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Abstract: The relative success of monoclonal antibodies in cancer immunotherapy and the 

vast manipulation potential of recombinant antibody technology have encouraged the 

development of novel antibody-based antitumor proteins. Many insightful reagents have 

been produced, mainly guided by studies on the mechanisms of action associated with 

complete and durable remissions, results from experimental animal models, and our 

current knowledge of the human immune system. Strikingly, only a small percent of these 

new reagents has demonstrated clinical value. Tumor burden, immune evasion, 

physiological resemblance, and cell plasticity are among the challenges that cancer therapy 

faces, and a number of antibody-based proteins are already available to deal with many of 

them. Some of these novel reagents have been shown to specifically increase apoptosis/cell 

death of tumor cells, recruit and activate immune effectors, and reveal synergistic effects 

not previously envisioned. In this review, we look into different approaches that have been 

followed during the past few years to produce these biologics and analyze their relative 

success, mainly in terms of their clinical performance. The use of antibody-based 

antitumor proteins, in combination with standard or novel therapies, is showing significant 

improvements in objective responses, suggesting that these reagents will become important 

components of the antineoplastic protocols of the future. 
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1. Introduction 

Passive immunotherapy with monoclonal antibodies (mAbs) represents one of the most relevant 

recent advances in cancer treatment. Initially envisioned as Paul Erlich’s “magic bullets”, mAbs have 

proven to be much more than simple delivery vehicles for truly active compounds. There is now 

abundant literature reporting their association with objective responses against different kinds of 

malignancies in animal models, as well as in the clinic [1]. An inspection of the circumstances under 

which a therapeutic mAb induces a desirable antitumor effect should provide valuable information for 

the development of next generation Ab-based reagents with enhanced antitumor properties. Current 

clinical practice seems to be telling us that maximal effective and objective responses are achieved 

when various and different antitumor mechanisms are put into play. Two deductions can be drawn 

from the preceding ideas. The first one is that the “ideal” anticancer drug would be one that 

simultaneously combines several -as many as possible- mechanisms directed against the tumor. The 

second is that antibody technology can provide us with such new more versatile-antitumor molecules.    

Novel mAb-based antitumor proteins have been designed based on results from studies on the 

mechanisms of action of current therapeutic mAbs, as well as from previous knowledge of the immune 

response and tumor biology. Accordingly, the general questions to answer with this kind of novel 

molecules are: have therapeutic mAbs’ properties been improved, making them more potent 

cytotoxic/cytostatic agents? Has it been possible to add new properties to current and newly developed 

antitumor mAbs, turning them into more versatile antineoplastic weapons? In the present review, we 

look into different approaches that have been followed during the past few years, and analyze their 

relative success, mainly in terms of their clinical performance. An exhaustive record of all the new-

generation therapeutic antibodies and their derivatives would be too long in the context of a concise 

review. Excellent extended reviews specific for each type of mAb-based reagent can be found in the 

literature and readers are referred to some of them [2-11]. Here, we have chosen recent examples to 

illustrate the relative success of each strategy. In addition, a more comprehensive list of therapeutic 

mAb-based antitumor proteins developed in the past five years is provided as supplementary material 

(Table S1). 

We classified these new strategies according to their proposed mechanism of action. These 

mechanisms can be broadly grouped in two categories: those that target the cancer cell itself, i.e. the 

capacity to directly induce cytotoxicity or cytostaticity on cancer cells; and those that are elicited in 

vivo, i.e. the ability to trigger an effective antitumor response within the body. The relative importance 

of each type of mechanism on the final therapeutic benefit depends not only on their intensity, 

effectiveness and duration, but also on the particular characteristics of the malignant disease.  

2. Improvement of Direct Toxicity to Cancer Cells 

Cancer cells posses the ability to grow without control [12]. Therefore, the capacity to stop or delay 

their growth is a desirable feature of any antineoplastic therapy. Even though many of the available mAbs 

currently used in cancer therapy, such as rituximab (anti-CD20), trastuzumab (anti-HER2/neu), and 

cetuximab (anti-EGFR), have all been demonstrated to possess intrinsic antitumoral activity in vitro [6], 

significant cytotoxicity or cytostaticity is achieved at high concentrations. The observation that such 
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activity depends on the capacity of the antibody to interfere with signaling cascades involved in tumor 

cell survival [6] have encouraged the development of a new generation of mAb-based therapeutic 

agents capable of inducing a higher degree of tumor cell toxicity. To fulfill this goal, several types of 

molecules have been conjugated to therapeutic antibodies and many of the initial drawbacks that 

precluded their use, such as immunogenicity, stability, potency, linker choice, homogeneity of the 

resulting products, etc. have been partially overcome [7]. Consequently, a significant number of mAbs 

conjugated to microtubule assembly or protein synthesis inhibitors, DNA-binding toxins, or 

radioisotopes are currently being tested in pre-clinical and clinical settings. 

2.1. Antibody-drug Conjugates 

Pre-clinical studies have clearly shown that incorporation of highly potent drugs (free drug potency 

in the order of 10−9 to 10−11 M) to therapeutic antineoplastic antibodies results in more effective 

reagents than using low potency drugs already approved for cancer therapy such as doxorubicin (free 

drug potency around 10−7 M) [7,13]. Auristatins and maytansinoids, for example, are highly active 

inhibitors of microtubule assembly/function [14]. The addition of one of these anti-mitotic agents, 

auristatin E, to a chimeric (human/mouse) IgG1 antibody directed against CD30 (brentuximab) led to 

the generation of brentuximab vedotin (or SGN-35), an antibody-drug conjugate (ADC) significantly 

more potent than the mAb alone for the treatment of refractory systemic anaplastic large cell 

lymphoma (ALCL). This molecule has been shown to induce cell cycle arrest and apoptosis in vitro [15]. 

During the 52nd Annual Meeting of the American Society of Hematology (December, 2010), results 

from a Phase II trial showed complete remission in 17 out of 30 ALCL patients and partial remission 

in nine others, for an objective response rate by investigator assessment of 87% [16]. An update of 

results from this study was given at the ASCO meeting in June, 2011 [17], confirming the encouraging 

performance and the moderate toxicity observed with this drug. Seattle Genetics 

(http://www.seagen.com/index.php) has announced in a press release that the US FDA accepted two 

Biologics License Applications (BLAs) for bretuximab vedotin, one for the treatment of relapsed or 

refractory ALCL patients, and the other for treatment of patients with Hodgkin lymphoma, in which 

the drug has also shown clinical benefit. 

Trastuzumab emtansine is another ADC, which contains a maytansine derivative (DM1) conjugated 

to the FDA-approved trastuzumab (a humanized IgG1 antibody specific for the human epidermal 

growth factor receptor 2 HER2/neu). Barok et al. have recently shown that trastuzumab-DM1 inhibits 

tumor growth in a trastuzumab/lapaninib (a kinase inhibitor used in breast cancer therapy)-resistant 

mouse model through induction of apoptosis, ADCC and mitotic catastrophe [18]. The biological and 

clinical relevance of this last mechanism in the efficacy of trastuzumab-DM1 requires further 

investigation, but the acquisition of an additional anti-proliferative capacity may account for the 

reduction in tumor size observed in the trastuzumab-DM1-treated animals as compared to the 

trastuzumab-only group.  

Preliminary data from a Phase II clinical trial in metastatic breast cancer patients compared the 

effect of trastuzumab emtansine with the standard treatment (trastuzumab plus docetaxel), and 

revealed a similar clinical benefit rate for both therapies: 55–57%. Importantly, the rate of clinically 

relevant adverse effects was significantly lower (37% vs 75%) in the trastuzumab emtansine group, 
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including a reduction from 45% to 3% of alopecia cases [19]. These significant differences seem to 

imply that limiting the chemotherapeutic action by targeting a high-potency drug into the local tumor 

microenvironment renders a higher benefit to patients than the effect of a low-potency 

chemotherapeutic acting systemically. The lower general toxicity and its associated increase in life 

quality and better physical appearance in a patient population that are mainly females are important 

improvements of trastuzumab-DM1 that certainly deserve attention. 

Gemtuzumab ozogamicin (Mylotarg) is another ADC that has been in the US market since its FDA 

approval in May 2000. Mylotarg is a humanized IgG4 anti-CD33 antibody conjugated to calicheamicin, 

a highly potent antibiotic that induces apoptosis in cancer cells by a DNA binding mechanism. 

Calicheamicin works at very low concentrations, allowing for its use at low doses in vivo. In vitro, 

gemtuzumab ozogamicin was 2000-fold more potent than the parental drug that preceded its 

development [20] and was the first ADC approved by the FDA licensed to treat recurrent acute 

myeloid leukemia (AML) in patients aged 60 and older who were not candidates for standard 

chemotherapy. The myeloid cell surface antigen CD33 represents an attractive target, as it is expressed 

on tumor cells from about 90% of AML patients. In spite of auspicious pre-clinical [20] and initial 

clinical [21] results, follow-up studies showed no additional benefits to AML patients, and an increased 

fatality rate in chemotherapy plus Mylotarg-treated patients when compared to standard treatments 

(5.7% vs. 1.4%). For these reasons, the product was voluntarily withdrawn from the US market in June 

2010 (http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts 

/ucm216458.htm) [22]. Mylotarg is a heterogeneous formulation, containing approximately a 1:1 

mixture of conjugated (one to eight calicheamicin moieties per IgG molecule, with an average of 4–6 

moieties randomly linked to solvent exposed lysyl residues of the antibody) and unconjugated 

antibody [23]. The impact that this heterogeneity and the great potency of the drug could have had on 

the therapeutic performance of Mylotarg has not been addressed, but its clinical record suggests that 

further development and optimization is needed before a reevaluation of the therapeutic potential of 

this kind of conjugates is granted. 

Inotuzumab ozogamicin (IO) is another humanized IgG4 antibody-calicheamicin conjugate; it 

recognizes the CD22 antigen. CD22 is a cell membrane protein expressed on the surface of mature  

B-lymphocytes and their malignant counterparts, but not on other cells of hematopoietic origin. CD22 

is rapidly internalized after binding to inotuzumab. The addition of calicheamicin conferred the mAb a 

new apoptotic capacity in vitro [24]. IO is currently being tested in Phase I-II-III clinical trials for the 

treatment of CD22+ follicular B-cell Non Hodgkin’s Lymphoma (NHL) (ClinicalTrials.gov identifier: 

NCT00562965) [25]. In a Japanese study, a small cohort of 13 relapsed or refractory CD22+  

B-cell follicular NHL patients were treated with inotuzumab ozogamicin as a monotherapy, obtaining 

complete (54%) and partial (31%) responses, with the remaining 15% patients showing a stable 

disease. The overall response rate was 85% [26]. Results from a Phase III clinical trial in the US 

(ClinicalTrials.gov identifier: NCT00562965) should be available in August this year. 

2.2. Immunotoxins 

Pseudomonas exotoxin A (PE) acts as a protein synthesis inhibitor [27]. Due to its great 

cytotoxicity and bacterial origin, PE needs to be modified to avoid non-specific toxicity and reduce its 
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immunogenicity when used in therapy [28]. An immunotoxin (IT) combining a stabilized and affinity-

improved Fragment variable (Fv) of an antibody specific for CD22 (RFB4) with a truncated version of 

PE (PE38; which is devoid of the PE N-terminal cell binding domain) has been engineered [29-33]. 

The molecule, named HA22 or CAT-8015, displays improved antitumor cytotoxic activity and is 

being tested in Phase I/II clinical trials for the treatment of chronic lymphocytic leukemia (CLL), hairy 

cell leukemia (HCL), and NHL. Results from a Phase I study, presented at the 2010 Annual Meeting 

of the American Society of Clinical Oncology, showed a low HA22-related general toxicity and an 

overall response rate of 79% in the group of HCL patients, including 12 out of 28 (43%) who achieved 

complete remission [34]. 

HA22-8X and HA22-LR-6X are more recent versions of HA22. They have been further modified 

by deletion of PE38 B-cell epitopes [35,36]. In experimental animal models, HA22-8X and HA22-LR-6X 

showed marginal PE-related immunogenicity and preserved the antitumor cytotoxic properties of 

parental HA22. This protein engineering approach may be applied to the generation of similar ITs that 

target solid tumor-related antigens. Such HA22-8X/HA22-LR-6X-like ITs with marginal 

immunogenicity/antigenicity should have a major therapeutic impact on the treatment of cancer 

patients with non-hematologic malignancies, since these patients generally have normal immune 

functions and, consequently, a high risk of developing neutralizing anti-immunotoxin antibodies. 

HA22, HA22-8X, and HA22-LR-6X are also clear examples that illustrate the formidable obstacles 

faced when developing Ab-based drugs with high therapeutic potential. At the same time, these 

molecules represent excellent testimonies of the usefulness of recombinant antibody technology in 

cancer immunotherapy. 

2.3. Radioimmunoconjugates 

90Yttrium-ibritumomab tiuxetan (90Y-IT or Zevalin) and 131Iodine-tositumomab (131I-T or Bexxar) 

are two radioisotope-conjugated murine monoclonal antibodies approved by the FDA in 2002 and 

2003, respectively. Both radioimmunoconjugates (RICs) target CD20, the same tumor antigen as 

ofatumumab and rituximab (ibritumomab is actually the murine IgG1/κ mAb from which chimeric 

rituximab was made of; tositumomab is a murine IgG2a/λ). Besides maintaining the tumoricidal 

properties of the unconjugated antibodies (which include apoptosis, complement-dependent 

cytotoxicity, and Ab-dependent cell-mediated cytotoxicity), they deliver ionizing β-radiation to target 

cells and cells in the vicinity, inducing cell death by “a cross-fire” mechanism. They are indicated for 

the treatment of patients suffering from CD20+, low-grade or follicular B-cell NHL who have relapsed 

or that do not respond to rituximab [37].  

When initially compared in a large randomized study, 90Y-IT resulted more effective than rituximab 

(80% versus 56% in overall response rate; and 30% versus 16% in complete response rate) for the 

treatment of patients with relapsed or refractory low grade or transformed B-cell NHL [38]. 

Subsequent clinical studies suggested that 90Y-IT performs equally better in older patients [39], and it 

is also safe and effective as second-line therapy for patients with relapsed disease [40]. Several clinical 

studies have documented a similar performance for 131I-T [41,42].  

More recently and based on results from Phase II/III clinical trials [43-46] regulatory organisms in 

USA and EU (FDA and EMEA, respectively) licensed the use of 90Y-IT as a first-line consolidation 
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therapy in follicular NHL patients who show a favorable response to induction with a combined 

chemo/immunotherapy protocol (http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-

_Product_Information/human/000547/WC500049469.pdf) [47,48]. 

In summary, boosting antineoplastic mAbs with cytotoxic moieties has not been an easy task. From 

conjugation to immunogenicity to adverse side effects due to systemic toxicity, every step has 

necessitated thoughtful insights to attain clinical-grade reagents. Indeed, only a handful of the many 

IT, ADC or RIC molecules tested in preclinical studies have reached clinical development. 

Nevertheless, all these efforts certainly improved the performance of the original mAbs, and the 

capacity to increase the cell death induction potential appears to be an important feature of new-

generation mAb-based antineoplastic proteins. This is a dynamic research area and many new 

molecules are being developed using the positive features of the ones that have made it to the clinical 

trials but including new features that wait for testing. Numerous examples can be found in the 

literature, including mAbs directed to various tumor targets conjugated to the same or similar drugs to 

the ones already mentioned [3,49]. Additionally, the discovery of anti-cancer properties in molecules 

such as anti-microbial and cationic peptides [50,51], and the use of proteins of human origin such as 

pro-apoptotic Bax, Bak; granzyme B, TRAIL, FasL, C5a and RNAse [28,52,53] may pave the way for 

a future generation of antibody-based toxic proteins with clinical applications in cancer therapy. 

3. Targeting Tumor-Host Interaction 

3.1. Targeting Angiogenesis 

An important event during tumor progression is the neovascularization of the malignant tissue. This 

process of angiogenesis is necessary to provide tumor cells with oxygen and nutrients, and critically 

depends on the interaction of vascular endothelial growth factors (VEGFs) with receptors (VEGFRs) 

found on the surface of endothelial cells [54]. Aflibercept (VEGF Trap or ZALTRAPTM) is a 

genetically engineered soluble fusion protein that combines the extracellular Ig domains 2 of VEGFR1 

and 3 of VEGFR2, with the Fragment, crystallizable (Fc) portion of the human IgG1. Aflibercept acts 

as a decoy receptor molecule that traps VEGFs, impeding the interaction with their receptors at the 

surface of vascular endothelial cells [55]. Phase I/II clinical trials established that no anti-aflibercept 

antibody response is produced in humans. The two major side effects, associated with the use of 

aflibercept in patients suffering from adenocarcinoma of the lung, ovarian cancer, glioblastoma, and 

melanoma, were hypertension and proteinuria [56-59]. Randomized Phase III clinical trials testing the 

use of aflibercept in combination with chemotherapy for the treatment of colorectal, non-small-cell 

lung, prostate, and pancreatic cancer are currently underway [60]. In a recent press release 

(http://en.sanofi.com/binaries/20110426_VELOUR_en_tcm28-31928.pdf) Sanofi-Aventis and Regeneron 

commented on the first results from the VELOUR trial (a study in metastatic colorectal cancer patients 

that is comparing a combined regimen of chemotherapy plus aflibercept versus chemotherapy alone) 

indicating “exciting positive findings…... will be presented at an upcoming medical meeting”. In 

addition, they disclosed their plan to submit regulatory applications for marketing approval to the US 

FDA and the European Medicines Agency later this year. 
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Amgen is developing a similar antibody Fc fusion protein, AMG 386. AMG 386 is a “peptibody” 

composed of an angiopoietin-binding peptide fused to the Fc portion of human IgG1. AMG 386 

inhibits the interactions of angiopoietin 1 (Ang-1) and Ang-2 with their receptor, Tie2, thereby 

affecting angiogenesis. After recent results from Phase I and II clinical trials, where no anti-AMG 386 

antibody response could be documented and drug safety was corroborated, Phase III studies started at 

the end of 2010 [60]. 

3.2. Triggering an Effective Antitumor Response  

3.2.1. Immunocytokines 

Elucidation of the different mechanisms of action through which therapeutic mAbs exert their 

antitumoral effects has highlighted the importance of the immune system for the success of this kind of 

therapy. Since then, many immunologically active molecules have been combined with mAbs in 

various formats. One of the most important group of such molecules are cytokines. Some cytokines, 

including Interleukin (IL)-2, Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), Tumor 

Necrosis Factor alpha (TNF-α), and IL-12, have been demonstrated to induce desirable clinical 

responses in cancer patients [61]. Their main drawback is the severe systemic toxicity associated with 

the high blood concentrations of cytokine needed to obtain an antitumoral effect. This gave rise to a 

generation of cytokine-antibody fusion proteins (or immunocytokines) targeting cytokines directly to 

the tumor, seeking to take advantage of the benefits of cytokines in cancer therapy while reducing their 

undesirable systemic side effects [4]. Currently, several immunocytokines are in Phase I and II clinical 

trials, representing the group of antibody fusion proteins that are closer to FDA approval. Table 1 

shows the immunocytokines for which clinical trials are currently under way; a more detailed 

description of recent clinical trial results for some of them follows. 

During cancer progression the alternatively spliced extra-domain B (ED-B) of fibronectin is 

strongly expressed in neo-vascular and stromal structures, but it is rarely expressed on normal cells, 

which makes it a suitable antigen for solid tumor therapies. As seen on Table 1, ED-B is the target of 

several strategies currently being tested in patients. One therapeutic strategy combines a humanized 

IgG1 antibody that recognizes ED-B (huBC1) with IL-12. huBC1-huIL12 (or AS1409) is a hexameric 

fusion protein (300 kDa) that has been evaluated in a Phase I study in malignant melanoma and renal 

cell carcinoma patients. The observed toxicities were manageable and predictable at the maximum 

tolerated dose (15 µg/kg) and they were less prominent than those observed with IL-12 as a single 

agent. Of 11 patients with malignant melanoma in the trial, one achieved a sustained partial response 

and another achieved a 29% reduction in measurable target lesions’ sizes. Five other patients showed 

stable disease [62]. 

L19-IL2 consists of human interleukin-2 (IL-2) fused to the single chain Fv (scFv) antibody 

fragment L19. L19 also recognizes fibronectin ED-B. In a Phase I/II trial, application of this 

immunocytokine to advanced renal cell carcinoma patients produced tolerable and reversible 

toxicities, along with the induction of stable disease in 17 out of 33 patients, 15 of whom had 

metastatic disease. Two patients remained progression-free for at least 27.5 and 30.5 months after 

termination of the treatment, resulting in a progression-free period without toxicity. This is an 
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important benefit of L19-IL2, since other protocols used in these patients require sustained therapies to 

prevent progression, which involve associated toxicities [63]. 

Table 1. Immunocytokines currently on clinical trials. 

Antibody fusion protein Condition Intervention Phase Clinicaltrial.gov 

HuBC1-IL12 

(Anti-EDB fused to IL-12) 

Metastatic melanoma and renal 

cell carcinoma 

Alone I NCT00625768 

 

L19-IL2 (Anti-EDB fused 

to IL-2) 

Advanced solid tumors 

Malignant melanoma 

Metastatic melanoma 

Advanced pancreatic cancer 

Alone 

Alone 

Dacarbazine 

Gemcitabine 

I /II 

II 

II 

I/II 

NCT01058538 

NCT01253096 

NCT01055522 

NCT01198522 

L19-TNFα  

(Anti-EDB fused to TNFα) 

Colorectal cancer 

Melanoma 

Alone 

Mephalan 

I/II 

I 

NCT01253837 

NCT01213732 

F16-IL2 (Anti-tenascin C 

fused to IL-2) 

Advanced solid tumor  

breast cancer 

Doxorubicin 

Paclitaxel 

I/II 

I/II 

NCT01131364 

NCT01134250 

Hu14.18-IL2  

(Anti-GD2 fused to IL-2) 

Melanoma 

Melanoma 

Neuroblastoma 

Neuroblastoma 

 

Alone 

Alone 

Alone 

GM-CSF and 

Isotretinoin 

II 

II 

II 

II 

NCT00109863 

NCT00590824 

NCT00082758 

NCT01334515 

 

DI-Leu16-IL2 

(de-immunized  anti-CD20 

fused to IL-2) 

Lymphoma Alone I NCT00720135 

 

Hu14.18-IL2 combines an antibody against the disialoganglioside GD2, a carbohydrate antigen 

found on melanomas, neuroblastomas and some sarcomas, with IL-2. In a recent Phase II study, 

hu14.18-IL2 induced complete regression of neuroblastoma lesions in five out of 23 patients with 

minimal disease evaluable only by [123I] metaiodo benzylguanidine (MIBG) scintigraphy and/or bone 

marrow (BM) histology. Thirteen other patients with bulky disease did not respond to therapy [64]. 

Tumor biopsies of patients with metastatic melanoma treated with hu14.18-IL2 evidenced T-cell, but 

not NK cell infiltration after treatment [65]. 

Many of the mechanisms through which immunocytokines exert their antitumoral effects have been 

studied in animal models and include: induction of IFNγ secretion, T-cell and NK-cell activation, tumor 

cell apoptosis, ADCC enhancement, increased polymorphonuclear adhesion and degranulation, etc. [4]. 

Interestingly, some immunocytokines have been shown to induce an immune response capable of 

providing protection against tumor cell challenges in mice [66]. 

3.2.2. Harnessing T-cells 

Currently, lymphocyte infiltration is considered one of the best indicators of prognosis for certain 

tumors [67,68]. For years, induction of specific T-cell responses against tumor cells has been one of 

the most pursued objectives in cancer immunotherapy. Besides fusing mAbs to cytokines, T-cell 

infiltration is also induced by combining therapeutic mAbs with T-cell-stimulating molecules, such as 

superantigens. This is done by directly activating antigen-presenting cells using fusion proteins, or by 

designing bispecific mAbs directed to both T-cell and tumor cell markers. 
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Naptumomab estafenatox, for example, is a recombinant fusion protein consisting of a mutated 

variant of the staphylococcal Superantigen Enterotoxin E (SEA/E-120) linked to the fragment, antigen 

binding (Fab) of a monoclonal antibody recognizing the oncofetal trophoblast glycoprotein 5T4. This 

antibody fusion protein showed evidence of antitumoral and immunological activity in Phase I studies 

in patients with non-small-cell lung cancer and renal cell cancer. Thirty six percent of the patients 

showed stable disease at day 56 (25% of the non-small-cell lung cancer patients and 64% renal 

patients) when used as a single agent, and 38% when used in combination with docetaxel. Two 

patients (15%) from the combination group showed partial responses that continued after 30 months. 

Immunohistochemistry of biopsy samples of two patients showed T-cell infiltration after treatment [69]. 

Another study evaluated naptumomab estafenatox activity in combination with IFNα for the treatment 

of advanced renal carcinoma. Results from this study are expected to be disclosed later this year [60]. 

A different approach takes advantage of antigen presenting cell (APC) activation to achieve 

lymphocytic stimulation. Lymphocyte Activation Gene-3 (LAG-3) is a MHC class II ligand related to 

CD4. A soluble form of LAG-3, termed LAG3Ig, was generated by genetically fusing DNA encoding 

the extracellular domain of human LAG-3 and the constant region of human Ig γ1 heavy chain 

spanning the hinge, CH2, and CH3 domains [70]. Binding of LAG3Ig to MHC class II molecules has 

been reported to act as an adjuvant, driving human immune responses toward a T-helper type 1 (Th1) 

phenotype [71], and to induce the activation of a large range of human effector cytotoxic cells [72]. In 

a Phase I clinical trial in metastatic breast carcinoma patients, the addition of LAG3Ig to the standard 

treatment (paclitaxel), did not induce clinically significant adverse effects, and no anti-LAG3Ig 

antibodies were detected (which is somewhat expected due to its human origin). Most importantly, 

only three out of 30 patients had disease progression in six months and the objective response rate 

increased from 25% in the historical control group to 50% in the trial group [73]. Even though these 

clinical results are encouraging and were accompanied with increases on the activation state and 

absolute numbers of circulating monocytes, NK and CD8+ T-cells, a recent observation showing that 

MHC class II-positive tumors, in particular malignant melanoma, can use the MHC class II-LAG3 

interaction to become apoptosis-resistant [74] may limit the use of LAG3Ig as an antitumor therapeutic 

to MHC class II-negative tumors.  

A novel kind of antibody construct, called BiTE (for “Bispecific T-cell Engager”), has shown 

promising results in clinical trials. BiTEs are antibody constructs that contain two ScFv of different 

specificities, one directed to the T-cell and the other one to the cancer cell. This maneuver brings 

together both cells, redirecting the T-cell lytic activity irrespectively of the T-cell specificity. 

Blinatumomab, a construct that binds CD19 on B-cells and CD3 on T-cells, was the first BiTE tested 

in patients. The first clinical trial showed an overall response rate of 82% as monotherapy in B-cell 

NHL. The most relevant adverse effects at the onset of the treatment were reversible central nervous 

system events that led to discontinuation of therapy in 14 of 62 patients. However, in 21 adult B-cell 

precursor acute lymphoblastic leukemia patients with signs of minimal residual disease (MRD), 

Blinatumomab induced the conversion from MRD-positive to MRD-negative in 16 patients. This 

result is of major importance since MRD in B-cell precursor acute lymphoblastic leukemia is a poor 

prognosis marker for which no satisfactory treatment options are available [75]. 

Another BiTE antibody construct, directed against the epithelial cell adhesion molecule (EpCAM) 

and CD3, was tested in a Phase I study showing low toxicity and some biological activity in patients 
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with solid tumors. Disease stabilization was achieved in seven out of 19 patients and CD8+ T-cell 

counts increased in five of them [75,76]. 

3.2.3. Harnessing Innate Immunity Effector Cells 

The notion of involvement of cells from the innate immunity in the anti-cancer response mainly 

comes from studies on the mechanisms of action associated with successful responses in patients. 

Complement-dependent cytotoxicity (CDC) and more prominently antibody-dependent cellular 

cytotoxocity (ADCC) have been implicated in the success of FDA-approved therapeutic antibodies 

such as rituximab and trastuzumab [77,78]. Notably, patients with partial and complete responses to 

trastuzumab showed an increased number of total leukocytes in their biopsies, whereas the number of 

infiltrating lymphocytes did not differed between responders and non-responders. Also, these 

responding patients showed higher ADCC activity in vitro [79]. Since ADCC is accomplished by cells 

of the innate immunity, an increased interest in these immune cell populations is arising. 

3.2.3.1. NK cells 

NK cells have been considered one of the main ADCC effectors in cancer immunotherapy [80]. 

They show mAb-mediated cytotoxic activity against tumor cell lines in vitro [81] and express CD16a 

on their surface, an important immunoglobulin receptor with polymorphic variants that has been 

associated with clinical responses to rituximab, trastuzumab and cetuximab [82-84]. Even though NK 

cells possess an undisputable cytotoxic potential, the NK cell populations isolated from cancer patients 

show impaired antitumor functions [85], low cell counts and decreased cytotoxicity in vitro [11]. 

Restoration of NK cell’s antitumoral properties and enhancement of NK-mediated ADCC have been 

the focus of some immunotherapeutic approaches including stimulation with mAbs fused to cytokines 

such as IL-2, IL-12 and GM-CSF [4]. 

In a recent approach, Kellner et al. increased NK-mediated cytotoxicity against malignant cells 

isolated from patients by improving the avidity for CD19 of a CD19/CD16 bispecific Fab-based 

protein [86]. They compared a bibody construct (one ScFv against CD16 and one Fab fragment against 

CD19) with a tribody construct (one ScFv against CD16, one ScFv against CD19, and one Fab 

fragment against CD19) in terms of binding and cytotoxicity. Having a 3-fold higher avidity for CD19 

and equal affinity for CD16 compared to the bibody format, the tribody mediated the lysis of a higher 

percent of target cells by NKs isolated from healthy donors.  

Cell number is also an important concern in NK-based cancer immunotherapy, because these cells 

are present in relatively low numbers in peripheral blood. Therefore, expansion and activation of NK 

cells has been pursued through several strategies, including incubation with cytokines such as IL-2 and 

IL-15 [11,87]. Recently, Wu et al. expanded NK cells isolated from healthy donors using an Ab-based 

chimeric molecule consisting of the human IL-15 receptor, IL-15Rα, fused to the Fc portion of IgG1. 

NK cells expanded in such manner lysed a significantly higher number of tumor cells (K562) in the 

presence of IL-2 than NK cells stimulated with IL-2 or IL-15 alone [88]. 

NK cell ability to target cancer cells not only depends on MHC class I expression on the tumor cell, 

but also on a set of surface receptors on the NK cell named the natural killer cytotoxic receptors 

(NCR). One of these molecules, the NKp30 receptor, identifies cancer cells through an unknown 
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ligand. This property has been translated into a therapeutic tool by developing a fusion between the 

extracellular domain of NKp30 and the constant region of a human IgG1. Treatment of tumor 

xenografts in nude mice with this antibody fusion protein results in complete remissions in half of the 

animals and partial responses in another 25%. In vitro ADCC activity induced by this fusion protein 

was mediated by activated peritoneal macrophages [89], but no other cell types were tested in these 

ADCC assays. 

3.2.3.2. PMNs 

Even though NK cells and macrophages have been identified as important populations involved in 

ADCC of tumor cells, most of these studies have been performed using peripheral blood mononuclear 

cells obtained from human subjects. The polymorphonuclear (PMN) population is normally removed 

from these samples during the isolation procedure. Additionally, high neutrophil : lymphocyte ratios in 

peripheral blood of cancer patients have been associated with poor prognosis, an observation that may 

depict PMNs as cells with little therapeutic potential [90,91] 

Myeloid-derived suppressor cells (MDSC) are a subset of a heterogeneous population that infiltrate 

tumors and make them poorly immunogenic [92]. In mice, MDSCs consist of cell subsets in 

intermediate myeloid stage of development that possess a high immunoregulatory potential. These 

cells can differentiate toward a monocytic or granulocytic lineage depending on the tumor 

microenvironment [93]. In cancer patients, PMNs isolated from the MDSC fraction of peripheral blood 

show an immature phenotype with impaired migratory properties and T-cell suppressive capacities [94]. 

On the other hand, fully mature, active PMNs are the most cytotoxic and numerous of all 

leukocytes and evidence from experimental models support their possible use in cancer 

immunotherapy. For instance, a chemoimmunotherapeutic protocol that eradicates colon cancer 

tumors in mice induces the disappearance of MDSCs and the concomitant appearance of inflammatory 

myeloid cells within the tumor. Depletion of this emerging inflammatory myeloid population by 

treatment with a specific antibody (anti-Gr1 mAb) not only abolished the anti-tumor response of the 

therapy, but also abrogated the infiltration of effector T-cells [95]. 

Additionally, the importance of PMNs in the activity of rituximab was evidenced using a B-cell 

lymphoma SCID mouse model, in which depletion of neutrophils dramatically reduced the efficacy of 

the treatment, even in the presence of intact NK cells [96].  

The way PMNs can exert an antineoplastic response is not completely understood, but 

chemoattraction of active PMNs to the tumor site is one important requirement. Studies on a mouse 

colony that show spontaneous regression of tumors and cancer resistance reveal that tumor regression 

requires both the infiltration of tumors with leukocytes, particularly PMNs, and the recognition of 

some undetermined surface markers on tumor cells [97]. 

In addition to what has been observed in animal models, in vitro studies show that PMNs can 

induce Ab-mediated apoptosis in a human breast cancer cell line (SK-BR 3) [78]. In the clinic, 

administration of granulocyte-colony stimulating factor (G-CSF) during radiotherapy significantly 

increased the overall survival of patients with squamous head and neck cancer. G-CSF activates and 

mobilizes PMNs, suggesting that this cell population might have been partly responsible for the 

observed improved survival [98]. With this in mind, some recent immunotherapeutic approaches focus 
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on the exploitation of PMN’s antitumoral properties, taking advantage of their high numbers and lack 

of specificity [99]. In a clinical trial currently underway, granulocytes from healthy donors are 

mobilized with dexamethasone and G-CSF, collected via apheresis, and then infused to cancer patients 

(Clinicaltrial.gov identification number: NCT00900497).  

Initial attempts to induce PMN-mediated ADCC in cancer patients using a bispecific antibody 

(MDX-H210) directed toward HER2/neu and the Fc gamma receptor I (FcγRI) were not as 

encouraging as expected [100]. Either alone or combined with GM-CSF, G-CSF or IFN-γ, no 

significant clinical responses were observed. A plausible explanation holds that recruitment of PMNs 

through FcγRI selects for immature PMNs with no antitumoral capabilities [5]. In the mean time, new 

Ab-based anti-tumor proteins targeting receptors other than FcγRI on PMNs have been developed. For 

instance, a recombinant single chain Fv fragment specific for HLA class II, on the tumor cell, and for 

the IgA Fc receptor (FcαR or CD89) on PMNs [(FcαRI × HLA class II) bsscFv] has recently been 

engineered and tested in the context of B-cell malignancies. CD89 is preferentially expressed on 

mature neutrophils and it stands as the most potent neutrophil FcR for ADCC [101]. (FcαRI × HLA 

class II) bsscFv effectively mediates the killing of B-cell lymphoma cell lines and human primary 

tumor cells obtained from patients with B-cell malignancies that are resistant to lysis by other anti-HLA 

class II-specific antibodies in vitro. As expected, PMNs were identified as the relevant effector 

population [102]. 

Another Ab-based protein that stimulates PMNs through a receptor other than FcγRI is  

anti-HER2/neu-(C5a) [52]. Anti-HER2/neu-(C5a) is a human IgG3 molecule specific for HER2/neu 

fused to the C5a fragment derived from the component C5 of the complement system. In vitro, this 

antibody fusion protein attracts human PMNs, binds and signals PMNs through the C5a receptor 

(C5aR), and induces the expression of Mac-1. Mac-1 has been shown to be essential for  

PMN-mediated ADCC, promoting binding to tumor cells and allowing formation of intercellular synapses 

[103]. Anti-HER2/neu-(C5a) also possesses the capacity to induce the death of HER2-expressing 

tumor cell lines, both in the presence or absence of effector cells, through some yet unknown 

mechanisms. The multiple features of anti-HER2/neu-(C5a) might contribute to the targeting of tumor 

cells through a multi-prong effector approach, i.e. direct cytotoxicity, chemoattraction of effector 

populations and stimulation of an immunological response.  

From the clinical results observed when activating an immune response through Ab-based 

antitumor therapeutic, it becomes apparent that the induction of this type of response is important but 

not sufficient to achieve complete and durable cancer remissions. In several studies the most common 

clinical response observed is stable disease. It is possible that the circumstances that have warranted 

complete responses in experimental animals are not achievable in the main cancer patient populations. 

Often, cancer patients are older and/or heavily pre-treated people in which the immune potential is 

limited. Still, activation of an immune response should be a major component of antineoplastic 

therapies, due to the important role that immunity has on cancer development [104]. Perhaps, the 

simultaneous targeting of other tumor-promoting components at the time of immune stimulation might 

help solve these issues to attain more effective and robust antitumoral reactions. Additionally, controlling 

the influence of relevant immunoregulatory cells such as Tregs [105], MDSCs, and B-cells [106] could 

also help increase objective responses through immune activation. 
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4. Multiple Effects and Combinatorial Approaches 

Since the War on Cancer started 40 years ago, cancer therapy has certainly improved. However, 

complete remissions as those achieved for many bacterial infection diseases are rarely observed. From 

the experience gained through infection disease research, one could extrapolate some of the parameters 

that need to be controlled in order to succeed. Tumor burden, immune evasion, physiological 

resemblance, and cell plasticity are among the features that complicate the picture and promote cancer 

progression in spite of research and clinical efforts. Traditional approaches such as surgery, 

chemotherapy and radiotherapy have focused on controlling tumor burden. Immunotherapeutic 

approaches try to deal with immune unresponsiveness and evasion. Genetic and biochemical studies 

seek for identification of important physiological differences that can serve as targets. Approaches 

involving the disruption of structural targets such as cell or mitochondrial membranes (which are 

difficult to mutate) could help overcome the tremendous cellular plasticity of cancer cells.  

No antineoplastic antibody or antibody-based therapy has rendered reproducible and definite 

complete remissions and it is hard to imagine a single agent that could deal with all tumor strategies 

simultaneously. Good approaches are becoming more common with the development of different 

therapeutic agents that contribute to the resolution of these issues. Combination of these approaches 

can contribute to avoid the occurrence of relapses and the development of resistance mechanisms by 

targeting more than one tumor cell population simultaneously. This is known as the 10−5 × 10−5 = 10−10 

rule, in which 10−5 refers to the approximate frequency of appearance of new mutants in a cancer cell 

population. Thus, by targeting tumor cells through multiple mechanisms, the probability of a new 

mutant escaping from the therapy-induced death will be significantly reduced [107]. Additionally, 

combination therapies may show synergistic effects not previously envisioned. 

Several small molecules are being tested in combination with mAbs for cancer immunotherapy. 

Combination with protein-kinase inhibitors is currently under study in many clinical trials testing their 

possible additive and/or synergistic effects. Other molecules, such as small interfering RNA (siRNA), 

peptides, carbohydrate moieties and Ab-based constructs have been used to boost additional 

antineoplastic feature of mAbs. Complement-dependent cytotoxicity (CDC) and Complement 

Receptor 3 (CR3; CD11b/CD18)-dependent cellular cytotoxicity (CR3-DCC) are important 

mechanisms through which tumor cells can be eliminated. However, many tumor cells overexpress 

membrane-bound complement regulators (mCRegs), which inhibit the biological effects of 

complement activation induced by therapeutic mAbs [108]. To overcome this drawback, siRNAs that 

silence mCReg genes were developed, but this approach still lacks a safe and reliable mode of 

systemic delivery [109]. Alternatively, transfection of tumor cell lines having altered protein-kinase 

activity with a plasmid encoding a peptide called REST68 regulates the expression of CD59 (a mCReg 

of the terminal phase of the complement cascade) and increases CDC, apoptosis, and ADCC [110]. 

Even more, activity of antitumor mAbs in a mouse model can be enhanced by β-glucan administration, 

which primes CR3 on PMNs [111]. This receptor, also known as Mac-1, mediates binding to 

complement fragments iC3b deposited on tumor cells, promoting cell-to-cell contact and triggering 

cytotoxicity [103]. Finally, combination of antineoplastic mAbs with a Complement Receptor 2 

(CR2)-Ab construct (CR2-Fc) significantly enhanced CDC of a human prostate cell line and improved 

the long-term survival of nude mice challenged with tumor cells [112]. CR2 also binds C3 fragments 
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deposited on the surface of tumor cells. These evidences support the notion of complement activation 

as an exploitable additional antineoplastic mechanism induced by mAbs. 

In animal models, complete eradication of, and protection from, human B-cell lymphoma 

xenografts were achieved by combining rituximab with L19-IL2. Staining of tumor sections with NK- 

and macrophage-specific antibodies revealed the presence of these populations among the infiltrating 

cells [113]. Furthermore, administration of IFN-α or docetaxel along with a superantigen-antibody 

fusion protein (C215Fab-SEA) prolonged the median survival time and reduced the number of lung 

metastasis in melanoma bearing C57Bl/6 mice [114,115]. In the clinic, the combination of different 

strategies has also proved more effective than single agents, particularly in terms of duration of the 

responses. For example, a Phase II study on the efficacy and safety of a combination chemotherapy 

(cyclophosphamide, vincritine and prednisone) followed by tositumomab and 131I-tositumomab was 

evaluated in patients with low-grade follicular lymphoma. For 30 patients evaluated, the response rate 

after completion of the therapy was 100% with 93% achieving complete remission. Five-year 

progression-free and overall survival rates were 56% and 83%, respectively [116]. Comparatively, a 

similar study using 131I-tositumomab as single agent produced a response rate of 83% and complete 

remission in 46% of 28 low-grade Non-Hodgkin's lymphoma patients. The median progression-free 

survival for responders was also much lower (12.3 months) [117]. 

The exact mechanisms for the improvements observed when using combination therapies have not 

been characterized but a recent article using experimental animals might give some important clues. 

Ramakrishnan et al. observed a synergistic effect of the combination of chemotherapy with cytotoxic 

T-cell transfer immunotherapy. The proposed mechanism involves the up-regulation of cation 

independent-mannose 6 phosphate receptor (CI-MPR), a 300 kDa transmembrane protein which over-

expression is known to induce cell growth inhibition, by three different chemotherapeutic agents 

(paclitaxel, cisplatin or doxorubicin) [118]. This up-regulation potentiated cytotoxic T-cell killing by 

making tumor cells more permeable to granzyme B [119]. This hypothesis needs to be validated in 

patients, but some unexpected clinical benefits observed in patients having received cancer vaccines 

prior to chemotherapy support it [120]. Improvements in overall response rates suggest that 

combination of new agents with standard and novel therapies will probably become first line protocols 

for cancer therapy in the near future. 

5. Concluding Remarks 

The number of antibody-based antitumor proteins generated during the past years is almost 

countless. Their path to patients is long and costly [121]. Thus, a thorough analysis of the 

circumstances that lead to success and those that do not is mandatory. Such an analysis seems like an 

epic task even for those mAbs that have been widely used in the clinic, such as rituximab [122]. Even 

then, the design of new therapeutic Ab-based proteins on the basis of such scientific observations have 

not been as successful as expected [123], and curiously enough, the enhancement of some mechanisms 

of action have negatively affected the contributions of some others [122].  

This reality reflects the complexity of the problem and demands for more individualized solutions. 

From our perspective, the ideal protocol should combine agents that: (1) promote direct and specific 

toxicity to tumor cells and/or cells in their microenvironment; (2) attract and activate a significant 
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number of cytotoxic effector cells into the tumor microenvironment; either from innate immunity, 

adaptive immunity or both; (3) specifically inhibit the activity of relevant regulatory cell populations 

such as Tregs, MDSC, or B-cells; (4) cause the lowest possible toxicity to normal cell and tissues, and 

if possible; (5) interact synergistically. This may be easier said than done, but fine-tuning of the many 

options already in scope will certainly lead us to the goal of complete and durable remissions. 
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