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Abstract: The liver is an essential immunological organ due to its gatekeeper position to bypassing
antigens from the intestinal blood flow and microbial products from the intestinal commensals. The
tissue-resident liver macrophages, termed Kupffer cells, represent key phagocytes that closely interact
with local parenchymal, interstitial and other immunological cells in the liver to maintain homeostasis
and tolerance against harmless antigens. Upon liver injury, the pool of hepatic macrophages expands
dramatically by infiltrating bone marrow-/monocyte-derived macrophages. The interplay of the
injured microenvironment and altered macrophage pool skews the subsequent course of liver injuries.
It may range from complete recovery to chronic inflammation, fibrosis, cirrhosis and eventually
hepatocellular cancer. This review summarizes current knowledge on the classification and role of
hepatic macrophages in the healthy and injured liver.
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1. Introduction

Apart from its central role as a metabolic organ, the liver is of critical importance
for immune homeostasis and immunological responses to injury. It is located at an in-
tersection of systemic circulation receiving arterial blood through the hepatic artery and
portal venous gut-derived blood, enriched with nutrients and microbial products. This
gatekeeper position gives the liver not only the challenging task to extract and adapt to
innocuous nutrient antigens, but also to identify, bind, inactivate and filter potentially
harmful antigens before entering the systemic circulation. To fulfill these tasks the liver
harbors the largest population of tissue macrophages in the human body, the so-called
Kupffer cells [1–3]. Hepatic macrophages consist of tissue-resident Kupffer cells and bone
marrow-derived monocytes migrating from the blood stream into the liver tissue, giving
rise to bone marrow-derived macrophages [4]. Within the fine microanatomical meshwork
of sinusoidal vessels supplying each hepatocyte (the functional, metabolic unit in the liver)
Kupffer cells are commonly situated within two branching sinusoids in the periportal area.
Equipped with long cytoplasmic protrusions located close to the entrance of supplying
blood vessels, these immobile, self-sustaining and locally proliferating macrophages spe-
cialize in clearance and gatekeeper function to incoming antigens [5]. Interestingly, most
recent studies revealed the asymmetric localization of immune cells in the liver to be orches-
trated by liver sinusoidal endothelial cells (LSECs) and adapted to incoming commensal
bacteria. LSECs sense commensal bacteria, adjust the pericellular matrix and generate
chemokine gradients for immune cells to form zones in order to optimize host defense [6].

In contrast to Kupffer cells, bone marrow-derived macrophages account for only a mi-
nor proportion of the hepatic macrophage pool in the healthy liver; they are mainly located
at the portal triad [1]. Principally, Kupffer cells are considered tolerogenic phagocytes while
bone marrow-derived, infiltrating macrophages represent an inflammatory phenotype.
However, the functional phenotype and differentiation is highly diverse and dependent on
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the interaction between these phagocytes and their microenvironment. Therefore, the tradi-
tionally applied model of M1 (inflammatory) and M2 (anti-inflammatory) macrophages [7],
which is based on “artificially” induced polarization states in vitro, does not adequately
reflect the complex heterogeneity of macrophage polarization in the liver in vivo [8].

Upon liver injury, bone marrow-derived monocytes rapidly infiltrate the liver tissue
and differentiate into macrophages, thereby largely augmenting the hepatic macrophage
pool. In damaged liver, the microenvironment alters radically. Inflammatory mediators are
released by activated and stressed cells while the number of dead cells increases. These
microenvironmental changes have a tremendous impact on the phenotypes of Kupffer
cells and monocyte-derived macrophages. Their phenotypes determine the functional
contribution of macrophages to tissue restoration or aggravation of liver injury [9–11].

In this review, we will update the current knowledge on subsets of hepatic macrophages
during homeostasis and their role in different liver injury entities. We will also discuss
potential implications for ameliorating liver injury in the clinical setting.

2. Hepatic Macrophages in Homeostasis

Under homeostatic conditions Kupffer cells, named after the German anatomist Karl
Wilhelm von Kupffer (1829–1902) [12], are the predominate macrophage population in the
liver. The initial notion that these non-migratory, tissue-resident, and self-sustaining phago-
cytes embryonically originate from hematopoietic stem cells [13] was recently challenged.
Current data suggests that Kupffer cells derive from yolk sac erythromyeloid progenitors
that colonize the fetal liver in embryonic day 8.5 in mice. At embryonic day 9.5 these
cells give rise to macrophage precursors via signaling of the CX3C chemokine receptor 1
(CX3CR-1). Through upregulation of the transcription factor inhibitor of DNA binding 3
(ID3) the macrophage precursors eventually develop into Kupffer cells [14]. The half-life
of a Kupffer cell is 12.4 days in mice, replenishment occurs through self-renewal which is
tightly regulated by the transcription factors MafB and c-Maf [15]. Nonetheless, in case
of Kupffer cell death or depletion, as it occurs in acute liver injury, circulating monocytes
can contribute to the Kupffer cell pool as well [16] (Figure 1). This adaptability suggests
that monocytes as hematopoietic derivates may develop into Kupffer Cells despite their
distinct embryonic origin [17,18].

Kupffer cells have numerous essential functions for tissue integrity far beyond being
highly effective phagocytes. Apart from the recognition, ingestion and processing of foreign
material and cellular debris [19], Kupffer cells play a key role in antimicrobial defense [20].
Equally important is their mediator function in maintaining tolerance to innocuous antigens
that continuously pass through the liver before entering the systemic circulation [9].

Moreover, Kupffer cells participate in important metabolic pathways. They recycle
iron by phagocytosing damaged red blood cells (RBC) and metabolizing heme-derived,
histotoxic free iron [21–23]. Recent evidence suggests that hepatic iron accumulation,
particularly heavily iron-loaded Kupffer cells, are involved in the pathogenesis of non-
alcoholic steatohepatitis (NASH) and liver fibrosis [24]. Kupffer cells are also involved
in the degradation of aged platelets, as the depletion of Kupffer cells has prevented the
removal of aged platelets on intravital imaging. Thereby, the calcium-dependent c-type
lectin named macrophage galactose lectin (MGL) receptor on macrophages [25] interacts
with desialylated, aged and potentially dysfunctional platelets [26].

Additionally, resting Kupffer cells are the main source of the plasma level of cholesteryl
ester transfer protein (CETP) [27]. This pore-forming protein enables the transfer of choles-
terol from the antiatherogenic, anti-inflammatory high-density lipoproteins (HDL) to the
atherogenic low (LDL) and very low-density lipoproteins (VLDL), that deliver cholesterol
to the peripheral tissue [28]. Interestingly, lipopolysaccharides (LPS) from Gram-negative
bacteria induce Kupffer cell activation, which significantly reduces CETP synthesis, thereby
raising HDL levels. These findings may imply that HDL is involved in host defense and
that CETP and HDL signaling does not only correlate but is mechanistically connected to
liver inflammation [29].
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Figure 1. Liver macrophages in homeostasis. The figure displays the heterogenous subpopulations of macrophages in the 
healthy liver of mouse models. Kupffer cells represent the self-renewing, tissue-resident and dominant phagocyte popu-
lation under healthy conditions. They reside immovably along the sinusoids, close to the entrance of supplying blood 
vessels to effectively sort out and process bypassing, gut-derived antigens and microbial products. Through close contact 
with parenchymal cells and the sinusoidal blood flow, Kupffer cells act as sensors of tissue integrity and gatekeepers for 
initiating or suppressing immune responses. In the adult liver of healthy mice, a minor proportion of macrophages derives 
from infiltrating monocytes (originating from the bone marrow). Upon liver injury, their number may rapidly expand. In 
mice, infiltrating Ly-6Chi macrophages initiate inflammation while circulating Ly-6Clo macrophages have a more mature 
phenotype, patrolling through the liver and promoting tissue restoration. After infiltration, Ly-6Chi macrophages can ma-
ture to Ly-6Clo macrophages. The peritoneal cavity contains GATA6+ macrophages that can promptly cross the mesothe-
lium and infiltrate into the subcapsular area of the liver to support tissue repair. Typical markers of the different macro-
phage populations in mouse models are indicated. 

3. Hepatic Macrophages in Acute Liver Injury 
Acute liver injury is defined clinically as a (more than) two- to threefold increase of 

liver transaminases above the upper limit of normal (marker of hepatocyte damage), jaun-
dice and impaired coagulation function (International Normalized Ratio (INR) > 1.5) of 
hepatic origin in a patient without preexisting chronic liver disease. Acute liver failure 
additionally comprises altered mentation (termed hepatic encephalopathy) and is initi-
ated by a severe acute liver injury [40], a life-threatening condition. The most common 
causes include hepatotoxic drugs (e.g., acetaminophen/paracetamol, phenprocoumon, an-
tibiotics, antiepileptics), herbal or dietary supplements and acute viral hepatitis (hepatitis 
A (HAV), B (HBV) and E (HEV) viruses), although a multicenter data analysis from Ger-
many revealed that in about one quarter of cases the cause remains unknown. Approxi-
mately one third to half of all patients with acute liver failure require emergency liver 
transplantation as a last resort [41,42]. 

Figure 1. Liver macrophages in homeostasis. The figure displays the heterogenous subpopulations of macrophages in
the healthy liver of mouse models. Kupffer cells represent the self-renewing, tissue-resident and dominant phagocyte
population under healthy conditions. They reside immovably along the sinusoids, close to the entrance of supplying
blood vessels to effectively sort out and process bypassing, gut-derived antigens and microbial products. Through close
contact with parenchymal cells and the sinusoidal blood flow, Kupffer cells act as sensors of tissue integrity and gatekeepers
for initiating or suppressing immune responses. In the adult liver of healthy mice, a minor proportion of macrophages
derives from infiltrating monocytes (originating from the bone marrow). Upon liver injury, their number may rapidly
expand. In mice, infiltrating Ly-6Chi macrophages initiate inflammation while circulating Ly-6Clo macrophages have a more
mature phenotype, patrolling through the liver and promoting tissue restoration. After infiltration, Ly-6Chi macrophages
can mature to Ly-6Clo macrophages. The peritoneal cavity contains GATA6+ macrophages that can promptly cross the
mesothelium and infiltrate into the subcapsular area of the liver to support tissue repair. Typical markers of the different
macrophage populations in mouse models are indicated.

Kupffer cells are characterized by the expression of the surface markers F4/80,
CD11b+/low, CD68 and, in mice, C-type lectin domain family 4 member F (CLEC4F) [10].
To distinguish Kupffer cells from bone marrow-derived macrophages, the expression
of T cell immunoglobulin (Ig), mucin domain containing 4 (Timd4), stabilin 2 (Stab2)
gene receptors and the paucity of CX3CR1 are being used as well [9,11]. Comprehensive
studies of hepatic transcriptomes using single-cell RNA-sequencing of human samples
have broadened our view on the heterogeneity of macrophages in the healthy human
liver. While CD68 is a known marker for human and mouse liver macrophages [10],
the authors subdivided the macrophages in two populations, MARCO+ and MARCO−

(MAcrophage Receptor with COllagenous structure) as well as CD14+ monocytes [30,31].
Of note, transcriptional profiles of MARCO+ cells demonstrate an anti-inflammatory, tolero-
genic phenotype. One example to mention is the transcription of V-set and immunoglob-
ulin domain-containing 4, also known as Complement Receptor of Immunoglobulin su-
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perfamily (VSIG4, CRIg), a tolerogenic co-signaling molecule inhibiting T-cell immune
responses [32]. Combined with their periportal location, these cells appear similar to long-
lived, sessile, liver resident Kupffer cells identified in mice [10,11,30]. In contrast, MARCO−

macrophages display a pro-inflammatory transcriptional profile with decreased expression
of CD 163, an anti-inflammatory scavenger receptor for hemoglobin-haptoglobin com-
plexes that prevents intravascular oxidative stress damage from free hemoglobin, as it
occurs in pathological conditions of intravascular hemolysis (malaria, hemoglobinopathies,
autoimmune hemolysis, and drug-induced hemolysis) [33]. This phenotype of MARCO−

macrophages is similar to recently recruited pro-inflammatory macrophages [10].
To fulfill their diverse tasks, Kupffer cells are versatilely equipped with complement,

antibody, scavenger and pattern recognition receptors (e.g., toll-like receptors (TLR)) [34].
TLRs recognize pathogen-associated molecular patterns (PAMPs) such as LPS, consequently
mounting an immune response to effectively neutralize invading microorganisms [20].
Furthermore, TLR activation on Kupffer cells induces immunogenic T cell responses [9].
Another essential and unique receptor for Kupffer cell mediated host defense is CRIg. CRIg
binds the complement factors and opsonins C3b and iC3b (inactivated C3b), which allows
them to phagocytose pathogens [35]. Elaborate intravital imaging revealed CRIg’s ability to
directly bind and capture lipoteichoic acid (LTA) from Staphylococcus aureus (Gram-positive
bacterium) out of the blood flow and independent of complement factors acting as a pattern
recognition receptor (PRR) [36]. These adapted properties corroborate the role of Kupffer
cells and the liver as a guardian for the body’s host defense [20].

As mediators of immune tolerance, Kupffer cells orchestrate antigen uptake, process-
ing and presentation to induce regulatory T cells and maintain tolerance [9,37]. Simultane-
ously, Kupffer cells suppress T cell activation from other antigen presenting cells without
the need for immunosuppressive cytokines like interleukin-10 (IL-10), transforming growth
factor β (TGF-β) and nitric oxide (NO) [38,39].

3. Hepatic Macrophages in Acute Liver Injury

Acute liver injury is defined clinically as a (more than) two- to threefold increase
of liver transaminases above the upper limit of normal (marker of hepatocyte damage),
jaundice and impaired coagulation function (International Normalized Ratio (INR) > 1.5)
of hepatic origin in a patient without preexisting chronic liver disease. Acute liver failure
additionally comprises altered mentation (termed hepatic encephalopathy) and is initiated
by a severe acute liver injury [40], a life-threatening condition. The most common causes
include hepatotoxic drugs (e.g., acetaminophen/paracetamol, phenprocoumon, antibiotics,
antiepileptics), herbal or dietary supplements and acute viral hepatitis (hepatitis A (HAV),
B (HBV) and E (HEV) viruses), although a multicenter data analysis from Germany re-
vealed that in about one quarter of cases the cause remains unknown. Approximately one
third to half of all patients with acute liver failure require emergency liver transplantation
as a last resort [41,42].

The immense injury to the liver tissue greatly alters both, the microenvironment and
immune cells. Danger-associated molecular patterns (DAMPs), a group of endogenous
danger molecules released from damaged or dying cells such as high mobility group box 1
(HMGB1) or mitochondrial DNA (mtDNA) [43] are released and bind to pattern recognition
receptors (PRR) such as TLRs on Kupffer cells, thereby activating them (Figure 2) [44]. The
recognition of these danger signals leads to the formation of the inflammasome.
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the portal venous blood flow and function as pathogen-associated molecular patterns (PAMPs). DAMPs and PAMPs ac-
tivate Kupffer cells, which in turn secrete inflammatory cytokines (e.g., TNF-α, IL-1β) and CCL-2. While TNF-α and IL-1β 
further contribute to hepatocyte injury, CCL-2 recruits Ly-6Chi monocytes from the bloodstream to infiltrate the tissue and 
differentiate into inflammatory, fibrogenic and angiogenic Ly-6C+ macrophages. If the inflammation does not subside, Ly-
6C+ macrophages will activate hepatic stellate cells (HSCs) to become collagen-producing myofibroblasts forming scare 
tissue. In case of inflammation resolution, Ly-6C+ macrophages will mature to restorative, anti-inflammatory Ly-6C− mac-
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Figure 2. Liver macrophages in the initiation, progression and regression of liver injury. The figure summarizes the role
of hepatic macrophages in the course of liver injuries, as derived from mouse models. Kupffer cells immovably reside at
the luminal side of liver sinusoidal endothelial cells (LSECs). Upon injury to hepatocytes or cholangiocytes, intracellular
components like mitochondrial DNA (mtDNA) or heat shock proteins (HSP), functioning as danger-associated molecular
patterns (DAMPs), are released. Moreover, microbial products (e.g., LPS) from the intestinal microbiota enter the liver
via the portal venous blood flow and function as pathogen-associated molecular patterns (PAMPs). DAMPs and PAMPs
activate Kupffer cells, which in turn secrete inflammatory cytokines (e.g., TNF-α, IL-1β) and CCL-2. While TNF-α and
IL-1β further contribute to hepatocyte injury, CCL-2 recruits Ly-6Chi monocytes from the bloodstream to infiltrate the tissue
and differentiate into inflammatory, fibrogenic and angiogenic Ly-6C+ macrophages. If the inflammation does not subside,
Ly-6C+ macrophages will activate hepatic stellate cells (HSCs) to become collagen-producing myofibroblasts forming scare
tissue. In case of inflammation resolution, Ly-6C+ macrophages will mature to restorative, anti-inflammatory Ly-6C−

macrophages, that promote degradation of scar tissue by matrix degrading metalloproteinases (MMPs).

The inflammasome is a family of multicomponent protein complexes in the cytosol of
macrophages as well as other hepatic cells (e.g., hepatic stellate cells, hepatocytes) and part
of the innate immune system. It consists of a NOD-like receptor (NLR), an adaptor protein
apoptosis-Associated speck-Like protein containing a caspase recruitment domain (ASC) that links
two other components together, an amino-terminal pyrin domain and a carboxy-terminal
caspase recruitment domain (CARD), and the proenzyme pro-caspase 1. Inflammasome
activation eventually leads to the secretion of interleukin-1 (IL-1β) and interleukin-18
(IL-18) [45]. The activation requires two essential signals. The first signal induces the
transcription of inflammasome components and cytokines for the inflammatory response
while the second signal triggers their release. In the first step pattern recognition receptors,
for example, TLRs become activated by PAMPs or DAMPs such as heat shock proteins
(HSPs), mt-DNA and nuclear DNA, all of which indicate cell damage. The pattern recogni-
tion receptors are coupled to the adaptor protein MyD88. Through interaction with the
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transcription factor Nuclear Factor-κB (NF-κB) the expression of inflammasome proteins
and cytokines are upregulated [46,47]. The second signal is initiated through the activa-
tion of the NLR by various stimuli such as free ATP, K+ ionophores or heme. Numerous
NLR proteins may be involved in inflammation activation, however Nucleotide-binding
oligomerization domain, Leucine rich Repeat and Pyrin domain containing (NLRP3) is the most
thoroughly studied. After binding to its pattern recognition receptors, the pyrin domain of
NLRP3 aggregates with the adaptor protein ASC. The CARD domain of ASC then interacts
with CARD domains from procaspase-1 thereby inducing an autocleavage of procaspase-1
to form the active caspase-1 enzyme [46–48]. Caspase-1 consequently activates IL-1β, IL-18
and a cytosolic protein gasdermin D [49,50]. The latter facilitates the release of IL-1β and IL-
18 from the cell by forming pores in the plasma membrane [51]. Consequently, intracellular
compounds are released acting as DAMPs, thereby inducing inflammation and cell death,
a process termed pyroptosis. Mechanistically, the cell defends itself through pyroptosis
against intracellular pathogens by exposing them to immune factors and eradicating their
intracellular replication niche [52–54]. Simultaneously, IL-1β is released and has pleiotropic
inflammatory effects; it affects the expression of fever regulating proteins, reduces vascular
tone and increases vascular permeability of infiltrating immune cells. IL-18 is essential for
interferon-γ release and contributes to adaptive immunity by promoting T helper 2 subset
cell-mediated Interleukin-4 (IL-4) release [55]. The inflammasome-mediated cytokine re-
lease stimulates immune cells, particularly neutrophils and macrophages, thus initiating
an immune response towards damaged tissue [56,57]. The inflammasome is involved in
various entities of liver injury such as viral hepatitis, bacterial infection, alcoholic liver dis-
ease (ALD) [58–60] and NASH. In animal models fed a NASH-inducing diet the blockade
of the NLRP3 inflammasome with the small molecule MCC950 visually improved fibrosis
and reduced the expression of inflammasome components (caspase 1, IL-1β) and markers
of cell damage (AST/ALT) [61].

Once activated, Kupffer cells crosstalk with local and remote immune cells by secreting
a wide range of cytokines [34]. The release of chemokine ligand 2 (CCL2) from Kupffer cells
and other hepatic cells (hepatocytes, stellate cells) leads to the recruitment of circulating
monocytes expressing inflammatory chemokine receptors (like CCR2) [62]. Additional
chemokines that attract bone marrow-derived monocytes are CCL1, CCL25 and CX3CL1
(the latter also known as fractalkine) [63–65]. Moreover, the medium-chain fatty acid
receptor GPR84 draws monocyte-derived macrophages and neutrophils to the site of
acute liver injury, as antagonization with highly specific small molecule GPR84 inhibitors
significantly reduced infiltration rates in mice [66].

The hepatic macrophage pool is rapidly expanded by infiltrating monocytes. Shortly
thereafter, monocyte-derived macrophages represent the main macrophage population [11,62].
The dynamic changes continue as the infiltrating macrophages do not represent
a homogenous group, but rather consist of distinct subpopulations with different, convert-
ible phenotypes [67]. In murine models, Ly6Chi macrophages display a pro-inflammatory
phenotype with expression of PRRs and chemokine receptors (e.g., CCR2), while Ly6Clow

macrophages patrol through the liver and show restorative pro-resolution
properties [9,18,62,68]. They express matrix metalloproteinases (MMPs) termed MMP9,
MMP12 and MMP13, a group of enzymes that split peptide bonds from proteins in the
ECM, a crucial step in various processes like wound healing, cell proliferation, migration
differentiation and angiogenesis [62,67,69,70]. Interestingly, recently infiltrated Ly6Chi

macrophages can transform into Ly6Clow phagocytes at the site of liver injury, which is
promoted by macrophage colony-stimulating factor 1 (CSF-1) [71]. In a model of focal
sterile injury, macrophages initially reside along the site of injury for at least 48 h form-
ing a ringlike structure. Then they downregulate chemotactic receptors like CCR2 while
CX3CR1 receptors are upregulated. After this phenotypic conversion, macrophages enter
the site of injury [72]. The converted Ly6Clow macrophages promote tissue repair by induc-
ing angiogenesis via vascular endothelial growth factor A (VEGF-A), reconstructing the
extracellular compartment, phagocytosing and disposing of dead cells [11,71].
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In rodent models, the timepoint of inhibiting bone marrow-derived macrophage
infiltration tremendously influences the prognosis of the liver tissue ranging from com-
plete restoration to fibrosis and chronification of liver injuries. In an animal model of
acetaminophen (APAP)-induced acute liver injury the prevention of bone marrow-derived
macrophage infiltration through CCR-2 antagonization ameliorated liver injury [62]. How-
ever, the subsequent inflammation resolution and dead cell clearance mediated by con-
verted Ly6Chi was impaired as well [73]. This supports the idea of phenotype switching
macrophages from pro-inflammatory Ly6Chi to restorative Ly6Clow phagocytes and corrob-
orates their orchestrating role in tissue restoration and inflammation. Importantly, other
immune cells capable of phagocytosis, like neutrophils but also platelets, remarkably affect
the course of acute liver injuries. Blockade and genetic deletion of CLEC-2 (C-type-lectin-
like-2) receptors on platelets leads to increased TNF-α release from liver macrophages
which consequently activates neutrophils that rapidly clear the site of injury from debris
and support tissue restoration [74]. Moreover, the platelet adhesion molecule von Wille-
brand factor (VWF) increases during acute APAP-induced liver injury which promotes
platelet aggregation and delays tissue repair. Accordingly, pharmacological antagonization
or genetic deletion significantly accelerated tissue repair [75].

A different reservoir of fully mature F4/80+ CCR2− CX3CR1− macrophages express-
ing the transcription factor GATA6, named after the DNA sequence guanine-adenine-thymine-
adenine the transcription factor binds to, has been identified in the peritoneal cavity. These
phagocytes rapidly cross the mesothelium and use CD44 to infiltrate the subcapsular areas
of the liver in about one hour after sterile liver injury in mice. Sterile liver injury is defined
as an inflammatory response due to tissue injury without infection [76]. The macrophages
were drawn to the site of injury by ATP from necrotic cells and show a reparative phe-
notype as the knockout of GATA6 decreased the number of visible macrophages at the
site of injury and delayed tissue repair. Intriguingly, these cells were not able to pass
through blood vessels (extravasation) if placed in the blood stream before entering the site
of injury [77]. However, most recent data has demonstrated GATA6 macrophages to also
hold migratory and hemostatic properties of platelets in the peritoneal cavity [78]. Since the
depth of focus of spinning disc intravital microscopy applied in the studies that identified
GATA6 peritoneal macrophages as responders to liver injury are limited, it remains to be
elucidated, whether these mechanisms also occur in deeper liver tissue more distant to the
peritoneal cavity. Another limiting factor in this matter was demonstrated in recent studies,
where cavity macrophages downregulate GATA6 upon contact with injured tissue, which
complicates the tracing of their fate in vivo [79].

4. Chronic Liver Injury
4.1. Hepatic Macrophages in Nonalcoholic and Alcoholic Fatty Liver Disease

All forms of chronic liver injury, such as nonalcoholic fatty liver disease (NAFLD),
alcoholic liver disease (ALD) or chronic viral hepatitis B and C are driven by contin-
uous hepatic inflammation and lead to fibrosis as a uniform wound healing response.
If the inflammatory status does not subside, fibrosis eventually leads to cirrhosis and
hepatocellular carcinoma [1,80].

Nonalcoholic fatty liver disease is the most common liver disease affecting around
24% of the population worldwide and represents the liver manifestation of obesity and
metabolic syndrome [81]. Through tremendous advances in the treatment of viral hepatitis
B and C on the one hand and the ever-increasing global burden of obesity even in younger
generations on the other hand, NAFLD and its sequelae are estimated to become the most
common causes of liver cirrhosis and hepatocellular carcinoma [82–84].

NAFLD is an umbrella term for a spectrum of liver diseases in a patient with no
other causes for secondary hepatic fat accumulation and particularly with no significant
alcohol intake (<30 g/d for men, <20 g/d for women) [85]. The typical pathophysiological
sequence starts with hepatic steatosis, a histological accumulation of triglycerides in >5%
of hepatocytes, to nonalcoholic steatohepatitis, a chronic inflammatory condition with
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necrotic hepatocyte injury leading to NASH-fibrosis, cirrhosis and eventually hepatocel-
lular carcinoma [85]. Yet, this process may not be considered linear as steatosis may also
directly lead to fibrosis or inflammation resolution may improve and restore tissue integrity.
The degree of fibrosis is defined histologically by the number of fibrotic septa from F0
(no fibrosis) over F1 (portal fibrosis without septa), F2 (portal fibrosis with few septa), F3
(numerous septa, “bridge building fibrosis”) to F4 being cirrhosis. The fibrotic stage is
a predictor for liver-related morbidity, liver-related mortality and overall mortality [86,87].
In noncirrhotic NAFLD fibrosis (F0-F3 fibrosis) the main causes of death in NAFLD patients
are cardiovascular diseases and non-hepatic malignancies [88]. However, the liver-related
mortality exponentially grows and supersedes all other causes of mortality once a cirrhotic
liver condition (F4 fibrosis) is established [89]. Nevertheless, NAFLD has to be consid-
ered the hepatic manifestation of a systemic burden which emphasizes the necessity for
interdisciplinary care of patients with NAFLD [90].

The fat overload in NAFLD and ALD causes cell death of hepatocytes and the release
of DAMPs that activate macrophages and their inflammasomes [91,92]. Another inflam-
matory pathway was described in in vitro studies of NASH where fatty acids (palmitate
or lysophosphatidyl-choline) were able to induce the release of extracellular vesicles con-
taining TNF-α-related apoptosis-inducing ligands (TRAIL) from hepatocytes. The TRAILs
increased the transcription of IL-1β and IL-6 in monocyte-derived macrophages from
mice thereby promoting inflammation [93]. Furthermore, the liver-derived plasma protein
histidine-rich glycoprotein (HRP) has been shown to skew macrophages towards inflam-
matory phenotypes in mouse models of NASH and tumors [94,95]. The glucocorticoid-
induced leucine zipper (GILZ), a multifunctional protein that spreads the anti-inflammatory
signaling of glucocorticoids in numerous tissues, is downregulated in Kupffer cells of
murine models of hepatic steatosis [96]. Consequently, Kupffer cells displayed an in-
flammatory phenotype with elevated expression of CCL-2, TNF-α and IL-6, which was
improved in GILZ overexpressing transgenic mice [97].

Recent studies using elaborative tools for lineage tracing, like bone marrow chimeras
and parabiosis, have discovered a decreasing number of self-renewing Kupffer cells in
experimental NASH models. Replenishment of the hepatic macrophage pool was carried
out by bone marrow-derived Ly6C+ monocytes giving rise to Kupffer cells. The infiltrated
cells exhibited more pro-inflammatory characteristics than embryonic resident Kupffer
cells and remain in the tissue after disease regression. Interestingly, the infiltrated Kupffer
cells have less lipid storage capacity than resident Kupffer cells [98].

In line with the notion of macrophage heterogeneity in NASH models, another com-
prehensive study applying unbiased single cell transcriptome analysis in mice revealed
and confirmed: (i) resident Kupffer cells are gradually lost and replaced by monocyte-
derived Kupffer cells during disease progression; (ii) resident Kupffer cells are not pro-
inflammatory, suggesting that inflammatory phenotypes in previous studies might have
been associated with infiltrating rather than resident Kupffer cells; (iii) infiltrating mono-
cytes differentiated into another CLEC4F− osteopontin-expressing macrophage subpopu-
lation with a transcriptomic profile similar to lipid associated macrophages (LAMs) [99].
Supporting this idea, another RNA sequencing study of human hepatic macrophages
from lean individuals and obese, insulin resistant patients have shown no differences in
the transcription of inflammatory markers. An interesting secondary finding was made
using interfering RNA (iRNA) to inhibit RELA expression, a protein essential for NF-κB
processing. The inhibition of RELA did not affect the transcription of inflammatory cy-
tokines suggesting an alternative inflammatory pathway apart from NF-κB in hepatic
macrophages [100]. Most recently, a remarkable contribution of XCR1+ type 1 conventional
dendritic cells (cDC) to the hepatic myeloid cell pool has been described in NASH patients
and murine NASH models. Using single-cell transcriptome analysis, the authors found
rapidly recruited cDC progenitors deriving from the bone marrow. The proliferating cDCs
quickly outnumber Kupffer cells and promote inflammatory T-cell reprogramming which
adversely influences NASH phenotypes [101].
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Another remarkable finding on macrophage heterogeneity in NASH has discovered
specialized macrophages in patients and murine models, both of which highly express CD9
and Triggering Receptor Expressed on Myeloid Cells 2 (TREM-2), a scavenger receptor
involved in apoptotic cell clearance [102,103]. These cells were termed scar-associated
macrophages or lipid-associated macrophages as they showed close spatial relation to
the fibrotic niche. However, a clear functional correlate is missing to date, strengthening
the need to correlate single-cell transcriptomics with functional studies. Strikingly, these
TREM-2+ scar-associated macrophages share many similarities with “lipid-associated
macrophages” in inflamed adipose tissue in obesity models, in which these cells controlled
adipose tissue characteristics [104]. Further evidence suggests that TREM-2 actually has
a regulatory role in various rodent liver injury models [105,106]. However, these TREM-2
positive macrophages could be a heterogeneous subset with opposing functions depending
on the context of liver injury.

4.2. Hepatic Macrophages in Viral Hepatitis B and C

Chronic viral hepatitis caused by HBV or HCV remain a meaningful cause of liver
associated morbidity and mortality [107]. The research on immunocompetent animal
models is limited by the number of appropriate models as, for example, mice have
a natural immunity against HCV and research on chimpanzees is hampered by finan-
cial and ethical constraints [108].

Similar to their multifaceted tasks in other liver diseases, hepatic macrophages can
contribute to antiviral responses upon HBV or HCV infection. Research on the hepatotropic
lymphocytic chroriomeningitis virus (LCMV) in mice has shown that the liver rapidly
recruits pro-inflammatory macrophages (within 24 h) to support local Kupffer cells, when
acutely infected [109]. In vitro cell culture studies of human Kupffer cells exposed to
HBV surface antigen (HBsAg) have revealed increasing productions of the inflammatory
cytokines TNF-α, IL-6 and CXCL8 (IL-8) that peaked after six hours of exposure [110].
Through NF-κB mediated transcription, these inflammatory cytokines, most importantly,
IL-6 prohibit viral spreading in infected hepatocytes. IL-6 activates the mitogen-activated
protein kinases exogenous signal-regulated kinase 1/2 (ERK1/2), and c-jun N-terminal
kinase (JNK), two members of the mitogen-activated protein kinases (MAPKs) that transfer
extracellular stimuli to a wide range of cellular stimuli [111]. ERK1/2 and JNK inhibit
expression of hepatocyte nuclear factor (HNF) 1α and HNF4α, two transcription factors
essential for HBV gene expression and replication [112]. Similarly, human Kupffer cells
and monocyte-derived macrophages incubated with HCV in vitro activated the inflam-
masome and NF-κB via TLR2, which induced IL-1β and IL-18 secretion [113,114]. In line
with the aforementioned two signal activation of inflammasomes, HCV exposed human
macrophages showed: (i) viral RNA triggers MyD88-mediated TLR7 signaling to induce
IL-1β mRNA expression; (ii) HCV uptake concomitantly induces a potassium efflux that
activates the NLRP3 inflammasome for IL-1β processing and secretion; (iii) HCV infection
is directly linked to liver inflammation by NLRP3 inflammasome activation [115].

Moreover, the depletion of Kupffer cells via clodronate-liposomes, a specific bisphos-
phonate that depletes macrophages [116], led to a rapid dissemination of LCMV in mice
due to the inability to capture and process viral particles [117]. It is therefore appropriate
to consider Kupffer cells a critical immune barrier in acute HBV and HCV infections.

Nevertheless, during chronic phases of viral hepatitis, hepatic macrophages can also
diminish immune responses and even support viral persistence [118]. Chronic HBV and
HCV infection leads to Kupffer cell-mediated release of immunomodulatory cytokines,
such as IL-10, TGF-β, PD-L1 and PD-L2 that suppress T cell responses and promote viral
persistence [119–121]. Studies on human samples confirmed the pro-chronification and
immunosuppressive phenotypes of hepatic macrophages in patients with chronic HBV in-
fections [122]. In murine models of chronic HBV using intravenous injections of engineered,
replication-competent HBV plasmids, Kupffer cells reproducibly induced tolerance to HBV
by producing IL-10 that persisted for up to 3 months after a single injection [123,124]. In the
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same animal model TLR2 was identified as a causative receptor that led to IL-10 induced
CD8+ T cell exhaustion by which HBV clearance was hindered [125]. The injection of
HBV plasmids was also used to study chronic liver injury by HBV infections in offspring
of infected mothers. Strikingly, Kupffer cells in the offspring induced tolerance through
PD-L1 by which cytotoxic CD8+ T cell mediated lysis of infected cells was inhibited and
HBV persistence was enabled [126].

4.3. Fibrosis and Cirrhosis Modulation by Hepatic Macrophages

Fibrosis describes excessive scarring overproportionate to a wound healing response
towards tissue injury [127]. If left untreated, progressive hepatic fibrosis leads to cirrhosis,
a histoarchitectural remodeling with abundant collagen deposition that becomes clinically
overt by decreasing hepatic function [128]. The chronic inflammation predisposes to
carcinogenesis while increasing portal pressure triggers numerous clinical complications
with significant morbidity and mortality [129]. Both, clinical observations and experimental
models over the last years, challenged the former belief of irreversible liver fibrosis and
identified new targets to halt and reverse this process [130].

Hepatic stellate cells (HSCs) transition to myofibroblasts and represent the main
matrix-producing cells in the liver. Activation is induced by direct cell–cell interaction or
binding of fibrogenic mediators [131].

In the dynamic process of inflammation and fibrogenesis, liver macrophages hold
a dual function; during fibrogenesis the depletion of hepatic macrophages in mice im-
proves scarring, whereas the depletion during resolution phases impedes adequate tissue
restoration pointing towards functionally distinct subpopulations of macrophages within
this process [132]. Upon damage to the hepatic microenvironment DAMPs and PAMPs are
released that trigger local non-parenchymal cells (Kupffer cells, hepatic stellate cells, liver
sinusoidal endothelial cells) to release a broad variety of inflammatory and profibrogenic
soluble mediators. These mediators (e.g., CCL2) attract inflammatory immune cells like
LyC6hi bone marrow-derived macrophages and activate matrix-producing profibrotic cell
populations to form scar tissue [34,127]. Besides the recruitment of inflammatory and
profibrotic macrophages by CCL2, Kupffer cells can also directly promote activation and
survival of HSCs and myofibroblasts through secretion of growth factors (PDGF, TGF-β)
and CCL5 [133–137].

The interaction of Kupffer cells with other immune cells, such as natural killer T (NKT)
cells, can also promote their profibrotic phenotype. Kupffer cell derived CXCL16 recruits
profibrotic NKT cells through its ligand receptor CXCR6 to the site of liver injury [138].

In fibrogenesis and chronic liver injury, monocyte-derived macrophages display a sim-
ilar functional switching from inflammatory/fibrogenic to pro-resolutive/antifibrogenic as
described earlier in acute liver injury. Several observations from mouse models of hepatic
fibrosis and its resolution support the phenotypic adaptation of macrophages. The selective
depletion of early infiltrating Ly6Chi macrophages reduces HSC activation and extracellu-
lar matrix (ECM) formation, while depletion of Ly6Clow macrophages during regression
phases compromises ECM breakdown which preserves fibrosis [67,132]. Pharmacological
blockade of Ly6Chi infiltration using sophisticated Spiegelmer-based CCL-2 antagonists
(artificial oligonucleotides specifically binding CCL-2), named mNOX-E36, augmented
the proportion of pro-restorative Ly6Clow macrophages and accelerated fibrosis regression
in animal models of chronic liver disease [139]. Mechanistically, inflammatory Ly6Chi

monocyte-derived macrophages use TGF-β and IL-13 to activate HSCs [67,136,140–142].
The phenotype switching from Ly6Chi to Ly6Clow macrophages occurs after phagocytosis
of dead cells (efferocytosis). The responsible signaling pathway comprises the receptor
and tyrosine kinase Janus kinase (JAK) and signal transducer and activator of transcription
(STAT) DNA-binding proteins. They mediate the signaling and downstream biological
effects in response to binding of IL-10 and IL-6 [69,143,144]. Additional macrophage
receptors for efferocytosis and consequent phenotype switching are PtdSer-dependent
receptor tyrosine kinases (RTKs) AXL and the proto-oncogene tyrosine-protein kinase MER
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(MERTK). Both are activated by IL-4 or IL-13 and lead to induction of anti-inflammatory
and tissue repair responses in macrophages [145].

A comprehensive study of more than 100,000 single human cells identified scar-
associated TREM2+ CD9+ subpopulation of macrophages that derive from circulating
monocytes. Furthermore, the group discovered a number of pathways involved in fibroge-
nesis such as NFRSF12A, PDGFR and NOTCH signaling [103]. Supporting these findings,
another study on epigenetic changes in mouse models of NASH confirmed the existence of
TREM2+ CD9+ macrophages (corresponding to scar-associated macrophages in humans)
localized in the fibrotic niche. Moreover, the liver X receptor (LXR), a nuclear receptor for
identity and survival of Kupffer cells, is epigenetically modified in NASH models, which
promotes a scar-associated macrophages phenotype [146].

In summary, DAMPS and PAMPs released upon liver injury immediately trigger
local Kupffer cells to alarm and recruit monocytes from the blood stream into the tissue to
support the inflammatory situation. Initially, macrophages intend to defend and neutralize
against potential noxa (e.g., toxins, invading microorganisms, etc.) and encourage damage
control through collagen synthesis. After this initial alarming inflammatory/defense and
damage control situation, macrophages biologically seem to notice the need for tissue repair,
disposal of debris, collagen breakdown and restoration of tissue integrity. This dynamic
process offers a window of opportunity for preventive or therapeutic interventions.

5. Therapeutic Approaches and Conclusions

Numerous target points and approaches with promising results have been identified
to clinically tackle liver disease initiation and their final common path of fibrosis and
cirrhosis [130,147]. Macrophages represent sentinels of tissue homeostasis and immuno-
logical tolerance, are orchestrators in acute liver injury and hold dual, interchangeable
functions in liver disease progression. Thus, targeting hepatic macrophages is one auspi-
cious cornerstone of liver disease therapy. Generally, several basic approaches in targeting
hepatic macrophages can be considered: (i) prohibit macrophage recruitment; (ii) inhibit
macrophage activation; (iii) induce phenotype switching of macrophages. The transfusion
of autologous macrophages in diseased patients (cell-based therapy) is another novel ap-
proach. In a very small, yet very innovative trial of autologous macrophage transfusion in
chronic liver disease patients the safety and feasibility has been proven. An update on this
new immunological branch of chronic liver disease has been nicely reviewed [148,149].

5.1. Therapeutic Target: Macrophage Recruitment

The accumulation of inflammatory monocyte derived-macrophages in NASH pro-
gressing to fibrosis is one essential pathophysiological finding [150–152]. The chemokine
induced recruitment by CCL2 and CCL5 can be inhibited by using the CCR2/CCR5 an-
tagonist cenicriviroc. Cenicriviroc has initially been successfully tested as an anti-human
immunodeficiency virus (HIV) agent, but demonstrated highly effective antifibrotic ac-
tivity in animal models of chronic liver injury [153–155]. The randomized, double-blind
multinational phase 2b trial (CENTAUR trial) on 289 NASH patients receiving cenicriviroc
or placebo has shown significant improvements in the degree of histologically verified
fibrosis after 1 year of treatment [156]. Although the antifibrotic effect has not been clearly
visible in the final data after 2 years, the drug has shown an extraordinary safety profile and
was well tolerated [157]. Thus, the larger randomized, placebo-controlled, multinational
phase 3 trial (AURORA trial) with approximately 2000 NASH patients was initiated [158].
Unfortunately, the trial was recently terminated after the 1 year interim analysis revealed
lack of efficacy [159]. The final data to discuss and search for possible explanations or
alternative approaches has not yet been published.

Other anti-inflammatory cell recruitment agents with promising preclinical trials are
propagermanium, a CCR2 inhibitor [160], the aforementioned oligonucleotide CCL2 antag-
onist, mNOX-E36 [62], and maraviroc, another anti-HIV agent which inhibits CCL5 [161].
A different approach to inhibit inflammatory macrophage inhibition is to antagonize the
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medium-chain fatty acid receptor GPR84 which is upregulated in monocytes upon inflam-
matory activation. Pharmacological inhibition with small molecules reduces myeloid cell
infiltration and ameliorates steatohepatitis and fibrosis in NASH models [66].

5.2. Therapeutic Target: Macrophage Activation

As intrasinusoidal sentinels residing close to the portal venous and arterial blood
supply routes, macrophages are continuously exposed to DAMPs and PAMPs (e.g., LPS)
from the intestinal microbiota. Particularly in chronic liver disease and by toxins (such as
alcohol) the intestinal permeability increases and macrophage exposure to DAMPs and
PAMPs rises. The liver feedbacks through bile and antibody secretion. This reciprocal
interaction establishes the concept of the gut–liver axis [162].

Within this process, the activation of macrophages exposed to DAMPS and PAMPs
represents another therapeutic target point for treating liver diseases. More specifically,
genetic depletion of TLR4 in LPS-challenged mice leads to reduced HSC activation and
chemokine secretion which consequently reduces Kupffer cell activation and fibrogen-
esis. Mechanistically, TLR4 activation on HSCs downregulates and thereby sensitizes
the receptor for the profibrotic cytokine TGF-β (bambi receptor) in a NFκB-dependent
signaling pathway [163]. Furthermore, the combination of the TLR4 inhibitor seralexin
and rosiglitazone, an agonist of peroxisome proliferator-activated receptors (PPARs, for
further discussion see section on induction of phenotype switching in macrophages below) have
proven effective in mouse models of chronic liver disease and fibrosis [164]. Supporting
this pathomechanism, inhibition of the PAMP responsive NLRP3 inflammasome by the
small molecule MCC950 reduced the severity of liver inflammation and fibrosis in NASH
models. Moreover, Kupffer cell activation by cholesterol crystals in vitro to secrete IL-1β
were abolished by MCC950 [61].

5.3. Therapeutic Target: Macrophage Function and Polarization

Upon liver injury, the rapid influx of inflammatory, profibrogenic bone marrow-
derived macrophages is subsequently followed by a phenotype switch of formerly invading
macrophages towards regenerative macrophages. Thus, therapeutic induction of this step
may be beneficial for patients with chronic liver disease.

In this context, an innovative branch of therapy is depicted by nanoparticles [165].
Nanoparticles are materials measuring about 1–100 nm, individually designed for targeted
therapy [166]. They can be loaded with small drug molecules, proteins, DNA and RNA.
Additionally, the release of their content can be favorably customized and, for example,
be triggered by lower pH (e.g., in lysosomes) or by light [167,168]. In a set of experi-
ments using sophisticated whole body and intra-organ imaging the pharmacokinetics of
different vehicles to target hepatic immune cells have been examined [169]. One straight-
forward approach is the selective administration of immunosuppressants by vehicles to
macrophages. In experimental models of acute and chronic liver injury the administration
of dexamethasone-loaded fluorescent-tagged liposomes reduced liver injury and fibrosis.
Intriguingly, a small proportion was taken up by T cells and led to a significant depletion of
those which may also confound and mediate the anti-inflammatory effects [170]. Another
earlier study on liver fibrosis models induced by bile duct ligation has shown almost
exclusive dexamethasone liposome uptake in Kupffer cells by coupling dexamethasone to
mannosylated albumin. However, the study did not find antifibrotic effects, instead, even
accelerated fibrogenesis was seen in vivo [171]. Since inflammatory cytokines like TNF-α
are detrimental in chronic liver diseases and the systemic administration carries harmful
side effects (systemic bacterial infections) [172], nanoparticles loaded with small interfering
RNA (siRNA) were used to selectively inhibit TNF-α released by macrophages. Through
conjugation with mannose-modified trimethyl chitosan-cysteine (MTC) the nanoparticles
were selectively taken up by macrophages via their mannose receptor. In the applied mouse
model of acute liver injury by LPS/D-galactosamine the liver damage and lethality were
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prevented [173]. Thus, macrophages and other antigen presenting cells (APCs) represent
an attractive target for nanomedicine in liver diseases.

Galactin-3, a β-galactoside binding protein mainly produced in macrophages, has nu-
merous regulating effects on inflammation and the innate immune system [174].
One of its pleiotropic effects is the activation of myofibroblasts through TGF-β, a critical
step in liver fibrogenesis [175]. Galactin-3 inhibition has shown multiple beneficial effects
in mouse models of NASH [176]. However, in a multi-center, double blind, phase 2b
trial using the Galactin-3 inhibitor belapectin in patients with NASH cirrhosis, neither
portal hypertension, measured by the hepatic venous pressure gradient (HVPG), nor
histological fibrosis criteria improved. Interestingly, in a subgroup analysis of patients
without esophageal varices at baseline, belapectin significantly reduced HVPG and the
reoccurrence of varices after 52 weeks [177]. A phase 1 trial on another galectin-3 inhibitor,
GB1211, has recently confirmed safety, tolerability and an appropriate pharmacokinetics
and pharmacodynamics profile to be further investigated [178].

PPARs (peroxisome proliferator-activated receptors) are a group of three transcription
factors (PPARα, PPARβ/δ and PPARγ) essential for liver homeostasis, lipid metabolism,
insulin sensitivity and inflammatory responses [179]. PPAR stimulation prevents fibrogen-
esis by keeping HSCs in the quiescent state and regulating inflammatory responses [180].
A broad number of studies have proven the beneficial effects of PPAR agonism on NAFLD
pathology and fibrogenesis. The effectiveness of inducing the pleiotropic metabolic effects
of PPARs for NASH models corroborates the concept of NASH not being a single patho-
logical entity but rather the hepatic manifestation of metabolic syndrome [181]. In animal
models of NAFLD the pan-PPAR agonist lanifibranor histologically improved fibrosis,
steatosis and inflammation. Additionally, lanifibranor attenuated inflammatory activation
of human monocytes and murine bone marrow-derived macrophages stimulated with
palmitic acid in vitro [182]. These very promising preclinical results of lanifibranor have
been tested in a randomized, placebo-controlled, multicenter, phase 2b trial (NATIVE trial)
on 247 NASH patients that reported impressive results on histological improvements of
NASH and fibrosis after 6 months of therapy [183].

5.4. Conclusions

In summary, hepatic macrophages are a highly versatile population and key players
in maintaining homeostasis and immune tolerance. Under various tissue injury conditions,
they rapidly expand in numbers and have a two-faced phenotype, encouraging inflam-
mation and fibrosis, yet also supporting restoration and inflammation resolution. Both,
preclinical and clinical research over the last years have generated valuable knowledge
on cellular heterogeneity and molecular pathways controlling their activation as well as
their function. Elaborative single cell analysis and intravital imaging will allow direct and
individual analyses of cells in the complex interplay of immune system, local microenvi-
ronment, microbiota and blood vessels in different liver diseases culminating in fibrosis,
cirrhosis and carcinogenesis.
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