.g., viral scavenging by 1026 

macrophages, relaying and amplification of immune signals by dendritic cells). Of special 1027 

interest to results like those presented in this work is the effect of specific roles by 1028 

individual immune cell phenotypes on emergent dynamics and outcomes, considering 1029 

that the timing of their activities during progression of events can be quite different (e.g., 1030 

early neutrophil release of oxidative agent contrasted with later effector T-cell contact-1031 

mediated killing). Such details, which we are currently pursuing, are particularly important 1032 

for using framework to interrogate the spatiotemporal details of the immune response, 1033 

which are poorly understood. The model does not currently consider the production and 1034 

role of antibodies in the humoral immune response or tissue recovery after damage (like 1035 

the demonstration models presented in An extensible framework architecture enables the 1036 

inclusion of tissue recovery). The model also greatly simplifies the structure of the 1037 

epithelium and its environment, but could be easily generalized to a detailed, three-1038 

dimensional geometry, albeit at the cost of computational performance. 1039 

Our current results suggest priorities for improving the biological realism within 1040 

existing modules, and for including modules representing additional biological 1041 

components and mechanisms. We are currently implementing virus-scavenging by 1042 

immune cells and local antiviral resistance due to Type 1-IFN paracrine signaling by 1043 
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epithelial cells. We are calibrating the virus replication module to existing experimental 1044 

data for SARS-CoV-2 and influenza A. Because different tissues within the body have 1045 

different responses to local viral infection, developing our framework to support the 1046 

modeling and simulation of multi-organ disease progression (e.g., by identifying model 1047 

parameters corresponding to specific tissues and physiological compartments) would 1048 

allow us to understand the highly variable whole-body progression of many viral diseases.  1049 

The immune response to viral infection depends on locus of infection, degree of 1050 

infection and patient immune state. Understanding the reasons for immune failure to 1051 

contain infection, or pathological responses like cytokine storms or sepsis, requires 1052 

models of immune response at multiple locations and scales. The same is true for 1053 

understanding and predicting the possible protective or adverse effects of coinfection. 1054 

The number of permutations of infection timing and combination of pathogens is too large 1055 

to address purely by experiments, but could be addressed by simulations. Spatial 1056 

modeling is also important because the spatiotemporal dynamics of coinfection within 1057 

tissues may be important to the outcome (e.g., whether individual cells can be 1058 

superinfected, whether viral lesions with a tissue are disjoint or overlap, whether the main 1059 

foci of the pathogens are in the same or different tissues). 1060 

We can also study the systemic effects of possible therapies with known molecular 1061 

modes of action (as seen in Results). Evaluating therapies in a simulated context prior to 1062 

performing animal or human trials could lead to more effective and rapid drug discovery 1063 

and to optimized dosage and timing of treatments. Understanding the origins of 1064 

population variability in disease progression is crucial to providing optimal personalized 1065 

treatment. While the simulations presented here begin with a single infected cell, a 1066 
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simulation which begins with multiple infected cells might better represent the infection 1067 

dynamics of patients that have been subject to high level exposure, such as healthcare 1068 

workers. Factors such as hypertension, immunosuppression and diabetes affect tissue 1069 

state and immune response and could also be incorporated into our model. More detailed 1070 

studies of these factors using our model could reveal more about the effects of population 1071 

variability (due to age, genetic variation, prior drug treatment or immune status) on 1072 

disease progression. Such computational studies could be accomplished using 1073 

concomitant, calibrated ODE-based simulations of COVID-19 treatment published as 1074 

recently as after the initial submission of this manuscript for publication [61].  1075 

We are working to implement validated non-spatial models of viral infection and 1076 

immune response as agent-based spatial models (e.g., viral production, cytokine 1077 

secretion, tissue damage). By starting with a validated model that uses ordinary 1078 

differential equations and adding spatial components gradually, we can calibrate our 1079 

spatial models and validate our results. In ongoing work, we have developed a formal 1080 

method for spatializing ODE models and employing their parameters such that these 1081 

analogous spatial models reproduce the ODE results in the limit of large diffusion 1082 

constants. Using this method, we can combine the ability to do rapid formal parameter 1083 

identification of ODE-based models and to leverage published ODE model parameters 1084 

with the flexibility of spatial modeling. In these cases, any differences between the ODE 1085 

results and the spatial model can be definitively attributed to spatialization (e.g. the local 1086 

spread of virus or cytokine or the limited speed of movement of immune cells), or to 1087 

additional factors which are difficult to include in an ODE model (e.g., the variability of 1088 

individual cells or the complex time course of virus release by individual infected cells). 1089 
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We have developed formal spatializations of a number of interesting ODE models of 1090 

COVID, such as [61,62], to explore the effects of stochasticity of outcomes, the effects of 1091 

spatial mechanisms, and infection dynamics at a particular site of infection on the 1092 

predictions of these models. An additional benefit of our approach is that we can easily 1093 

and consistently combine and integrate ODE models which focus on different aspects of 1094 

the complex process of infection, spread and clearance (e.g., combining published 1095 

models of intracellular INF-induced viral resistance with spatial models of plaque spread 1096 

in vitro [20,63]). We illustrate both of these strengths in Integration of an explicit RNA 1097 

synthesis model allows the spatiotemporal modelling of hepatitis C virus infection, where 1098 

we integrate a published HCV model of subgenomic replication into our framework. We 1099 

can also conduct simultaneous, cross-platform validation of spatial models by building 1100 

multiple implementations of the same conceptual and quantitative models on independent 1101 

modeling platforms (here Chaste [64,65] and Morpheus [66]). 1102 

The COVID-19 crisis has shown that drug discovery and therapy development both 1103 

require new predictive capabilities that improve their effectiveness and efficiency. We 1104 

have developed our framework to explore the relationship between molecular, cellular-1105 

level and systemic mechanisms and outcomes of acute viral infections like SARS-CoV-1106 

2, and to support development of optimal, patient-specific treatments to combat existing 1107 

and new viruses.  1108 

 1109 

Models and methods 1110 

In this section we first present our model as a high-level conceptual model where 1111 

we list each process included in an implementation-independent manner. We then detail 1112 
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the quantitative model and its computational implementation, which uses a Cellular Potts 1113 

representation of cellular dynamics. All quantitative models are implemented in a 1114 

modular, extensible simulation architecture built using the CompuCell3D simulation 1115 

environment, which is publicly available for download and further development by 1116 

interested members of the scientific community (see Collaborative viral infection modeling 1117 

environment). 1118 

 1119 

Conceptual model: biological hypotheses and assumptions  1120 

As discussed in Introduction (Fig 2A) we consider viral propagation in an epithelial 1121 

tissue and a lymph node. The tissue contains two interacting spatial components: an 1122 

epithelium component (consisting of a monolayer of epithelial cells), and an extracellular 1123 

environment component (containing immune cells, extracellular virus and chemicals). 1124 

The lymph node component (whose state is affected by signaling from the tissue) adds 1125 

immune cells to the extracellular space when in a proinflammatory state and removes 1126 

them when in an anti-inflammatory state. A set of processes and interactions govern how 1127 

the states of these components evolve in time. We detail these components, processes 1128 

and interactions in the following subsections and in Fig 2. 1129 

 1130 

Epithelium component. The epithelium component of the model represents the layer of 1131 

epithelium in the tissue, and is composed of epithelial cells of four types: uninfected, 1132 

infected, virus-releasing and dead (Fig 2C). We assume that the epithelial cells are 1133 

immobile. We implicitly model the ECM by considering its influence on all processes in 1134 

the epithelium component. The epithelial cells contain modules that describe the viral life 1135 
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cycle and approximate the amount of virus as a continuous quantity (Fig 2B), including: 1136 

binding and internalization of viral particles from the extracellular environment (E1), 1137 

intracellular replication (E2) and release (E3) of synthesized virus into the extracellular 1138 

environment, as well as cell death caused by viral-replication-associated damage, 1139 

immune-cell killing and oxidative agent killing (E4).  1140 

 1141 

E1 - Viral internalization. Module E1 models extracellular virus binding to epithelial cell 1142 

receptors and internalization (including endocytosis-dependent and -independent routes). 1143 

Internalization of viral particles involves binding of the viral spike protein to target cell-1144 

surface receptors, truncation by surface proteins and receptor-mediated endocytosis or 1145 

fusion with the host plasma membrane. We assume the dynamics of internalization can 1146 

be represented by describing the dynamics of virus-surface-receptor binding, determined 1147 

by the amount of extracellular virus and target surface receptors, and by the binding 1148 

affinity between them (T1→E1). We also consider the dynamic depletion of unbound 1149 

target surface receptors on a cell when it internalizes a virus and superinfection of infected 1150 

cells. Internalized viral particles initiate the viral replication process (E1→E2 and Fig 2B). 1151 

 1152 

E2 - Viral replication. Module E2 models the viral replication cycle inside a host epithelial 1153 

cell (Fig 2B). Individual cells infected with many non-lytic viruses show a characteristic 1154 

three-phasic pattern in their rate of viral release. After infection and during an eclipse 1155 

phase, a cell accumulates but does not yet release newly assembled viruses. In a second 1156 

phase, the rate of viral release increases exponentially until the virus-releasing cell either 1157 

dies or, in a third phase, saturates its rate of virus synthesis and release. Viral replication 1158 
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hijacks host synthesis pathways and may be limited by the availability of resources (amino 1159 

acids, ATP, etc.), synthesis capability (ribosomes, endoplasmic reticulum, etc.) or 1160 

intracellular viral suppression. A quantitative model of viral replication needs to be 1161 

constructed and parameterized such that it reproduces these three phases.  1162 

We model viral replication based on processes associated with positive sense 1163 

single-stranded RNA (+ssRNA) viruses. +ssRNA viruses initiate replication after 1164 

unpacking of the viral genetic material and proteins into the cytosol (E1→E2). The viral 1165 

RNA-dependent RNA polymerase transcribes a negative RNA strand from the positive 1166 

RNA strand, which is used as a template to produce more RNA strands (denoted by “Viral 1167 

Genome Replication” in Fig 2B). Replication of the viral genome is the only exponential 1168 

amplification step in the growth of most viruses within cells. Subgenomic sequences are 1169 

then translated to produce viral proteins (“Protein Synthesis” Fig 2B). Positive RNA 1170 

strands and viral proteins are transported to the endoplasmic reticulum (ER) where they 1171 

are packaged for release. After replication, newly synthesized viral genetic material is 1172 

translated into new capsid protein and assembled into new viral particles (“Assembly and 1173 

Packaging” in Fig 2B). These newly assembled viral particles initiate the viral release 1174 

process (E2→E3). We assume the viral replication cycle can be modeled by defining four 1175 

stages: unpacking, viral genome replication, protein synthesis, and assembly and 1176 

packaging. Fig 2B illustrates these subprocesses of replication and their relation to viral 1177 

internalization and release. 1178 

 1179 

E3 - Viral release. Module E3 models intracellular transport of newly assembled virions 1180 

and release into the extracellular environment (E3→T1 and Fig 2B “Release”). We 1181 
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conceptualize the virus being released into the extracellular fluid above the apical 1182 

surfaces of epithelial cells. Newly assembled virions are packed into vesicles and 1183 

transported to the cell membrane for release into the extracellular environment (E2→E3). 1184 

We assume that no regulation occurs after assembly of new virus particles, and that 1185 

release into the extracellular environment can be modeled as a single-step process 1186 

(E3→T1). 1187 

 1188 

E4 - Cell death. Module E4 models death of epithelial cells due to various mechanisms. 1189 

Models the combined effect of the many types of virus-induced cell death (e.g., production 1190 

of viral proteins interferes with the host cell’s metabolic, regulatory and delivery pathways) 1191 

as occurring due to a high number of assembled viral particles in the viral replication cycle 1192 

(E2→E4). Models cell death due to contact cytotoxicity (I3→E4). Models cell death due 1193 

to oxidizing cytotoxicity (T3→E4).  1194 

 1195 

Extracellular environment component. The extracellular environment contains the 1196 

immune cells, extracellular virus, cytokines and oxidative agent, and is the space where 1197 

transport of viral particles (T1), cytokine molecules (T2) and the oxidizing agent (T3) 1198 

occurs. We implicitly model the ECM in the extracellular environment by subsuming its 1199 

geometrical, biochemical and biophysical influences on immune cell motility and 1200 

virus/cytokine/agent spreading in the chosen rate laws and parameter set. Immune cells 1201 

are mobile and can be either activated or inactive (I1). Inactive immune cells move 1202 

through random cell motility and activated immune cells chemotax along the cytokine field 1203 
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(I2). The immune cell modules also account for cytotoxic effects of immune cells on 1204 

contact due to antigen recognition (I3) and through the secretion of oxidizing agents (I4).  1205 

 1206 

T1 - Viral transport. Module T1 models diffusion of viral particles in the extracellular 1207 

environment and their decay. Viral particles are transported by different mechanisms 1208 

(e.g., ciliated active transport, diffusion) and media (e.g., air, mucus) at different 1209 

physiological locations and through different types of tissue (e.g., nasopharyngeal track, 1210 

lung bronchi and alveoli). Viral particles are eliminated by a variety of biological 1211 

mechanisms. We represent these mechanisms by modeling transport of viral particles as 1212 

a diffusive virus field with decay in the extracellular environment. We model transport in 1213 

a thin layer above the apical surfaces of epithelial cells. Viral internalization results in the 1214 

transport of a finite amount of virus from the extracellular environment into a cell and 1215 

depends on the amount of local extracellular virus and number of cell surface receptors 1216 

(T1-E1). Infected cells release viral particles into the extracellular environment as a result 1217 

of the viral replication cycle (E3-T1).  1218 

 1219 

T2 - Cytokine transport. Module T2 models diffusion and clearance of immune signaling 1220 

molecules in the extracellular environment. The immune response involves multiple 1221 

signaling molecules acting upon different signaling pathways. We assume that the 1222 

complexity of immune signaling can be functionally represented using a single chemical 1223 

field that diffuses and decays in the extracellular environment. Once infected, epithelial 1224 

cells secrete signaling molecules to alert the immune system (E2-T2). Locally, exposure 1225 

to cytokine signaling results in activation of immune cells (T2-I1). Upon activation, 1226 
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immune cells migrate towards infection sites guided by cytokine (T2-I2). Lastly, activated 1227 

immune cells amplify the immune signal by secreting additional cytokines into the 1228 

extracellular environment (I1-T2). We model long-range effects by assuming that cytokine 1229 

exfiltrates tissues and is transported to immune recruitment sites (T2-L1).  1230 

 1231 

T3 - Oxidizing agent burst and transport. Module T3 models diffusion and clearance of a 1232 

general oxidizing agent in the extracellular environment. One of the cytotoxic mechanisms 1233 

of immune cells is the release of different oxidizing agents, reactive oxygen species like 1234 

H2O2 and nitric oxide. The mechanism of action of such agents varies but we assume that 1235 

we can generalize such effects by modeling a single diffusive and decaying oxidizing 1236 

agent field in the extracellular environment. The oxidizing agent is secreted by activated 1237 

immune cells after persistent exposure to cytokine signals (I4→T3). We assume that the 1238 

range of action of the oxidizing agent is short. Cell death is induced in uninfected, infected 1239 

and virus-releasing epithelial cells when sufficiently exposed to the oxidizing agent 1240 

(T3→E4).  1241 

 1242 

I1 - Immune cell activation. Module I1 models immune cell maturation due to cytokine 1243 

signaling. Immune cells mature at the recruitment site before being transported to the 1244 

infection site as inactive immune cells (L1→Immune Cells). After infiltration, immune 1245 

cells need to be exposed to local cytokine signals before activating (T2→I1). Once 1246 

activated, immune cells chemotax along the cytokine field (I2) and amplify immune 1247 

signaling by releasing cytokine molecules into the extracellular environment (I1→T2). 1248 

Immune cells can also deactivate after a period of activation (I1 and Fig 2C). 1249 
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 1250 

I2 - Immune cell chemotaxis. Module I2 models activated immune cell chemotactic 1251 

migration towards infection sites. We assume that upon activation (I1→I2), immune cells 1252 

move preferentially towards higher concentrations of local cytokine (T2→I2). 1253 

 1254 

I3 - Immune cell direct cytotoxicity and bystander effect. Module I3 models immune cell 1255 

cytotoxicity when immune cells (both activated and inactive) identify and induce death in 1256 

epithelial cells with internal virus. Immune cells identify epithelial cells with internal virus 1257 

on contact by antigen recognition and induce cell death by activating the caspase 1258 

cascade (I3→E4). Uninfected, infected, and virus-releasing epithelial cells in contact with 1259 

an epithelial cell that is killed by direct cytotoxicity can die through a bystander effect.  1260 

 1261 

I4 - Immune cell oxidizing agent cytotoxicity. Module I4 models activated immune cell 1262 

killing of target cells through the release of a diffusive and decaying oxidizing agent into 1263 

the environment. Cell death is induced in uninfected, infected and virus-releasing 1264 

epithelial cells when sufficiently exposed to the oxidizing agent (T3→E4). 1265 

 1266 

Lymph node component. The lymph node component models the net pro- or anti-1267 

inflammatory state of the immune system. It responds to cytokines received from the 1268 

tissue and adds or removes immune cells from the tissue (L1). 1269 

 1270 

L1 - Immune cell recruitment. Module L1 models immune cell recruitment and infiltration 1271 

into the tissue in response to cytokine signaling by infected cells and activated immune 1272 
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cells. Infected cells secrete signaling molecules into the extracellular environment 1273 

(E2→T3), which alerts resident immune cells and recruits new immune cells from the 1274 

blood, distant lymph nodes and bone marrow. We model the local strength of the cytokine 1275 

signal as causing an increase in the strength of the signal at the immune recruiting sites. 1276 

We model long-distance signaling by assuming that cytokine molecules in the 1277 

extracellular environment exfiltrate the infection site and are transported through the 1278 

lymphatic system to the lymphatic system to lymph nodes and through the bloodstream 1279 

to initiate immune-cell recruitment (T2→L1). A delay on the order of minutes to hours 1280 

would represent semi-local recruitment (e.g., at the blood vessels). A delay on the order 1281 

of days would represent long-range, systemic recruitment (e.g., the time required for a 1282 

dendritic cell to reach a lymph node and an induced T cell to return). Recruited immune 1283 

cells are then transported and infiltrate the infection site (L1→Immune Cell). 1284 

 1285 

Quantitative model and implementation 1286 

For model construction and integration we use the open-source multicellular 1287 

modeling environment CompuCell3D (www.compucell3d.org) which allows rapid and 1288 

compact specification of cells, diffusing fields and biochemical networks using Python and 1289 

the Antimony language [55,67]. CompuCell3D is specifically designed to separate model 1290 

specification (conceptual and quantitative models) from the details of model 1291 

implementation as a simulation and to make simulation specification accessible to 1292 

biologists and others not specializing in software development. In this paper, we 1293 

specifically designed the Python modules and their cross-scale integration to have clear 1294 

and stable APIs, allowing modules to be rapidly swapped out by collaborating developers. 1295 
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CompuCell3D runs on Windows, Mac and Linux platforms without change of model 1296 

specification, and allows cluster execution for parameter exploration. 1297 

 1298 

Cellular Potts model (CPM). Cell types. Cells are divided into two broad groups, 1299 

epithelial and immune cells, and have a type (see Fig 2C) which determines their 1300 

properties, the processes and interactions in which they participate, and their events and 1301 

dynamics. Epithelial cells can have one of four types (uninfected, infected, virus releasing 1302 

and dead). Immune cells can have one of two types (activated and inactive). Cell types 1303 

can change according to outcomes of various modules, and a module specifying such an 1304 

event describes both the initial and final cell types of the transition. A cell type in the model 1305 

is not a phenotype in the biological sense (e.g., epithelial cell), but an identifier for the 1306 

various states that a particular cell can assume (e.g., dead epithelial cell). When an 1307 

epithelial cell changes to the dead type, all epithelial modules are disabled and the cell is 1308 

generally inactive.  1309 

 1310 

Cellular dynamics. Cellular spatial dynamics is modeled using the Cellular Potts model 1311 

(also known as CPM, or Glazier-Graner-Hogeweg model), which represents generalized 1312 

cells and medium as occupying a set of sites in a lattice [68]. Random cell motility is 1313 

modeled as the stochastic exchange of sites at intercellular and cell-medium interfaces. 1314 

Configurations evolve to minimize the system’s effective energy ℋ,  1315 
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ℋ = ∑ 𝜆𝑣𝑜𝑙𝑢𝑚𝑒 (𝑣(𝜎) − 𝑉(𝜏(𝜎)))
2

𝜎

+ ∑ ∑ (1 − 𝛿𝜎(𝑥),𝜎(𝑥′))𝐽 (𝜏(𝜎(𝑥)), 𝜏(𝜎(𝑥′)))

𝑥′∈𝑁(𝑥)𝑥

+ ℋ𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠. 

( 1 ) 

Here 𝜎 is the integer identification of a cell and 𝜏(𝜎) is the type of cell 𝜎. 𝑣(𝜎) and 𝑉(𝜎) 1316 

are the current and target volumes of cell 𝜎, respectively, and 𝜆𝑣𝑜𝑙𝑢𝑚𝑒 is a volume 1317 

constraint coefficient. 𝑁(𝑥) is the neighborhood of site 𝑥, 𝛿𝑖,𝑗 is the Kronecker-delta, and 1318 

𝐽(𝜏, 𝜏′) is the effective contact energy per unit surface area between cells of types 𝜏 and 1319 

𝜏′. The final term, ℋ𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠, models chemotaxis-directed cell motility, and is prescribed 1320 

by module I2. The cell configuration evolves through asynchronous lattice-site copy 1321 

attempts. A lattice-site copy attempt starts by random selection of a site 𝑥 in the lattice as 1322 

a target, and a site 𝑥′ in its neighborhood as a source. A configuration update is then 1323 

proposed in which the value 𝑥′ from the source site overwrites the value of 𝑥 in the target 1324 

site. The change in total effective energy 𝛥ℋ due to the copy attempt is calculated, and 1325 

the update is executed with a probability given by a Boltzmann acceptance function,  1326 

Pr(𝜎(𝑥) → 𝜎(𝑥′)) = 𝑒− max{0,
∆ℋ
ℋ∗ }

. ( 2 ) 

Here the intrinsic random motility ℋ∗ controls the stochasticity of accepted copy attempts. 1327 

Updates that reduce the system’s effective energy are always accepted. The unit of 1328 

simulation time is the Monte Carlo step (MCS)‒taken to be 20 minutes in this work. One 1329 

MCS corresponds to considering a number of copy attempts equal to the number of lattice 1330 

sites.  1331 

 1332 
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Epithelial component modules. Processes E1-E4 describe epithelial cell functions as 1333 

defined below. E1, E2 and E4 govern the cell-type transitions of epithelial cells (see Fig 1334 

15). E1 transforms an uninfected epithelial cell into an infected epithelial cell. E2 1335 

transforms an infected epithelial cell into a virus-releasing epithelial cell. E4 transforms 1336 

a virus-releasing epithelial cell into a dead cell.  1337 

 1338 

 1339 

Fig 15. State diagram and interactions of epithelial cells.  1340 

Epithelial cells can have one of four “cell types”: uninfected, infected, virus-releasing and dead. Uninfected cells become 1341 

infected cells when the viral uptake model (E1) internalizes viruses from the extracellular virus field (T1). Infected cells 1342 

continue internalizing viruses from the extracellular virus field and become virus-releasing cells when the viral 1343 

replication model (E2) produces sufficient newly assembled virions. Virus-releasing cells secrete viruses into the 1344 

extracellular virus field (T1) according to the viral release module (E3) and secrete cytokines directly into the 1345 

extracellular cytokine field (T2). Virus-releasing cells can die if the conditions of the virally induced cell-death model 1346 

(E4) are met.  1347 

 1348 
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E1 - Viral internalization. To capture the stochasticity associated with internalization of 1349 

discrete virus particles in terms of discrete binding events, we assign each uninfected, 1350 

infected and virus-releasing epithelial cell a probability of absorbing diffusive viral particles 1351 

from the extracellular virus field (T1). The uptake probability Pr(𝑈𝑝𝑡𝑎𝑘𝑒(𝜎) > 0) for each 1352 

cell 𝜎 is given by a Hill equation of the total amount of diffusive viral particles in the domain 1353 

of the cell 𝑐𝑣𝑖𝑟(𝜎), the number of unbound cell surface receptors 𝑆𝑅(𝜎) and the binding 1354 

affinity between them.  1355 

Pr(𝑈𝑝𝑡𝑎𝑘𝑒(𝜎) > 0) =
∆𝑡

𝛼𝑢𝑝𝑡

(𝑐𝑣𝑖𝑟(𝜎))
ℎ𝑢𝑝𝑡

(𝑐𝑣𝑖𝑟(𝜎))
ℎ𝑢𝑝𝑡

+ 𝑉𝑢𝑝𝑡

ℎ𝑢𝑝𝑡
,   where 𝑉𝑢𝑝𝑡 =

𝑅𝑜𝑘𝑜𝑓𝑓

2𝑘𝑜𝑛𝑣(𝜎)𝑆𝑅(𝜎)
. ( 3 ) 

Here ℎ𝑢𝑝𝑡 is a Hill coefficient, 𝑅𝑜 is the cell’s initial number of unbound receptors, 𝑘𝑜𝑛 is 1356 

the virus-receptor association affinity, 𝑘𝑜𝑓𝑓 is the virus-receptor dissociation affinity, 𝛼𝑢𝑝𝑡 1357 

is a characteristic time constant of uptake and 𝛥𝑡 is the time represented by one MCS. At 1358 

each simulation time step, the uptake probability is evaluated against a uniformly-1359 

distributed random variable. When uptake occurs, the uptake rate is proportional to the 1360 

local amount in the virus field (T1), and the probability of uptake is used to define the 1361 

amount (𝑈𝑝𝑡𝑎𝑘𝑒) of virus taken up during the MCS,  1362 

𝑈𝑝𝑡𝑎𝑘𝑒(𝜎)  =
1

∆𝑡
Pr(𝑈𝑝𝑡𝑎𝑘𝑒(𝜎) > 0) 𝑐𝑣𝑖𝑟(𝜎), ( 4 ) 

𝑑𝑆𝑅(𝜎)

𝑑𝑡
= −𝑈𝑝𝑡𝑎𝑘𝑒(𝜎). ( 5 ) 

The amount absorbed by each cell (𝑈𝑝𝑡𝑎𝑘𝑒) is uniformly subtracted from the virus field 1363 

over the cell’s domain and the cell’s number of cell surface receptors is reduced by the 1364 

same amount. The amount of virus taken up (𝑈𝑝𝑡𝑎𝑘𝑒) is also passed to the cell’s instance 1365 
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of the viral replication model (E2). Infected epithelial cells continue taking up viral particles 1366 

from the environment until their cell surface receptors are depleted.  1367 

 1368 

E2 - Viral replication. Our viral replication model combines equations and parameters 1369 

from several sources to represent the replication of a generic virus [7,9,52,53]. The model 1370 

contains four variables representing viral quantities in different states of the viral 1371 

replication process: internalized virus 𝑈 (Equation (6), the process of unpacking), viral 1372 

genome taking part in genomic replication 𝑅 (Equation (7), the process of viral genome 1373 

replication), synthesized protein 𝑃 (Equation (8), the process of protein synthesis), and 1374 

assembled and packaged virions 𝐴 (Equation (9), the process of assembly and 1375 

packaging). Biologically, the only process which can exponentially increase the rate of 1376 

virus production by a single cell is viral genome replication, so the equations include the 1377 

positive feedback by 𝑅 in Equation (7). Biologically, factors like the cell’s metabolism, 1378 

limited number of ribosomes, maximum rate of endoplasmic reticulum function and 1379 

activation of intracellular viral suppression pathways all limit production of viral 1380 

components, so we include a Michaelis-type saturation term for the rate of replication in 1381 

Equation (7). Each uninfected, infected and virus-releasing cell in the simulation contains 1382 

an independent copy of the system of ordinary differential equations modeling the viral 1383 

replication process,  1384 

𝑑𝑈

𝑑𝑡
= 𝑈𝑝𝑡𝑎𝑘𝑒 − 𝑟𝑢𝑈, ( 6 ) 

𝑑𝑅

𝑑𝑡
= 𝑟𝑢𝑈 + 𝑟𝑚𝑎𝑥𝑅

𝑟ℎ𝑎𝑙𝑓

𝑅 + 𝑟ℎ𝑎𝑙𝑓
 − 𝑟𝑡 𝑅, ( 7 ) 
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𝑑𝑃

𝑑𝑡
= 𝑟𝑡𝑅 − 𝑟𝑝𝑃, ( 8 ) 

𝑑𝐴

𝑑𝑡
= 𝑟𝑝𝑃 − 𝑅𝑒𝑙𝑒𝑎𝑠𝑒. ( 9 ) 

Here 𝑟𝑢 is the unpacking rate, 𝑟𝑚𝑎𝑥 is the viral replication rate, 𝑟𝑡 is the translating rate 1385 

(rate at which viral genomes turn into RNA templates for protein production) and 𝑟𝑝 is the 1386 

packaging rate. 𝑈𝑝𝑡𝑎𝑘𝑒 is defined in E1 and 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 is defined in E3. The saturation of 1387 

the rate of viral genome replication is represented by a Michaelis-Menten function, 
𝑟ℎ𝑎𝑙𝑓

𝑅 +𝑟ℎ𝑎𝑙𝑓
, 1388 

where 𝑟ℎ𝑎𝑙𝑓 is the amount of 𝑅 at which the viral genome replication rate is reduced to 1389 

𝑟𝑚𝑎𝑥

2
 (and the flux is reduced to 

1

2
𝑟𝑚𝑎𝑥 𝑟ℎ𝑎𝑙𝑓 ). The duration of the eclipse phase of single-1390 

cell infection (the time between the first entry of the virus into the cell and the first release 1391 

of newly synthesized virus) is approximately 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 ≈
1

𝑟𝑢
+

1

𝑟𝑚𝑎𝑥
+

1

𝑟𝑡
+

1

𝑟𝑝
 (11.7 hours for 1392 

the reference parameter set in Table 1), with the additional complication that in our model, 1393 

an epithelial cell does not release virus until 𝐴 reaches a threshold value. The timescale 1394 

for tenfold increase of virus release when viral replication is maximal is 𝑡10 ≈
𝑙𝑜𝑔(10)

𝑟𝑚𝑎𝑥
 (7.7 1395 

hours for the reference parameter set in Table 1). The number of newly assembled virions 1396 

is passed to the cell’s instance of the viral release module (E3). See Fig 2B for a 1397 

schematic of the viral replication process and Fig 16 for a representative time series from 1398 

the viral internalization, replication and release modules. 1399 

 1400 
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 1401 

Fig 16. Representative time series of viral internalization, replication and release models from Fig 2B.  1402 

A sample simulation of the viral replication model in a single epithelial cell. The model is initialized with one unit of 1403 

internalized virus (U = 1), and the rest of the state variables set to zero (R = 0, P = 0, A = 0). No additional virus 1404 

internalization occurs during this sample simulation. Dashed line indicates the time of the cell’s transition from the 1405 

infected to virus-releasing cell type. 1406 

 1407 

E3 - Viral release. Virus releasing cells release viral particles into the extracellular virus 1408 

field (T1). The amount of virus released by a cell per unit time is proportional to the state 1409 

variable for assembled virions in the viral replication module (E2),  1410 

𝑅𝑒𝑙𝑒𝑎𝑠𝑒 = 𝑟𝑠𝐴. ( 10 ) 

Here 𝑟𝑠 is the release rate of viral particles and 𝐴 is the level of assembled virus in the cell 1411 

(defined in E2). The total amount released by each cell 𝑟𝑠𝐴𝛥𝑡 is subtracted from the cell’s 1412 

state variable for assembled virions 𝐴 and passed to the source term of the extracellular 1413 

virus field (T1) to maintain mass balance.  1414 
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 1415 

E4 - Cell death. For cell death due to virally-induced apoptosis, each infected and virus-1416 

releasing cell can die due to the amount of intracellular virus. The rate of death is defined 1417 

as a stochastic function of the state variable for assembled new virions from the viral 1418 

replication module (E2). If a virus releasing cell dies then it changes its cell type to dead 1419 

and the cell’s instances of the viral internalization, replication and release modules are 1420 

disabled. The probability of virus-induced apoptosis per simulation step is a Hill equation 1421 

of the current load of assembled virus,  1422 

Pr(𝜏(𝜎) → Dead|𝜏(𝜎) = Virus releasing) =
∆𝑡

𝛼𝑎𝑝𝑜

(𝐴(𝜎))
ℎ𝑎𝑝𝑜

(𝐴(𝜎))
ℎ𝑎𝑝𝑜

+ 𝑉𝑎𝑝𝑜

ℎ𝑎𝑝𝑜
. ( 11 ) 

where 𝐴(𝜎) is the number of assembled virions in cell 𝜎, ℎ𝑎𝑝𝑜 is a Hill coefficient,𝑉𝑎𝑝𝑜 is 1423 

the amount of assembled virions at which the apoptosis probability is 0.5 per unit time 1424 

and 𝛼𝑎𝑝𝑜 is a characteristic time constant of virally-induced apoptosis. For modeling of 1425 

cell death due to contact cytotoxicity, see I3 - Immune cell direct cytotoxicity and 1426 

bystander effect. For modeling of cell death due to oxidizing cytotoxicity, see I4 - Immune 1427 

cell oxidizing agent cytotoxicity. Regardless of the death mechanism the internally 1428 

assembled virions are not released to the environment and do not take action in further 1429 

infection. We assume that in the process of death the assembled virus and viral particles 1430 

are either damaged or deactivated. 1431 

 1432 

Lymph node modules. L1 - Immune cell recruitment. The total immune cell population 1433 

is governed by an ordinary differential equation of a dimensionless state variable 𝑆 that 1434 

represents immune response due to local conditions and long-distance signaling. Our 1435 
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convention is that when 𝑆 > 0, immune cells are recruited to the simulation domain; 1436 

likewise, immune cells are removed from the simulation domain when 𝑆 < 0. Probability 1437 

functions of 𝑆 describe the likelihood of immune cell seeding and removal,  1438 

Pr(add immune cell) = erf(𝛼𝑖𝑚𝑚𝑢𝑛𝑒𝑆) , 𝑆 > 0, ( 12 ) 

Pr(remove immune cell) = erf(−𝛼𝑖𝑚𝑚𝑢𝑛𝑒𝑆) , 𝑆 < 0. ( 13 ) 

Here the coefficient 𝛼𝑖𝑚𝑚𝑢𝑛𝑒 is the sensitivity of immune cell addition and removal to the 1439 

state variable 𝑆. The dynamics of 𝑆 are cast such that, in a homeostatic condition, a typical 1440 

number of immune cells can be found in the simulation domain, and production of cytokine 1441 

(T2) results in additional recruitment via long-distance signaling (i.e., with some delay). 1442 

We model this homeostatic feature using the feedback mechanism of the total number of 1443 

immune cells 𝑁𝑖𝑚𝑚𝑢𝑛𝑒 in the simulation domain. Cytokine signaling is modeled as 1444 

perturbing the homeostatic state using the term 𝛼𝑠𝑖𝑔𝛿. Here 𝛿 is the total amount of 1445 

decayed cytokine in the simulation domain and 𝛼𝑠𝑖𝑔 > 0 models signaling by transmission 1446 

of cytokine to some far-away source of immune cells. We write the rate of change of 𝑆 as  1447 

𝑑𝑆

𝑑𝑡
= 𝛽𝑎𝑑𝑑 − 𝛽𝑠𝑢𝑏𝑁𝑖𝑚𝑚𝑢𝑛𝑒 +

𝛼𝑠𝑖𝑔

𝛽𝑑𝑒𝑙𝑎𝑦
𝛿 − 𝛽𝑑𝑒𝑐𝑎𝑦𝑆. ( 14 ) 

Here 𝛽𝑎𝑑𝑑 and 𝛽𝑠𝑢𝑏 control the number of immune cells in the simulation domain under 1448 

homeostatic conditions. 𝛽𝑑𝑒𝑙𝑎𝑦 controls the delay between transmission of the cytokine to 1449 

the lymph node and corresponding immune response by adjusting the rate of recruitment 1450 

due to total cytokine (i.e., increasing 𝛽𝑑𝑒𝑙𝑎𝑦 increases the resulting delay). 𝛽𝑑𝑒𝑐𝑎𝑦 regulates 1451 

the return of 𝑆 to an unperturbed state (i.e., 𝑆 = 0, increasing 𝛽𝑑𝑒𝑐𝑎𝑦 increases the rate of 1452 

return to 𝑆 = 0). To determine the seeding location, the simulation space is randomly 1453 

sampled 𝑛𝑠𝑒𝑒𝑑𝑖𝑛𝑔 times, and an immune cell is seeded at the unoccupied location with the 1454 

.CC-BY 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted September 26, 2020. . https://doi.org/10.1101/2020.04.27.064139doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.27.064139
http://creativecommons.org/licenses/by/4.0/


76 
 

highest amount of the virus field. If no location is unoccupied, then the immune cell is not 1455 

seeded. The removal probability is evaluated for each immune cell at each simulation 1456 

step. Immune cells are removed by setting their volume constraint to zero.  1457 

 1458 

Immune cell modules. The four processes I1-I4 capture immune cell functions which 1459 

are defined below. These processes control how immune cells are activated, 1460 

translocate, and kill other cells. Their interactions with epithelial cells and other model 1461 

components are illustrated in Fig 17. 1462 

 1463 

 1464 

Fig 17. State diagram and interactions of Immune cells.  1465 

Immune cells can adopt two different generalized types: inactive and activated. Inactive immune cells are recruited by 1466 

the cytokine levels according to the immune recruitment module (L1).Transition from inactive to activated immune cells 1467 

is determined by the immune activation module (I1) when cells are exposed to cytokines in the tissue. Activated immune 1468 

cells amplify the cytokine signal by secreting cytokines to the extracellular environment. Activated immune cells 1469 

chemotax towards virus-releasing cells (I2). Immune cells induce death of epithelial cells by direct cytotoxicity when 1470 
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coming into contact with infected cells (I3), bystander effect by killing neighbors of infected cells (I3) and through 1471 

oxidative cytotoxicity (I4) by releasing cytotoxic oxidizing agents (T3) into the extracellular environment.  1472 

 1473 

I1 - Immune cell activation. Inactive immune cells become activated with a probability 1474 

according to a Hill equation of the total cytokine bound to the cell 𝐵𝑐𝑦𝑡(𝜎, 𝑡),  1475 

Pr(𝜏(𝜎, 𝑡) → activated immune|𝜏(𝜎, 𝑡) = inactive immune) =
(𝐵𝑐𝑦𝑡(𝜎, 𝑡))

ℎ𝑎𝑐𝑡

(𝐵𝑐𝑦𝑡(𝜎, 𝑡))
ℎ𝑎𝑐𝑡

+ (𝐸𝐶50𝑐𝑦𝑡𝑎𝑐𝑡)
ℎ𝑎𝑐𝑡

. ( 15 ) 

After ten hours, an activated immune cell becomes inactive, in which case evaluations of 1476 

activation (Equation (15)) recommence. The immune cells “forget” a percentage (1 − 𝜌𝑐𝑦𝑡) 1477 

of the bound cytokine each time step while taking up an amount of cytokine from the 1478 

environment (𝜔𝑐𝑦𝑡(𝜏(𝜎), 𝑡) defined in T2), 1479 

𝐵𝑐𝑦𝑡(𝜎, 𝑡) = 𝜌𝑐𝑦𝑡𝐵𝑐𝑦𝑡(𝜎, 𝑡 − ∆𝑡) + 𝜔𝑐𝑦𝑡(𝜏(𝜎(𝑥)), 𝑡). ( 16 ) 

 1480 

I2 - Immune cell chemotaxis. Activated immune cells experience a motile force as a 1481 

response to a signaling field. Immune cells chemotax along concentration gradients of 1482 

the cytokine field. The chemotactic effective energy ℋ𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠 associated with the 1483 

gradient is calculated according to a chemotactic sensitivity parameter 𝜆𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠 and 1484 

calculated chemotactic force 𝐹𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠. The contribution of ℋ𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠 to the change in 1485 

the system’s total effective energy is calculated using 𝐹𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠 when considering copy 1486 

attempts. The chemotactic force at a location 𝑥 is saturated by normalizing the 1487 

chemotactic sensitivity parameter by the concentration of cytokine at the center of mass 1488 

of the cell at 𝑥, 𝑐𝑐𝑦𝑡,𝐶𝑀(𝜎(𝑥)), 1489 
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𝐹𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠(𝑥) =
𝜆𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠

1 + 𝑐𝑐𝑦𝑡,𝐶𝑀(𝜎(𝑥))
∇𝑐𝑐𝑦𝑡(𝑥). ( 17 ) 

 1490 

I3 - Immune cell direct cytotoxicity and bystander effect. Immune cells, whether activated 1491 

or not, have the ability to kill infected cells by direct contact. At each simulation step, 1492 

immune cells trigger cell death in the infected and virus-releasing epithelial cells with 1493 

which they come in contact. When an infected cell is killed by direct cytotoxicity, each of 1494 

its first-order neighbors is evaluated for cell death by a bystander effect model. Each of 1495 

those neighbors 𝜎′ ∈ 𝑁(𝜎) in the first-order neighborhood 𝑁(𝜎) of a cell 𝜎 killed by direct 1496 

cytotoxicity has a probability 𝑘𝑏𝑦𝑠𝑡𝑎𝑛𝑑𝑒𝑟 of dying from the bystander effect given by, 1497 

Pr(𝜏(𝜎′, 𝑡) → Dead|𝐷𝑖𝑟𝑒𝑐𝑡 𝐶𝑦𝑡𝑜𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦(𝜎) = True) = 𝑘𝑏𝑦𝑠𝑡𝑎𝑛𝑑𝑒𝑟 ∀𝜎′ ∈ 𝑁(𝜎). ( 18 ) 

 1498 

I4 - Immune cell oxidizing agent cytotoxicity. Immune cells release a short-range, diffusive 1499 

oxidizing agent when exposed to high cytokine concentration (T3). The oxidizing agent 1500 

kills an epithelial cell of any type when the total amount of oxidizing agent in the domain 1501 

of the cell 𝑐𝑜𝑥𝑖(𝜎) exceeds a threshold for death 𝜏𝑜𝑥𝑖
𝑑𝑒𝑎𝑡ℎ, 1502 

Pr(𝜏(𝜎, 𝑡) → Dead|𝑐𝑜𝑥𝑖(𝜎) > 𝜏𝑜𝑥𝑖
𝑑𝑒𝑎𝑡ℎ) = 1. ( 19 ) 

 1503 

Extracellular environment modules. T1 - Viral transport. The change in concentration 1504 

of the virus field 𝑐𝑣𝑖𝑟 is calculated at each location in the simulation domain by solving the 1505 

following reaction-diffusion equation, 1506 

𝜕𝑐𝑣𝑖𝑟(𝑥)

𝜕𝑡
= 𝐷𝑣𝑖𝑟∇2𝑐𝑣𝑖𝑟(𝑥) − 𝛾𝑣𝑖𝑟𝑐𝑣𝑖𝑟(𝑥) +

1

𝑣(𝜎(𝑥))
(𝑅𝑒𝑙𝑒𝑎𝑠𝑒(𝜎(𝑥)) − 𝑈𝑝𝑡𝑎𝑘𝑒(𝜎(𝑥))). ( 20 ) 
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Here 𝐷𝑣𝑖𝑟 is the diffusion constant of the extracellular virus and 𝛾
𝑣𝑖𝑟

 is the decay rate is 1507 

the decay rate. Uptake and release by a cell at each location are determined using the 1508 

viral internalization (E1) and the viral release (E3) modules, and are uniformly applied 1509 

over all sites of the domain of the cell.  1510 

 1511 

T2 - Cytokine transport. The change in concentration of the cytokine field 𝑐𝑐𝑦𝑡 is obtained 1512 

by solving a reaction-diffusion equation of the following general form,  1513 

𝜕𝑐𝑐𝑦𝑡

𝜕𝑡
= 𝐷𝑐𝑦𝑡∇2𝑐𝑐𝑦𝑡 − 𝛾𝑐𝑦𝑡𝑐𝑐𝑦𝑡 + 𝑠𝑐𝑦𝑡. ( 21 ) 

The decay term 𝛾𝑐𝑦𝑡𝑐𝑐𝑦𝑡 represents cytokine leaving the simulation domain (e.g., in 1514 

immune recruitment). To model immune signaling, the rate of cytokine secretion is 1515 

described by an increasing Hill function of 𝑐𝑠𝑖𝑔(𝜎(𝑥)) with Hill exponent ℎ𝑐𝑦𝑡 = 2. The 1516 

meaning of 𝑐𝑠𝑖𝑔(𝜎(𝑥)) depends on the cell type and the Hill exponent can differ for other 1517 

cell types and states. The rate of cytokine secretion 𝑠𝑐𝑦𝑡 is written as,  1518 

𝑠𝑐𝑦𝑡(𝑥, 𝑡) = 𝜎𝑐𝑦𝑡(𝜏(𝜎(𝑥), 𝑡))
(𝑐𝑠𝑖𝑔(𝜎(𝑥), 𝑡))

ℎ𝑐𝑦𝑡

(𝑐𝑠𝑖𝑔(𝜎(𝑥), 𝑡))
ℎ𝑐𝑦𝑡

+ (𝑉𝑐𝑦𝑡(𝜏(𝜎(𝑥), 𝑡)))
ℎ𝑐𝑦𝑡

− 𝜔𝑐𝑦𝑡(𝜏(𝜎(𝑥), 𝑡)). ( 22 ) 

Here 𝜎𝑐𝑦𝑡(𝜏(𝜎(𝑥), 𝑡)) is the maximum cytokine secretion rate for the cell type at 𝑥, 1519 

𝑐𝑠𝑖𝑔(𝜎(𝑥)) is a quantity that affects the cells cytokine secretion, 𝜔𝑐𝑦𝑡(𝜏(𝜎(𝑥), 𝑡)) is the 1520 

cytokine uptake rate of the cell type at 𝑥 and 𝑉𝑐𝑦𝑡(𝜏(𝜎(𝑥), 𝑡)) is a dissociation coefficient 1521 

of cytokine secretion for the cell type at 𝑥. 𝜎𝑐𝑦𝑡 is nonzero for infected epithelial cells, 1522 

virus-releasing epithelial cells and activated immune cells. For infected and virus-1523 

releasing epithelial cells 𝑐𝑠𝑖𝑔 is the amount of assembled virus 𝐴 in the viral replication 1524 

module, and for activated immune cells 𝑐𝑠𝑖𝑔 is the total amount of cytokine in the domain 1525 
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of the cell. Similarly, for epithelial cells 𝑉𝑐𝑦𝑡 is the amount of assembled virus, and for 1526 

immune cells 𝑉𝑐𝑦𝑡 is the amount of cytokine in the domain of the cell. 𝜔𝑐𝑦𝑡(𝜏(𝜎(𝑥), 𝑡)) is 1527 

constant and nonzero for activated and inactive immune cells.  1528 

 1529 

T3 - Oxidizing agent transport. The oxidizing agent field diffuses according to the reaction-1530 

diffusion equation,  1531 

𝜕𝑐𝑜𝑥𝑖

𝜕𝑡
= 𝐷𝑜𝑥𝑖∇2𝑐𝑜𝑥𝑖 − 𝛾𝑜𝑥𝑖𝑐𝑜𝑥𝑖 + 𝑠𝑜𝑥𝑖 . ( 23 ) 

Bursts of oxidizing agent are implemented as a source term for one time step according 1532 

to a rate coefficient 𝜎𝑜𝑥𝑖, which is uniformly mapped onto the source term 𝑠𝑜𝑥𝑖 over the 1533 

domain of each activated immune cell. An oxidizing burst occurs in immune cells with an 1534 

activated state when the total cytokine in the immune cell’s domain exceeds a threshold 1535 

𝜏𝑜𝑥𝑖
𝑠𝑒𝑐. 1536 

 1537 

Initial and boundary conditions. The domain of all simulations had dimensions of 90 x 1538 

90 x 2 lattice sites. The initial cell configuration consisted of a 30 x 30 sheet of uninfected 1539 

epithelial cells, each of size 3 x 3, on the lower layer of lattice sites (see Fig S23 for a 1540 

demonstration of the negligible effects of a non-uniform arrangement of epithelial cells). 1541 

Epithelial cells were “frozen”, in that they were immobile, leaving the remaining 90 x 90 1542 

subdomain for occupancy by recruited immune cells. For cellular dynamics and mass 1543 

transport, periodic boundary conditions were applied in the plane of the epithelial sheet, 1544 

and Neumann conditions were applied along the direction orthogonal to the epithelial 1545 

sheet. All field solutions for the diffusive viral, cytokine and oxidizing agent fields were 1546 

initialized as zero everywhere.  1547 
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At each first simulation step, the epithelial cell in the center of the sheet was set to 1548 

infected, and the amount of internalized virus 𝑈 of the viral replication model was set to a 1549 

value of one. All epithelial cells were initialized with a number of unbound surface 1550 

receptors 𝑆𝑅 = 𝑅𝑜. All immune cells, when introduced to the simulation by recruitment, 1551 

were initialized in an inactive state, and with a bound cytokine value equal to zero (𝐵𝑐𝑦𝑡 =1552 

0). During transition of an uninfected epithelial cell to the infected type, all state variables 1553 

of the viral replication model were initialized with a value of zero.  1554 

 1555 

Simulation specifications. Model implementation and all simulations were performed 1556 

using CompuCell3D, which uses a non-dimensional lattice for CPM-based cellular 1557 

dynamics and non-dimensional explicit time integration of reaction-diffusion field 1558 

solutions. As such, a baseline parameter set was constructed for all CPM parameters and 1559 

modules developed in this work (Table 1). Non-dimensionalization was performed on 1560 

model parameters for a lattice dimension of 4 μm per pixel along each dimension, at 20 1561 

minutes (1/3 hours) per MCS. All replicas were simulated for ten trials, each 1,000 MCS 1562 

(20000 minutes, 333 hours, 14 days) long. Simulation data was collected at a frequency 1563 

of 10 MCSs (200 minutes, 3 hours) for all simulations. 1564 

 1565 

Table 1. Parameter values in baseline parameter set.  1566 

Conversion Factors Value References / Justification 

Simulation step ∆𝑡 1200.0 s Selected for approximately 14 days of 
simulation time in 1k simulation steps 

Lattice width 4.0 μm Selected according to cell diameter 

Scale factor for concentration 1×10-14 mol Selected for conversion from mol L-1 to mol 
μm-1 (10-15) with 10x adjustment for fewer 
concentrations less than 1 
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Simulation parameters Value References / Justification 

Cell diameter 12.0 μm Selected according to typical epithelial cell 
size 

Replication rate 𝑟𝑚𝑎𝑥 (1/12)×10-3 s-1  Calibrated to timescale of SARS-CoV-2 [56] 

Translating rate 𝑟𝑡  (1/18)×10-3 s-1  Calibrated to timescale of SARS-CoV-2 [56] 

Unpacking rate 𝑟𝑢 (1/6)×10-3 s-1  Calibrated to timescale of SARS-CoV-2 [56] 

Packaging rate 𝑟𝑝 (1/6)×10-3 s-1  Calibrated to timescale of SARS-CoV-2 [56] 

Release rate 𝑟𝑠 (1/6)×10-3 s-1  Calibrated to timescale of SARS-CoV-2 [56] 

Scale factor for number of mRNA per infected cell 
𝑚𝑅𝑁𝐴𝑎𝑣𝑔 

1000 cell-1 Selected for average production of 2000 
virions per cell before death per influenza 
[75] 

Viral dissociation coefficient 𝑟ℎ𝑎𝑙𝑓 2000 Derived from 𝑚𝑅𝑁𝐴𝑎𝑣𝑔, 𝑟𝑚𝑎𝑥 and 𝑟𝑡  

Viral diffusion coefficient 𝐷𝑣𝑖𝑟 0.01 μm2 s-1 Selected according to sensitivity analysis 
and estimated from physiological ranges for 
lung mucus1 

Viral diffusion length 𝜆𝑣𝑖𝑟  36 μm Selected according to sensitivity analysis 

Viral decay rate 𝛾𝑣𝑖𝑟  7.71×10-6 s-1  Derived from 𝜆𝑣𝑖𝑟 and 𝐷𝑣𝑖𝑟 

Cytokine diffusion coefficient 𝐷𝑐𝑦𝑡  0.16 μm2 s-1 [69,70] (IL-2 cytokine) 

Cytokine diffusion length 𝜆𝑐𝑦𝑡  100 μm [69] (IL-2 cytokine) 

Cytokine decay rate 𝛾𝑐𝑦𝑡  1.32×10-5 s-1  Derived from 𝜆𝑐𝑦𝑡 and 𝐷𝑐𝑦𝑡 

Maximum cytokine immune secretion rate 
𝜎𝑐𝑦𝑡(𝑖𝑚𝑚𝑢𝑛𝑒 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑) 

3.5×10-4 pM s-1 Estimated as 1/10 of 𝜎𝑐𝑦𝑡(𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑)  

Immune secretion midpoint 𝑉𝑐𝑦𝑡(𝑖𝑚𝑚𝑢𝑛𝑒 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑) 1 pM [70] 

Cytokine immune uptake rate 𝜔𝑐𝑦𝑡(𝑖𝑚𝑚𝑢𝑛𝑒 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑) 3.5×10-4 pM s-1 [69] 

Maximum cytokine infected cell secretion rate 
𝜎𝑐𝑦𝑡(𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑) 

3.5×10-3 pM s-1 [69] 

Infected cell cytokine secretion mid-point 
𝑉𝑐𝑦𝑡(𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑), 𝑉𝑐𝑦𝑡(𝑣𝑖𝑟𝑢𝑠 𝑟𝑒𝑙𝑒𝑎𝑠𝑖𝑛𝑔) 

0.1  Chosen from typical simulation values of 
assembled virus. Values stay around 0.1 and 
increase as infection progresses 

Cytokine secretion Hill coefficient ℎ𝑐𝑦𝑡 2 Selected for simplest form with inflection of 
model response 

Immune cell cytokine activation 𝐸𝐶50𝑐𝑦𝑡,𝑎𝑐𝑡 10 pM [69] 

Immune cell equilibrium bound cytokine 𝐸𝑄𝑐𝑘 210 pM Chosen to be 2.1 x 𝐸𝐶50𝑐𝑦𝑡,𝑎𝑐𝑡 

Immune cell bound cytokine memory 𝜌𝑐𝑦𝑡 0.99998 s-1 Derived from 𝜔𝑐𝑦𝑡(𝑖𝑚𝑚𝑢𝑛𝑒 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑) and 

𝐸𝑄𝑐𝑘 

Immune cell activated time 10 h [71] 

.CC-BY 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted September 26, 2020. . https://doi.org/10.1101/2020.04.27.064139doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?OqAm0x
https://www.zotero.org/google-docs/?4K2kz2
https://www.zotero.org/google-docs/?UnATCA
https://www.zotero.org/google-docs/?tmn970
https://www.zotero.org/google-docs/?mNDPpv
https://www.zotero.org/google-docs/?mHHMcR
https://www.zotero.org/google-docs/?8zFiSc
https://www.zotero.org/google-docs/?3Z6Amh
https://www.zotero.org/google-docs/?IvbH0t
https://www.zotero.org/google-docs/?z1KOCc
https://www.zotero.org/google-docs/?VCVjNU
https://www.zotero.org/google-docs/?mmZohC
https://www.zotero.org/google-docs/?Rt14RT
https://doi.org/10.1101/2020.04.27.064139
http://creativecommons.org/licenses/by/4.0/


83 
 

Oxidation Agent diffusion coefficient 𝐷𝑜𝑥𝑖  0.64 μm2 s-1 Selected to be 4 x 𝐷𝑐𝑦𝑡 to model high 

diffusivity relative to IL-2 

Oxidation Agent diffusion length 𝜆𝑜𝑥𝑖 36 μm Selected to be 3 cell diameters to model high 
reactivity 

Oxidation Agent decay rate 𝛾𝑜𝑥𝑖 1.32×10-5 s-1  Derived from 𝜆𝑜𝑥𝑖 and 𝐷𝑜𝑥𝑖 

Immune cell oxidation agent secretion rate 𝜎𝑜𝑥𝑖 3.5×10-3 pM s-1 Selected to be the same as 𝜎𝑐𝑦𝑡(𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑) 

Immune cell 𝐶𝑐𝑦𝑡 threshold for Oxidation Agent release 

𝜏𝑜𝑥𝑖
𝑠𝑒𝑐 

10 A.U. = 1.5625 pM Selected according to sensitivity analysis 

Tissue cell 𝐶𝑜𝑥𝑖threshold for death 𝜏𝑜𝑥𝑖
𝑑𝑒𝑎𝑡ℎ 1.5 A.U. = 0.234375 pM Selected according to sensitivity analysis 

Initial density of unbound cell surface receptors 𝑅𝑜 200 cell-1  Selected for potential limiting factor 
(availability of receptors) from typical 
simulation extracellular virus field values 

Virus-receptor association affinity 𝑘𝑜𝑛 1.4×104 M-1s-1 [72,73]  

Virus-receptor dissociation affinity 𝑘𝑜𝑓𝑓 1.4×10-4 s-1 [72,73] 

Infection threshold 1 Calibrated to timescale of SARS-CoV-2 [56] 

Uptake Hill coefficient ℎ𝑢𝑝𝑡  2 Selected for simplest form with inflection of 
model response 

Uptake characteristic time constant 𝛼𝑢𝑝𝑡 20 min Selected to be the same as ∆𝑡 

Virally-induced apoptosis Hill coefficient ℎ𝑎𝑝𝑜  2 Selected for simplest form with inflection of 
model response 

Virally-induced apoptosis dissociation coefficient 𝑉𝑎𝑝𝑜  100 Selected according to sensitivity analysis 

Virally-induced apoptosis characteristic time constant 
𝛼𝑎𝑝𝑜 

20 min Selected to be the same as ∆𝑡 

Immune cell activation Hill coefficient ℎ𝑎𝑐𝑡  2 Selected for simplest form with inflection of 
model response 

Immune response add immune cell coefficient 𝛽𝑎𝑑𝑑  1/1200 s-1  Selected for sensitivity analysis of 𝛽𝑑𝑒𝑙𝑎𝑦 

Immune response subtract immune cell coefficient 𝛽𝑠𝑢𝑏 1/6000 cell-1 s-1  Selected according to 𝛽𝑎𝑑𝑑 for 5 resident 
immune cells (mean of all immune cell 
counts per epithelial cell from Control in [22] 
applied to 900 epithelial cells) 

Immune response delay coefficient 𝛽𝑑𝑒𝑙𝑎𝑦  1.2×106 s  Selected according to sensitivity analysis 

Immune response decay coefficient 𝛽𝑑𝑒𝑐𝑎𝑦  1/12000 s-1  Selected for sensitivity analysis of 𝛽𝑑𝑒𝑙𝑎𝑦 

Immune response cytokine transmission coefficient 𝛼𝑠𝑖𝑔  0.5 Selected for sensitivity analysis of 𝛽𝑑𝑒𝑙𝑎𝑦 

Immune response probability scaling coefficient 𝛼𝑖𝑚𝑚𝑢𝑛𝑒 0.01 Selected for sensitivity analysis of 𝛽𝑑𝑒𝑙𝑎𝑦 

Number of immune cell seeding samples 𝑛𝑠𝑒𝑒𝑑𝑖𝑛𝑔  10 Selected for sensitivity analysis of 𝛽𝑑𝑒𝑙𝑎𝑦 

Initial target volume 64 μm3  Derived from cell diameter and lattice width 
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Lambda volume 𝜆𝑣𝑜𝑙𝑢𝑚𝑒 9 Selected for acceptable deformation of 
immune cells 

Initial number of immune cells 0 Selected to demonstrate model feature of 
resident immune cells 

Lambda chemotaxis 𝜆𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠 1 Selected for appreciable chemotaxis without 
excessive cell deformation 

Intrinsic Random Motility ℋ∗  10 [68] 

Contact coefficients 𝐽 (all interfaces) 10 Selected comparably to [68] for low adhesion 
immune cell-immune cell and immune cell-
medium interfaces 

1 The diffusivity in water for a virus of radius 0.1 microns like SARS-CoV-2 according to Stokes-Einstein is about 3 microns2/s. The 1567 

average steady-shear viscosity for lung mucus varies significantly and is shear thinning, but in the more viscous regions is found to 1568 

vary for frequencies between 10-4 and 102 Hz, spanning viscosity values as high as 103 Pa-s and as low as 10-2 Pa-s. In general, at 1569 

low shear rates, the viscosity of human mucus is as high as 104−106 times that of water [74]. Thus the minimal diffusion constant 1570 

possible would be 3 x 10-6 microns2/s and the maximal rate in water would be 3 microns2/s. 0.01 microns2/s is a reasonable geometric 1571 

interpolation.  1572 

  1573 
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Supplementary Materials 1818 

 1819 

 1820 

Fig S1. No immune system.  1821 

Simulation of the progression of infection in a patch of epithelial tissue, with all parameters as in Fig 3, but with no 1822 

cellular immune system response corresponding to virus spread in an in vitro or organoid culture, or a severely 1823 

immunosuppressed individual. (A) Snapshots of spatial configuration vs time showing progression of simulated 1824 
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infection. Columns, left to right: 0 minutes (time of initial infection), 4000 minutes (67 hours, 2 ¾ days) after infection, 1825 

8000 minutes (133 hours, 5 ½ days), 12000 minutes (200 hours, 8 ⅓ days), 16000 minutes (267 hours, 11 days), and 1826 

20000 minutes (333 hours, 14 days). First row: epithelial cell layer composed of uninfected (blue), infected (green), 1827 

virus releasing (red) cells and dead cells (black). Second row: level of extracellular virus field. Third row: extracellular 1828 

cytokine field. Fields are color-coded on a logarithmic scale: red corresponds to the chosen maximum value specified 1829 

in the first panel, blue to six orders of magnitude lower than the maximum value, and values outside this range are 1830 

colored as their closest border value. (B-D) Simulation time series. (B) Number of uninfected (orange), infected (green), 1831 

virus releasing (red) and dead (purple) epithelial cells on a logarithmic scale vs time vs time in minutes. (C) Total 1832 

extracellular cytokine (magenta) and total extracellular virus (brown) on a logarithmic scale vs time in minutes. (D) 1833 

Value of the immune recruitment signal 𝑆 (yellow) and number of immune cells (grey) on a linear scale vs time in 1834 

minutes.  1835 

 1836 

 1837 

Fig S2. Special cases of spatiotemporal infection dynamics.  1838 

(A) A border case of slowed infection towards containment is Slowed Infection with constant virus: when the net 1839 

effectiveness of viral and immune dynamics are balanced, the number of infected cells and the total extracellular virus 1840 

fluctuate around steady state levels. (B) A limit case of Clearance is the failure to infect: initially infected cells may 1841 

replicate and secrete virus, but insufficiently so to infect other cells during simulation time such that any initially infected 1842 

cells vanish and total extracellular virus drops below a threshold of 10-3 per cell area. 1843 
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 1844 

Table S1. Varying parameters in simulations shown in Fig 4. Virus-receptor association affinity and immune 1845 

response delay coefficient shown for no immune response (Fig 4A), widespread infection (Fig 4B), slowed infection 1846 

(Fig 4C), containment (Fig 4D), recurrence (Fig 4E) and clearance (Fig 4F). All other parameters are as in Table 1. 1847 

Parameter No immune 
response 

Widespread 
infection 

Slowed 
infection 

Containment Recurrence Clearance 

Virus-receptor 
association affinity 

𝑘𝑜𝑛 (M-1 s-1) 

1.4×104  1.4×104  1.4×103  1.4×102  1.4×106  1.4×104  

Immune response 
delay coefficient 
𝛽𝑑𝑒𝑙𝑎𝑦 (s) 

- 1.2×107 s 1.2×108 s 1.2×105 s 1.2×104 s 1.2×105 s 

 1848 

 1849 

Fig S3. Time series of the number of uninfected cells for simulations in Fig 5.  1850 

Logarithmic multidimensional parameter sweep performed by running 10 simulation replicas increasing and decreasing 1851 

the baseline parameter values 10-fold and 100-fold for all parameter sets and replicas in Fig 5. Results show consistent 1852 

containment/clearance for small 𝑘𝑜𝑛 and small 𝛽𝑑𝑒𝑙𝑎𝑦 (upper right, green-shaded subplots), widespread infection for 1853 

high 𝑘𝑜𝑛 and small 𝛽𝑑𝑒𝑙𝑎𝑦 (lower left, orange-shaded subplots), and multiple outcomes for the same parameter values 1854 

(uncolored subplots). Number of cells are shown on a logarithmic scale vs time in minutes. 1855 
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 1856 

 1857 

Fig S4. Time series of the number of virus releasing cells for simulations in Fig 5.  1858 

Logarithmic multidimensional parameter sweep performed by running 10 simulation replicas increasing and decreasing 1859 

the baseline parameter values 10-fold and 100-fold for all parameter sets and replicas in Fig 5. Results show consistent 1860 

containment/clearance for small 𝑘𝑜𝑛 and small 𝛽𝑑𝑒𝑙𝑎𝑦 (upper right, green-shaded subplots), widespread infection for 1861 

high 𝑘𝑜𝑛 and small 𝛽𝑑𝑒𝑙𝑎𝑦 (lower left, orange-shaded subplots), and multiple outcomes for the same parameter values 1862 

(uncolored subplots). Number of cells are shown on a logarithmic scale vs time in minutes. 1863 

 1864 
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 1865 

Fig S5. Time series of the number of immune cells for simulations in Fig 5.  1866 

Logarithmic multidimensional parameter sweep performed by running 10 simulation replicas increasing and decreasing 1867 

the baseline parameter values 10-fold and 100-fold for all parameter sets and replicas in Fig 5. Results show consistent 1868 

containment/clearance for small 𝑘𝑜𝑛 and small 𝛽𝑑𝑒𝑙𝑎𝑦 (upper right, green-shaded subplots), widespread infection for 1869 

high 𝑘𝑜𝑛 and small 𝛽𝑑𝑒𝑙𝑎𝑦 (lower left, orange-shaded subplots), and multiple outcomes for the same parameter values 1870 

(uncolored subplots). Number of cells are shown on a logarithmic scale vs time in minutes. 1871 

 1872 
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 1873 

Fig S6. Time series of the immune response state variable 𝑺 for simulations in Fig 5.  1874 

Logarithmic multidimensional parameter sweep performed by running 10 simulation replicas increasing and decreasing 1875 

the baseline parameter values 10-fold and 100-fold for all parameter sets and replicas in Fig 5. Results show consistent 1876 

containment/clearance for small 𝑘𝑜𝑛 and small 𝛽𝑑𝑒𝑙𝑎𝑦 (upper right, green-shaded subplots), widespread infection for 1877 

high 𝑘𝑜𝑛 and small 𝛽𝑑𝑒𝑙𝑎𝑦 (lower left, orange-shaded subplots), and multiple outcomes for some parameter sets 1878 

(unshaded subplots). 𝑆 is shown on a linear scale vs time in minutes. 1879 

 1880 
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 1881 

Fig S7. Simulations from Fig 8, showing the number of dead cells.  1882 

Time series of the number of dead cells for each simulation replica in Fig 8. Number of cells is shown on a logarithmic 1883 

scale vs time in minutes. 1884 

 1885 
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 1886 

Fig S8. Simulations from Fig 8, showing the number of infected cells.  1887 

Time series of the number of infected cells for each simulation replica in Fig 8. Number of cells is shown on a logarithmic 1888 

scale vs time in minutes. 1889 

 1890 
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 1891 

Fig S9. Simulations from Fig 8 showing the number of immune cells.  1892 

Time series of the number of immune cells for each simulation replica in Fig 8. Number of cells is shown on a logarithmic 1893 

scale vs time in minutes. 1894 

 1895 
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 1896 

Fig S10. Simulations from Fig 8 showing the immune response state variable.  1897 

Time series of the immune response state variable 𝑆 for each simulation replica in Fig 8. 𝑆 is shown on a linear scale 1898 

vs time in minutes. 1899 

 1900 

.CC-BY 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted September 26, 2020. . https://doi.org/10.1101/2020.04.27.064139doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.27.064139
http://creativecommons.org/licenses/by/4.0/


101 
 

 1901 

Fig S11. Variation in time of first treatment after infection with a reduced viral RNA replication rate causes a 1902 

bifurcation in simulation outcomes.  1903 

Simulations and parameters are as in Figs 9-11, for a viral replication rate multiplier of 0.375 and, from left to right, time 1904 

delays of application of 6000, 8000, 10000, and 12000 minutes (100, 133, 167 and 200 hours, 4, 5 ½, 7 and 8 ⅓ days) 1905 

(dashed lines). Results from all simulation replicas are shown vs time in minutes for, from top to bottom: number of 1906 

uninfected cells, number of infected cells, number of virus releasing cells, number of dead cells, total extracellular virus, 1907 

total cytokine, number of immune cells, and immune response state variable 𝑆. Parameter set subplots are shaded as 1908 

in Figs 9-11 according to simulation outcomes.  1909 

 1910 
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Downloading and running the simulation 1911 

The COVID-19 simulation’s source code is available in the GitHub repository 1912 

https://github.com/covid-tissue-models/covid-tissue-response-1913 

models/tree/master/CC3D/Models/BiocIU/SARSCoV2MultiscaleVTM. The simulation is a 1914 

model specification which runs in the CompuCell3D virtual-tissue simulation environment. 1915 

To run the simulation requires installation of CompuCell3D version 4.1.1 or later. 1916 

CompuCell3D is open-source and runs on Windows, Mac and Linux operating systems. 1917 

It can be downloaded from https://compucell3d.org/SrcBin. Installers are available for 1918 

Windows operating systems and Mac installation also does not require compilation. 1919 

CompuCell3D’s manuals are available at https://compucell3d.org/Manuals. The COVID-1920 

19 simulation can also be run online without requiring any installations or downloads on 1921 

the nanoHUB servers at https://nanohub.org/tools/cc3dcovid19/. Use of nanoHUB is free 1922 

but requires user registration. The simulation may take a few moments to load in its 1923 

nanoHUB deployment; during load the simulation area will be blue. 1924 

Twedit++ is a specialized text editor for CompuCell3D simulations which comes 1925 

packaged with CompuCell3D. Tweedit++ can open cc3d file extensions which contain the 1926 

simulation file structure for CompuCell3D simulations. To open the COVID-19 simulation 1927 

click “Open CC3D Project” (Fig S12) and select ViralInfectionVTM.cc3d in 1928 

<repository-folder>/covid-tissue-response-1929 

models/CC3D/Models/BiocIU/SARSCoV2MultiscaleVTM/Model. Once opened, 1930 

ViralInfectionVTM.cc3d will appear in the left- hand panel “CC3D Simulation” (Fig S13). 1931 

Double click on it to open all simulation files. The main simulation files are: 1932 

ViralInfectionVTM.xml, which defines certain simulation properties (e.g., cell types, lattice 1933 
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size, energy-constraint plugins, diffusive fields); ViralInfectionVTMSteppables.py, which 1934 

defines the simulation’s initial conditions, main interactions and dynamics (e.g., cell 1935 

initialization, immune-cell recruitment, secretion by cells into fields, uptake by cells from 1936 

fields); ViralInfectionVTMSteppableBasePy.py, where the viral infection Antimony 1937 

submodel is declared; ViralInfectionVTMModelInputs.py, which sets the parameters. The 1938 

submodels in ViralInfectionVTMSteppables.py are organized as python classes, making 1939 

them easy to modify. Tweedit++ can also copy and rename the simulation project to a 1940 

new directory by using CC3D Project; Save Project As. However the save as 1941 

does not copy the folder <...>/Model/nCoVToolkit, which must be copied into the 1942 

new simulation directory separately. 1943 

CompuCell3D Player is a GUI tool which executes CompuCell3D simulations 1944 

during desktop execution (or on nanoHUB). In order to run the simulation either right click 1945 

ViralInfectionVTM.cc3d in the left hand panel and select “Open In Player” or open 1946 

CompuCell3D.exe to open the CompuCell3D Player and select File; Open 1947 

Simulation File and open ViralInfectionVTM.cc3d. Once the simulation is open in 1948 

Player click play (on the nanoHub deployment the simulation should start automatically). 1949 

Player will display windows with the cell lattice rendered (Fig S14), set the z-plane to 0 to 1950 

visualize the epithelial cells and the z-plane to 1 to visualize the immune cells. More 1951 

windows can be created (menu Window; New graphics Window, Fig S15) as 1952 

needed to visualize the virus, cytokine, oxidative agent fields. Each window has a drop-1953 

down menu containing the selection of fields that can be rendered (i.e., the chemical fields 1954 

and the cell field, Fig S16).  1955 

 1956 
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 1957 

Fig S12. Opening a CompuCell3D project in Tweedit++. 1958 

 1959 

Fig S13. Tweedit++’s left hand panel with simulation project files opened. 1960 

 1961 
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 1962 

Fig S14. Example of CompuCell3D’s player open with the COVID-19 simulation loaded. 1963 

 1964 

 1965 

Fig S15. How to open a new simulation render window in CompuCell3D Player. 1966 

 1967 
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 1968 

Fig S16. Drop-down menu in simulation render window to select which field to render. 1969 

 1970 
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Sensitivity analysis of the baseline parameter set 1971 

 1972 

Fig S17. Pairwise parameter sweep of the oxidative agent threshold for death 𝝉𝒐𝒙𝒊
𝒅𝒆𝒂𝒕𝒉 and the virus-receptor 1973 

association affinity 𝒌𝒐𝒏 (× 𝟎. 𝟎𝟏,×  𝟎. 𝟏,×  𝟏,×  𝟏𝟎,×  𝟏𝟎𝟎) around their baseline values, with ten simulation 1974 

replicas per parameter set (all other parameters have their baseline values as given in Table 1).  1975 

The number of uninfected epithelial cells for each simulation replica for each parameter set, plotted on a logarithmic 1976 

scale, vs time displayed in minutes.  1977 

 1978 
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 1979 

Fig S18. Pairwise parameter sweep of the immune response delay 𝜷𝒅𝒆𝒍𝒂𝒚 (× 𝟎. 𝟎𝟏,×  𝟎. 𝟏,×  𝟏,×  𝟏𝟎,×  𝟏𝟎𝟎) and 1980 

infection threshold (× 𝟎. 𝟏,×  𝟎. 𝟐,×  𝟏,×  𝟓,×  𝟏𝟎) around their baseline values, with ten simulation replicas per 1981 

parameter set (all other parameters have their baseline values as given in Table 1).  1982 

The number of uninfected epithelial cells for each simulation replica for each parameter set, plotted on a logarithmic 1983 

scale, vs time displayed in minutes.  1984 

 1985 
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 1986 

Fig S19. Pairwise parameter sweep of the oxidative agent threshold for death 𝝉𝒐𝒙𝒊
𝒅𝒆𝒂𝒕𝒉 (× 𝟎. 𝟎𝟏,×  𝟎. 𝟏,×  𝟏,×  𝟏𝟎,×1987 

 𝟏𝟎𝟎) and the infection threshold (× 𝟎. 𝟏,×  𝟎. 𝟐,×  𝟏,×  𝟓,×  𝟏𝟎) around their baseline values, with ten simulation 1988 

replicas per parameter set (all other parameters have their baseline values as given in Table 1).  1989 

The number of uninfected epithelial cells for each simulation replica for each parameter set, plotted on a logarithmic 1990 

scale, vs time displayed in minutes.  1991 

 1992 
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 1993 

Fig S20. Pairwise parameter sweep of the viral diffusion coefficient 𝑫𝒗𝒊𝒓 and the cytokine diffusion coefficient 1994 

𝑫𝒄𝒚𝒕 (× 𝟎. 𝟏,×  𝟎. 𝟐,×  𝟏,×  𝟓,×  𝟏𝟎) around their baseline values, with ten simulation replicas per parameter set 1995 

(all other parameters have their baseline values as given in Table 1).  1996 

The number of uninfected epithelial cells for each simulation replica for each parameter set, plotted on a logarithmic 1997 

scale, vs time displayed in minutes.  1998 

 1999 
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 2000 

Fig S21. Pairwise parameter sweep of the oxidative agent threshold for death 𝝉𝒐𝒙𝒊
𝒅𝒆𝒂𝒕𝒉 and the virally-induced 2001 

apoptosis dissociation coefficient 𝑽𝒂𝒑𝒐 (× 𝟎. 𝟎𝟏,×  𝟎. 𝟏,×  𝟏,×  𝟏𝟎,×  𝟏𝟎𝟎) around their baseline values, with ten 2002 

simulation replicas per parameter set (all other parameters have their baseline values as given in Table 1).  2003 

The number of uninfected epithelial cells for each simulation replica for each parameter set, plotted on a logarithmic 2004 

scale, vs time displayed in minutes.  2005 

 2006 
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 2007 

Fig S22. Pairwise parameter sweep of the viral diffusion coefficient 𝑫𝒗𝒊𝒓 (× 𝟎. 𝟏,×  𝟎. 𝟐,×  𝟏,×  𝟓,×  𝟏𝟎) and the 2008 

virus-receptor association affinity 𝒌𝒐𝒏 (× 𝟎. 𝟎𝟏,×  𝟎. 𝟏,×  𝟏,×  𝟏𝟎,×  𝟏𝟎𝟎) around their baseline values, with ten 2009 

simulation replicas per parameter set (all other parameters have their baseline values as given in Table 1).  2010 

The number of uninfected epithelial cells for each simulation replica for each parameter set, plotted on a logarithmic 2011 

scale, vs time displayed in minutes.  2012 

 2013 
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A non-uniform epithelial sheet shows no significant effects in emergent dynamics 2014 

of simulation outcomes  2015 

 2016 

Fig S23. Simulation of viral infection using the baseline parameter set as in Fig 3 but with a non-uniform 2017 

epithelial sheet.  2018 

(A) Widespread infection occurs with the same spatiotemporal features as in Fig 3A in a non-uniform epithelial sheet. 2019 

(B) Ten simulation replicas with a non-uniform epithelial sheet showed no significant differences in transient metrics 2020 

compared to simulations with a uniform epithelial sheet.  2021 

 2022 

Integration of an explicit RNA synthesis model 2023 

The HCV model in [59] describes subgenomic replication in two compartments, 2024 

namely the cytoplasm and vesicular membrane structures (VMS). Integration with the 2025 

viral replication model described in Quantitative model and implementation requires the 2026 

two modifications, one to the HCV model, and one to the viral replication model of the 2027 

main framework, such that the viral genome taking part in genomic replication from (7) is 2028 
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a proxy for the cytoplasmic plus-strand RNA molecules of the HCV model. Both 2029 

modifications are described here. 2030 

According to the HCV model, in the cytoplasm, 2031 

𝑑𝑅𝑝
𝑐𝑦𝑡

𝑑𝑡
= 𝑘2𝑇𝑐 + 𝑘𝑃𝑜𝑢𝑡𝑅𝑃 − 𝑘𝐼𝑅𝑖𝑏𝑜𝑅𝑃

𝑐𝑦𝑡
− 𝑘𝑃𝑖𝑛𝑅𝑃

𝑐𝑦𝑡
− 𝜇𝑃

𝑐𝑦𝑡
𝑅𝑃

𝑐𝑦𝑡
+ 𝑛𝐻𝐶𝑉𝑟𝑢𝑈,                 (S1) 2032 

𝑑𝑇𝑐

𝑑𝑡
= 𝑘𝐼𝑅𝑖𝑏𝑜𝑅𝑃

𝑐𝑦𝑡
− 𝑘2𝑇𝑐 − 𝜇𝑇𝑐𝑇𝑐 ,                                                  (S2) 2033 

𝑑𝑃𝑐𝑦𝑡

𝑑𝑡
= 𝑘2𝑇𝑐 − 𝑘𝑐𝑃𝑐𝑦𝑡,                                                          (S3) 2034 

𝑑𝐸𝑐𝑦𝑡

𝑑𝑡
= 𝑘𝑐𝑃𝑐𝑦𝑡 − 𝑘𝐸𝑖𝑛𝐸𝑐𝑦𝑡 − 𝜇𝐸

𝑐𝑦𝑡
𝐸𝑐𝑦𝑡,                                               (S4) 2035 

where 𝑅𝑃
𝑐𝑦𝑡

 is the number of plus-strand HCV RNA molecules in the cytoplasm, 𝑇𝑐 is the 2036 

number of translation complexes in the cytoplasm, 𝑃𝑐𝑦𝑡 is the number of HCV polyprotein 2037 

molecules in the cytoplasm, 𝐸𝑐𝑦𝑡 is the number of enzyme NS5B and other viral proteins 2038 

needed for RNA synthesis in the cytoplasm, 𝑅𝑖𝑏𝑜 is the number of host cell ribosomes 2039 

(𝑅𝑖𝑏𝑜 = 𝑅𝑖𝑏𝑜
𝑡𝑜𝑡 − 𝑇𝑐 for fixed total available ribosomes 𝑅𝑖𝑏𝑜

𝑡𝑜𝑡), and 𝑛𝐻𝐶𝑉 relates 𝑅𝑃
𝑐𝑦𝑡

 to unitless 2040 

𝑅. Simulations of the HCV model were performed as in [59] by initializing 𝑅𝑃
𝑐𝑦𝑡

 with an 2041 

initial nonzero value in the initially infected cell. In the case of a spatial context, where 2042 

cells are infected at various times according to progression of infection and subsequent 2043 

internalization events, subgenomic replication within a particular cell occurs due to 2044 

internalization of virus by the cell (6). As such, the final term of (S1) was added during 2045 

integration such that internalized virus acts as a source for 𝑅𝑃
𝑐𝑦𝑡

. 2046 
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Likewise, in the VMS, 2047 

𝑑𝑅𝑃

𝑑𝑡
= −𝑘3𝑅𝑃𝐸 + 𝑘4𝑝𝑅𝐼𝑑𝑠 + 𝑘𝑃𝑖𝑛𝑅𝑃

𝑐𝑦𝑡
− (𝑘𝑃𝑜𝑢𝑡 + 𝜇𝑃)𝑅𝑃,                                (S5) 2048 

𝑑𝑅𝑑𝑠

𝑑𝑡
= 𝑘4𝑚𝑅𝐼𝑝 + 𝑘4𝑝𝑅𝐼𝑑𝑠 − 𝑘5𝑅𝑑𝑠𝐸 − 𝜇𝑑𝑠𝑅𝑑𝑠,                                         (S6) 2049 

𝑑𝐸

𝑑𝑡
= 𝑘𝐸𝑖𝑛𝐸𝑐𝑦𝑡 + 𝑘4𝑚𝑅𝐼𝑝 + 𝑘4𝑝𝑅𝐼𝑑𝑠 − 𝑘3𝑅𝑃𝐸 − 𝑘5𝑅𝑑𝑠𝐸 − 𝜇𝐸𝐸,                             (S7) 2050 

𝑑𝑅𝐼𝑝

𝑑𝑡
= 𝑘3𝑅𝑃𝐸 − 𝑘4𝑚𝑅𝐼𝑝 − 𝜇𝐼𝑝𝑅𝐼𝑝,                                                (S8) 2051 

𝑑𝑅𝐼𝑑𝑠

𝑑𝑡
= 𝑘5𝑅𝑑𝑠𝐸 − 𝑘4𝑝𝑅𝐼𝑑𝑠 − 𝜇𝐼𝑑𝑠𝑅𝐼𝑑𝑠,                                               (S9) 2052 

where 𝑅𝑃 is the number of plus-strand RNA in the VMS, 𝑅𝑑𝑠 is the number of dsRNA in 2053 

the VMS, 𝐸 is the number of HCV polymerase complexes in the VMS, 𝑅𝐼𝑝 is the number 2054 

of plus-strand RNA replicative intermediate complexes in the VMS and 𝑅𝐼𝑑𝑠 is the number 2055 

of plus-strand dsRNA replicative intermediate complexes in the VMS. 2056 

Having selected 𝑅𝑃
𝑐𝑦𝑡

 and 𝑅 as the shared biological object of the two models, mass 2057 

action 𝑅 → 𝑃 of the viral replication model of the main framework requires modification. 2058 

We assume that decay of 𝑅𝑃
𝑐𝑦𝑡

 described in the HCV model leads to production of 𝑃 2059 

through intermediate processes. The viral replication model of the main framework ((6)–2060 

(10)) then takes the modified form, 2061 

𝑑𝑈

𝑑𝑡
= 𝑈𝑝𝑡𝑎𝑘𝑒 − 𝑟𝑢𝑈,                                                    (S10) 2062 

𝑛𝐻𝐶𝑉𝑅 = 𝑅𝑃
𝑐𝑦𝑡

,                                                       (S11) 2063 
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𝑑𝑃

𝑑𝑡
= 𝑟𝑡′𝑅 − 𝑟𝑝𝑃,                                                      (S12) 2064 

𝑑𝐴

𝑑𝑡
= 𝑟𝑝𝑃 − 𝑅𝑒𝑙𝑒𝑎𝑠𝑒,                                                    (S13) 2065 

where 𝑟𝑡′ is the rate of production of 𝑃 per unit of 𝑅 associated with decay of 𝑅𝑃
𝑐𝑦𝑡

. Note 2066 

that without the introduction of additional decay to the HCV model equations, the 2067 

integrated form of the HCV model effectively acts the same as its original form within each 2068 

cell, subject to the cellular and spatial aspects of internalization events. All parameters of 2069 

the integrated HCV model in simulations shown in Particularization to hepatitis C virus by 2070 

integration of an explicit RNA synthesis model were taken from [59] (Table S2). 2071 

 2072 

Table S2. Parameter values of integrated HCV model. 2073 

Simulation parameters Value 

𝑇𝑐 formation rate 𝑘1 4800 molecule-1 min. -1 

Nascent polyprotein cleavage rate 𝑘2 6000 min.-1 

Viral polyprotein cleavage rate 𝑘𝑐 36 min.-1 

𝑅𝑃
𝑐𝑦𝑡

 transport rate into cytoplasm 𝑘𝑃𝑖𝑛 12 min.-1 

𝑅𝑃 transport rate into VMS 𝑘𝑃𝑜𝑢𝑡 12 min.-1 

𝐸𝑐𝑦𝑡 transport rate in VMS 𝑘𝐸𝑖𝑛 7.8×10-4 min.-1 

𝑅𝐼𝑝 formation rate 𝑘3 1.2 molecule-1 min.-1 

𝑅𝑃 synthesis rate 𝑘4𝑝 102 min.-1 

𝑅𝑑𝑠 synthesis rate 𝑘4𝑚 102 min.-1 

𝑅𝐼𝑑𝑠 formation rate 𝑘5 240 min.-1 

𝑅𝑃
𝑐𝑦𝑡

 degradation rate 𝜇𝑃
𝑐𝑦𝑡

 600 min.-1 

𝑅𝑃 degradation rate 𝜇𝑃 4.2 min.-1 

𝑅𝑑𝑠 degradation rate 𝜇𝑑𝑠 3.6 min.-1 
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𝑅𝐼𝑝 degradation rate 𝜇𝐼𝑝 2.4 min.-1 

𝑅𝐼𝑑𝑠 degradation rate 𝜇𝐼𝑑𝑠 7.8 min.-1 

𝑇𝑐 degradation rate 𝜇𝑇𝑐 0.9 min.-1 

𝐸 degradation rate 𝜇𝐸 2.4 min.-1 

𝐸𝑐𝑦𝑡 degradation rate 𝜇𝐸
𝑐𝑦𝑡

 3.6 min.-1 

Total number of available ribosomes 𝑅𝑖𝑏𝑜
𝑡𝑜𝑡  700 

RNA conversion factor 𝑛𝐻𝐶𝑉 100 molecule 𝑅-1 

𝑃 production rate 𝑟𝑡′ 2.5 min.-1 𝑅-1 

  2074 

Collaborative viral infection modeling environment 2075 

Given the immense amount of complexity associated with viral infection, 2076 

supporting collaborative, independent, concurrent, and even conflicting, model 2077 

development is critical to building an informative and predictive multiscale model of viral 2078 

infection. As such, the simulation architecture developed for the CompuCell3D 2079 

implementation, as demonstrated in Model extensions, supports development, 2080 

deployment and distribution of add-on modules following the Python programming 2081 

language design principles and practices of extensibility and modularity. This architecture 2082 

exploits the architecture of CompuCell3D itself, specifically, that model implementation in 2083 

CompuCell3D consists of designing a set of Python classes called “steppables”, each of 2084 

which is imported into CompuCell3D and simulated (via exactly two simple lines of Python 2085 

code per steppable, see Deploying a model extension in CompuCell3D). Each steppable 2086 

typically implements a particular model, function, or feature (e.g., viral internalization, data 2087 

post-processing and exporting), and provides instructions to CompuCell3D about what to 2088 

do during each simulation step along with the core simulation engine (e.g., implementing 2089 
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the Cellular Potts Model), as well as what to do before and after simulation, through a 2090 

simple interface (e.g., procedures to perform by a steppable during each simulation step 2091 

are described in a function “step” in the steppable class definition). This approach is 2092 

particularly well suited for supporting collaborative, independent, and concurrent model 2093 

development because model specification of a particular simulation in CompuCell3D 2094 

consists of selecting and loading a particular set of steppables, each of which can be 2095 

specified in separate Python scripts and packaged in uniquely named directories, 2096 

developed by collaborating or independent and otherwise disconnected research groups, 2097 

and intended to model specific biological phenomena. Furthermore, specification of 2098 

model implementations using Python classes also enables development of model 2099 

extensions from existing modules (whether from the main framework or an add-on 2100 

module) using basic Python class inheritance functionality (where class definitions can 2101 

be constructed from other class definitions and subsequently modified, see Extending a 2102 

model in CompuCell3D).  2103 

We envision a community of modelers much like the community of Python 2104 

developers, which develops Python packages, called “modules”, that can be publicly 2105 

distributed and imported into software using a simple, one-line Python command (e.g., 2106 

import MyModule). As such, we have built into the CompuCell3D implementation used in 2107 

this work a location for storing a library of add-on modules, as well as supporting 2108 

architecture to facilitate development and deployment of add-on modules. Furthermore, 2109 

along with making the simulation framework publicly available online as described in 2110 

Downloading and running the simulation, the online repository also hosts this library of 2111 

add-on modules as part of the standard download package, which we continue to develop 2112 
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and maintain, and for which we are currently developing standards (e.g., standard 2113 

documentation) and supporting tools (e.g., documentation generators). We welcome 2114 

usage by, and contributions from, all interested groups, and provide a basic overview of 2115 

deploying and developing model extensions in the remaining discussion of this section.  2116 

 2117 

Deploying a model extension in CompuCell3D. As in any typical CompuCell3D 2118 

model specification, one script of the simulation files shown in Fig S13, 2119 

Simulation/ViralInfectionVTM.py, imports all modules of the main framework and loads 2120 

them into CompuCell3D for simulation. The directory “Simulation” contains all source 2121 

code of the main framework, while an additional directory “Models” is dedicated to 2122 

storing source code of the add-on module library. Each add-on module is an importable 2123 

Python module stored in its own, uniquely named subdirectory (e.g., 2124 

Models/IUBIOCAddons). Code Snippet S1 shows a section of the contents of 2125 

Simulation/ViralInfectionVTM.py for a simulation using the Simple Recovery model 2126 

described in An extensible framework architecture enables the inclusion of tissue 2127 

recovery.  2128 

 2129 

 2130 

Code Snippet S1. Select import and load commands from Simulation/ViralInfectionVTM.py. 2131 
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 2132 

Lines 1 and 2 in Code Snippet S1 import and load the steppable 2133 

“ViralInternalizationSteppable” that implements the internalization model described in E1 2134 

- Viral internalization from Simulation/ViralInfectionVTMSteppables.py. Lines 4 and 5 2135 

show that not much is different concerning loading and importing add-on modules. The 2136 

steppable “SimpleRecoverySteppable” implements the Simple Recovery Model, and is 2137 

defined in Models/RecoverySimple/RecoverySteppables.py. The only difference between 2138 

importing and loading a module from the main framework or add-on module library is 2139 

specifying the location of the Python script containing the steppable to be deployed in a 2140 

simulation. This way, two model modules can define steppables in Python scripts of the 2141 

same name without overwriting each other (e.g., Models/GroupX/Steppables.py or 2142 

Models/GroupY/Steppables.py). The only necessarily unique aspect of a particular model 2143 

module is the name of its containing directory (e.g., the directory Models/GroupX or 2144 

Models/GroupY). This scheme isolates model-specific development to the directory in 2145 

which the add-on model is defined, and modularizes the overall simulation framework into 2146 

shareable, interchangeable model components. Furthermore, since development of add-2147 

on modules is isolated to a uniquely named directory, the framework promotes concurrent 2148 

development and implementation of unrelated or even competing models. 2149 

 2150 

Developing a Model Extension in CompuCell3D. Developing a model extension is as 2151 

simple as the typical CompuCell3D model implementation procedure of developing 2152 

steppables in Python using the CompuCell3D steppable class “SteppableBasePy” (see 2153 
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Extending a model in CompuCell3D for discussion of Python class inheritance). Code 2154 

Snippet S2 shows the application programming interface (API) and select code from the 2155 

Python script Models/RecoverySimple/RecoverySteppables.py in the add-on module 2156 

library that implements the Simple Recovery model described in An extensible 2157 

framework architecture enables the inclusion of tissue recovery. 2158 

 2159 
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 2160 

Code Snippet S2. API for the steppable implementing the Simple Recovery model, derived from 2161 

Models/RecoverySimple/RecoverySteppables.py.  2162 

The exact code of the implementation is shown for the steppable function “cell_recovers” (Lines 32-36).  2163 
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 2164 

Lines 1-4 in Code Snippet S2 add the directory containing both the main framework 2165 

and add-on modules library directories using the environment variable 2166 

“ViralInfectionVTM”, which makes both available to any module loaded into CompuCell3D 2167 

from Simulation/ViralInfectionVTM.py, whether directly or indirectly (e.g., when 2168 

Simulation/ViralInfectionVTM.py imports module “A” that imports module “B”). Line 6 2169 

imports parameter values of this module defined in 2170 

Models/RecoverySimple/RecoveryInputs.py, while Line 7 imports a parameter value from 2171 

the main framework for use in calculations. Line 8 imports the Python standard module 2172 

“random” for generating random numbers, which, like the rest of the Python standard 2173 

library and many others, is distributed with CompuCell3D. Line 9 imports everything from 2174 

the CompuCell3D module “PySteppables”, which contains the available Python classes 2175 

for Python model implementation in CompuCell3D.  2176 

Line 11 in Code Snippet S2 begins the definition of the Simple Recovery model 2177 

steppable, “SimpleRecoverySteppable”. SimpleRecoverySteppable inherits from 2178 

“SteppableBasePy”, a steppable class defined in the PySteppables module. Its first three 2179 

functions, “__init__”, “start”, and “step”, are all functions of the CompuCell3D steppable 2180 

interface. “__init__” defines the procedures to be performed for initializing the steppable. 2181 

“start” defines the procedures to be performed after CompuCell3D has initialized but 2182 

before simulation begins (in the case of this steppable, sharing a reference to itself with 2183 

the rest of the framework). “step” defines the procedures to be performed during each 2184 

simulation step (in this case of this steppable, evaluating recovery in each dead cell and 2185 
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executing recovery when it occurs). The final two functions are specific to this steppable. 2186 

The first, “recover_cell”, performs the necessary procedures associated with recovery on 2187 

a cell when given one as an argument (i.e., “_cell”). The second, “cell_recovers”, 2188 

evaluates whether or not a particular cell is recovered. It should be noted that deployment 2189 

of the SimpleRecoverySteppable class is not limited to usage directly in CompuCell3D as 2190 

a simulated steppable. Rather, like the importing of a parameter value from the main 2191 

framework in Line 7 of Code Snippet S2, the SimpleRecoverySteppable class can be 2192 

imported into other modules for other purposes, like performing recovery of a dead cell 2193 

but due to an alternative recovery criterion. The following section describes an example 2194 

of such functionality.  2195 

 2196 

Extending a model in CompuCell3D. Like any other Python class, steppables (and 2197 

other code) defined in one model module can be extended by, or integrated into, other 2198 

modules, such that the components of the overall simulation framework are not only 2199 

interchangeable and shareable, but also extensible. In the previous section, Code 2200 

Snippet S2 demonstrated the ability to import a parameter value (i.e., “s_to_mcs”, Line 2201 

7) from the main framework for usage in an add-on module. The same can be done for 2202 

integrating modules (whether from the main framework or add-on library) into other add-2203 

on modules, as well as for extending model modules using Python class inheritance. 2204 

Python class inheritance enables the construction of classes from the definition of other 2205 

classes, such that functionality and interfaces defined by one class can be employed, 2206 

selectively adapted, and extended, by subsequent classes that inherit from it. Any 2207 

inheriting class, called a “derived class”, can replace (i.e., “overwrite”) the executed 2208 
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code of a function in the definition of an inherited class, called a “base class”, if the 2209 

derived class defines a function with the same name and arguments. All inherited 2210 

functions that are not overwritten by a derived class are the same.  2211 

Simulation results of the Neighbor Recovery model in An extensible framework 2212 

architecture enables the inclusion of tissue recovery demonstrate deployment using the 2213 

framework capability of constructing add-on modules from other add-on modules. 2214 

Computationally, nearly all aspects of the Recovery Model are the same as the Simple 2215 

Recovery model (e.g., test for recovery in every cell during each simulation step, 2216 

implement recovery when it occurs). The only difference between the two models is the 2217 

criterion by which recovery of a dead cell is evaluated, making the implementation of the 2218 

Neighbor Recovery model a strong candidate for exploiting Python class inheritance, as 2219 

demonstrated in Code Snippet S3.  2220 

 2221 

 2222 
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Code Snippet S3. API for the steppable implementing the Simple Recovery model, derived from 2223 

Models/RecoveryNeighbor/RecoverySteppables.py. 2224 

 2225 

As in Code Snippet S2, Lines 1-4 of Code Snippet S3 makes available the entire 2226 

framework, while Line 5 imports the Simple Recovery model steppable definition for 2227 

extension. Line 7 begins the definition of the steppable “NeighborRecoverySteppable” 2228 

that implements the Neighbor Recovery model by inheriting from the class definition for 2229 

the Simple Recovery model “SimpleRecoverySteppable”. Since all functionality of the 2230 

Neighbor Recovery steppable is to be the same as the Simple Recovery steppable except 2231 

for the recovery criterion, Lines 8-9 initialize the Neighbor Recovery steppable exactly the 2232 

same as the Simple Recovery steppable. Lines 11-14 begin overwriting the definition of 2233 

the recovery criterion from Simple Recovery according to the Neighbor Recovery model. 2234 

Since no other functions of the Simple Recovery steppable are overwritten, they are then 2235 

exactly the same for the Neighbor Recovery steppable. Furthermore, since the signature 2236 

of the function that implements the recovery criterion (i.e., “cell_recovers(self, _cell)”) has 2237 

the exact same name and arguments in both steppables (i.e., the function “cell_recovers” 2238 

is overwritten by NeighborRecoverySteppable), they can be used in the exact same way 2239 

by other modules (e.g., a variable “my_recovery_steppable”, whether an instance of 2240 

SimpleRecoverySteppable or NeighborRecoverySteppable, receives and returns the 2241 

same type of information). The only difference in behavior between using one or the other 2242 

is the potential outcome of asking either recovery steppable whether or not a particular 2243 

dead cell recovers, about which the two models will often disagree.  2244 
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