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Abstract
Background: Many high-throughput genomic experiments, such as Synthetic Genetic Array and yeast two-hybrid, use 
colony growth on solid media as a screen metric. These experiments routinely generate over 100,000 data points, 
making data analysis a time consuming and painstaking process. Here we describe ScreenMill, a new software suite 
that automates image analysis and simplifies data review and analysis for high-throughput biological experiments.

Results: The ScreenMill, software suite includes three software tools or "engines": an open source Colony Measurement 
Engine (CM Engine) to quantitate colony growth data from plate images, a web-based Data Review Engine (DR Engine) to 
validate and analyze quantitative screen data, and a web-based Statistics Visualization Engine (SV Engine) to visualize 
screen data with statistical information overlaid. The methods and software described here can be applied to any 
screen in which growth is measured by colony size. In addition, the DR Engine and SV Engine can be used to visualize 
and analyze other types of quantitative high-throughput data.

Conclusions: ScreenMill automates quantification, analysis and visualization of high-throughput screen data. The 
algorithms implemented in ScreenMill are transparent allowing users to be confident about the results ScreenMill 
produces. Taken together, the tools of ScreenMill offer biologists a simple and flexible way of analyzing their data, 
without requiring programming skills.

Background
Based on genome sequence information, comprehensive
clone and gene deletion libraries have been created where
each gene is individually expressed or deleted. Genetic
techniques have been developed to exploit these
resources, which has led to an explosion in the number of
high-throughput biological experiments for many organ-
isms. Advances in automation technology are also
increasing the efficiency and driving down the costs of
performing these experiments. The budding yeast Sac-
charomyces cerevisiae has provided a robust platform for
many high-throughput experiments, examples include:
yeast-two hybrid screens to discover novel protein-pro-
tein interactions [1-3], chemical genetic screens to deter-
mine the target of a particular inhibitory compound [4],
and synthetic lethal (SL) and synthetic dosage lethal

(SDL) screens to discover novel genetic interactions [5-
12]. The readout from these screens is typically growth of
yeast colonies arranged in a grid on solid media and com-
parisons are made between experimental and control
conditions to evaluate a biological effect.

Visual inspection has been used effectively to evaluate
high-throughput growth data, but the task is time con-
suming and subjective [8]. Raw data may need to be
reviewed several times to ensure accuracy, a feat made
difficult by the fact that high-throughput screens often
produce 100,000 or more data points, with significant
growth differences, or "hits," representing only a small
fraction of the total. In addition, without quantitative
data the results are typically binary (growth vs. no
growth) and therefore, biologically relevant information
may be lost.

Quantitative data can help identify more biologically
relevant information from a screen such as weak vs.
strong interactions or even suppressors [13]. Imaging
tools such as ImageJ [14], CellProfiler [15], or HT Colony
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Grid Analyzer [16] can be used to quantify colony
growth, but these tools can only provide raw colony size
data, with no statistical analysis of the data they produce.
In addition, ImageJ and CellProfiler require knowledge of
image manipulation and programming to adapt them for
use with a particular experiment. Statistical analysis can
be achieved with programs such as Growth Detector [17],
Colony Imager [18] and Colony Scorer [18]. However,
none of these programs have all of the features expected
in a fully automated system. For instance, the analysis
methods used in Colony Imager and Colony Scorer are not
completely described. A transparent system would allow
more evaluation, and perhaps, customization of statistical
methods. In contrast, Growth Detector provides source
code, so the methods are transparent, however the code
must be edited prior to use and requires the proprietary
software, MATLAB, to run. Finally, none of these pro-
grams provide visualization tools to help evaluate numer-
ical output.

Here we present a new software suite called ScreenMill
that overcomes the limitations described above. The
methods employed by ScreenMill are transparent and
require no proprietary software or sophisticated pro-
gramming knowledge for their use. ScreenMill allows
users to obtain quantitative data from high-throughput
growth experiments, streamlines the statistical analysis,
and offers a novel web-based application to review and
visualize data.

Implementation
The ScreenMill software suite is composed of three soft-
ware tools: Colony Measurement Engine (CM Engine),
Data Review Engine (DR Engine), and Statistics Visualiza-
tion Engine (SV Engine) (Figure 1). The CM Engine auto-
mates the processing of digital plate images, computes
colony areas, and saves the raw growth data to a file. This
file is uploaded to the DR Engine, which provides a
graphic user interface (GUI) with a visual representation
of the raw data. The GUI provides tools for visualizing
data and identifying anomalies. The DR Engine then cal-
culates population statistics for a dataset and saves the
results in a text file. The SV Engine accepts the results
generated by the CM and DR engines as inputs and uses a
GUI similar to the DR Engine to provide a unique visual-
ization of the statistics for side-by-side comparison of
control and experimental plates from a screen. This tool
helps to review and refine the list of significant interac-
tions identified in a screen.

Colony Measurement Engine (CM Engine)
The CM Engine has been developed as an open-source
macro for the freely available program, ImageJ from the
National Institutes of Health (NIH) [14]. The function of
CM Engine is to automatically translate into quantitative

data, a directory containing digital images of yeast plates
with colonies arranged in a rectangular grid. Prior to
using CM Engine, images of agar plates are generated
using a flatbed scanner or digital camera. Digital images
of plates presented in this paper were captured using a
ScanMaker 9800XL flatbed scanner (MicroTek Interna-
tional, Inc.). Plates were scanned in 8-bit grayscale at a
resolution of 300 dpi using the Transparent Media
Adapter. Transparency mode scans eliminate many arti-
facts caused by reflected light and result in higher con-
trast images than reflected light scans. A black Plexiglas
mask was cut to make a 3 × 3 plate grid to align them on
the scanner bed and mask the light between them.

CM Engine accepts three different image layouts as
input: (1) multi-plate images that contain several plates
arranged in a defined array, (2) "rough crops", in which
images are comprised of individual plates where the bor-
ders of the image align roughly with the edge of the plate
(and may not reflect precise alignment to the colony grid)
and (3) "fine crops", in which the images contain individ-
ual plates whose borders align exactly with the edge of the
colony grid layout (Figure 2).

Upon invoking the CM Engine macro within ImageJ,
the user is prompted to select a "parent directory" con-
taining plate images (Additional File 1 - Figure S2).
These images may be in any file format that ImageJ can
open, including JPEG, GIF, PNG, and TIFF, although
images in a lossless format (e.g. PNG and TIFF) at a reso-
lution of at least 300 dpi are recommended. CM Engine
then allows users to enter several parameters: the mode
in which they would like to quantify colony growth, the
colony array format used in the screen (384 or 1536 colo-
nies), a label for the file that will store the colony area
sizes, and the labels of any conditions (e.g., drug expo-
sure, UV).

Three quantification modes are available (Standard,
Summation and Background Subtracted) and are chosen
based on how the cells are deposited on the agar plates.
For all modes, the fine-cropped plate image is symmetri-
cally partitioned based on the colony array format and
growth in each partition is measured. Standard and Sum-
mation modes use binary representations of plate images
after applying a threshold filter, whereas Background
Subtracted mode uses grayscale images (Figure 3a).
CM Engine - Standard Measurement Mode
Standard mode is typically used when strains are depos-
ited on plates as discrete points, such as in replica-pin
transfers. In these experiments, growth area of a continu-
ous circular colony is measured (Figure 3b). Standard
mode offers robust artifact detection prior to calculating
colony areas. In addition, measurements are recorded in
Standard mode only after passing a quality control step
that is based on a comparison of the number of colonies
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expected on a plate to the number of colonies detected on
a plate.

Similar to HT Colony Grid Analyzer [16] and Growth
Detector [17], the first step of Standard mode applies a
binary threshold filter to each image to render plate
images as black colonies (particles) with a white back-
ground. Every particle on a plate is then analyzed using
the ImageJ function "Analyze Particles", returning the
centroid coordinates, particle size (number of pixels), and
circularity (a value between 0 and 1.0, where 0 is the cir-
cularity of a straight line and 1.0 is the circularity of a per-
fect circle). This circularity parameter is used to help
identify artifacts that may be present in the image. Any
particle whose circularity is below a threshold value (e.g.,
0.7) and whose area measurement is more then one stan-
dard deviation from the mean of particle area sizes on the
plate is considered to be an anomaly. Examples of such
artifacts include scratches on the plate or two colonies
that have grown together due to excessive moisture on
the plate. Any anomalies detected in an image are pre-
sented to the user in a list indicating the location of the
artifact. An editable image of the plate is displayed for the
user to manually remove artifacts using ImageJ's built in
editing tools. This artifact detection system is similar to
the one offered in Growth Detector, which analyzes col-
ony circularity to locate artifacts [17]. Once corrections
are made, CM Engine assigns colony size values.

The colony assignment algorithm takes advantage of
the fact that colonies are positioned on the plate in a reg-
ular grid, meaning that the approximate position where
each colony should lie can be calculated based on the
dimensions of the image. This information is correlated

with the centroid coordinates that the ImageJ particle
analysis function returns. For each cell of the grid, every
particle whose centroid lies within the cell is analyzed,
but only the one with the largest area is assigned as the
measurement value of that cell. The information of every
other particle within that cell is discarded.

In a feature unique to Standard mode, after all particles
are processed a quality control algorithm is applied. This
algorithm compares the number of particles assigned to
the total number of particles in the image and is run to
determine if the image has been successfully quantified. If
these two values do not deviate more than 25% from one
another, then the plate has been successfully quantified
and the image is moved into the "measurement_passed"
folder. Otherwise a quantification error has occurred and
the image is moved to the "measurement_errors" direc-
tory.
CM Engine - Summation Measurement Mode
Depending on the way cells are deposited on plates, col-
ony growth may not be represented by the largest particle
within a cell of the grid layout, but instead by the growth
of several particles within a cell. This type of growth may
occur when colonies are pinned onto agar plates using
blunt-tipped pins (typical of hand-pinned experiments)
(Figure 3a). In this situation, Standard mode is not opti-
mal since it only considers the largest particle within a
cell to represent colony growth. To accommodate this
type of growth, we developed Summation mode. Like
Standard mode, Summation mode applies a threshold to
make a binary image, however all particles areas within
each cell of the grid are summed to derive a growth value
(Figure 3c). In Summation mode, since all particle areas

Figure 1 ScreenMill workflow. Clouds represent inputs for each of the programs. Processing steps in CM, DR, and SV Engines are represented as dark 
gray, white or light gray boxes, respectively. See Additional File 1 for details on how to properly format input files.
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are summed, there is no attempt to remove artifacts (Fig-
ure 3a).
CM Engine - Background Subtracted Measurement Mode
Cells deposited on agar plates from liquid cultures typi-
cally result in colonies having equivalent growth areas
and growth differences are manifested by density varia-
tion. Such density information is lost when a binary
threshold is applied, thus Background Subtracted mode
was developed (Figure 3aand 3d). Our implementation
of Background Subtracted mode is similar to a measure-
ment method described by Jafari-Khouzani et al. for colo-
rimetric assays [19]. In our implementation, images are
first converted to 8-bit grayscale images. The background
gray value of each cell of the grid is then determined by
taking the median gray value of pixels in the four corners
of a cell. This background gray value is subtracted from
the cell and the remaining pixel values greater than 0 rep-
resent colony growth. The mean gray value of the cell is
then reported as colony growth (Figure 3d). Like Sum-
mation mode, Background Subtracted mode has the
potential limitation that everything within a cell above
the background value will contribute to the growth quan-
tification of that cell, even if this includes stray marks or
other artifacts. However, Background Subtracted mode
has the benefit of not having to apply a threshold filter to
the image prior to quantification. In addition, since the
background value is calculated on a per cell basis, uneven
lighting across a plate image does not affect quantifica-
tion.
CM Engine - Cropping Algorithms
After the measurement mode and other analysis parame-
ters are entered, CM Engine examines the structure of the
parent directory to determine the format of the images to
be quantified (multi-plate, "rough crops" or "fine crops";
see Figure 2 and Additional Files 1 and 2 for examples).
Once this determination is made, CM Engine processes
images in a stepwise fashion, moving them from a start-
ing directory into specific folders as they are processed,
eventually arriving in a final directory called
"measurements_passed" (Figure 4a). Multi-plate images
are copied to a folder labeled "original_scans" and split
into individual plate images, which are placed into a
folder labeled "rough_crops". For proper processing the
software requires multi-plate image backgrounds to be
completely black with plates arranged as detailed in Fig-
ure 2. CM Engine next applies a straightening algorithm
to rotate each plate image in the "rough_crops" folder so
that every row of colonies lies in a straight line. The
straightening algorithm works by analyzing a selection of
nine colonies that lie in a 3x3 square within the interior of
a rough-cropped plate image. The coordinates of the cen-
ter of each of these colonies (centroid coordinates) are
determined and used to calculate the angles of the diago-
nals and edges of the square. In a perfect square, diago-

Figure 2 CM Engine acceptable image formats. Red dots in the Fig-
ure indicate position A1. Red dots are for illustrative purpose only and 
should not appear on images processed by CM Engine. Images are as-
sumed to be in this orientation by the CM Engine. Note: images are not 
shown at 100% scale. Full size example images may found in Additional 
File 2 or may be downloaded from the Rothstein Lab website: http://
www.rothsteinlab.com/tools/screen_mill/cm_engine.

http://www.rothsteinlab.com/tools/screen_mill/cm_engine
http://www.rothsteinlab.com/tools/screen_mill/cm_engine
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nals should be 45 or 135 degrees, vertical edges should be
90 degrees, and horizontal edges should be 0 degrees.
The differences between the angles measured and the
ideal angles of a perfect square are calculated and aver-
aged to determine the direction and magnitude to rotate
the image to straighten it. This process is repeated eight
more times at other positions symmetrically distributed
across the image. All resulting calculated angles are aver-
aged and then used to rotate the image appropriately.

Following alignment, images are fine cropped so that
borders are close to the edge of colony growth, and are
moved into a folder labeled "fine_crops". The first step of
the cropping algorithm determines the approximate
width of a row (or column) of colonies as well as the aver-
age distance between the colonies. Once these measure-
ments are determined, four rectangular selections are
analyzed in the interior of the image. The shorter dimen-
sions of the rectangles are equivalent to the sum of the
average colony width and the average distance between
colonies (i.e. encompasses one row and one interstitial
space). The longer edge of each rectangle encompasses
approximately three-quarters of the colonies in a row or
column. Each rectangle is parallel to one of the edges of
the image and is centered over a row or column of colo-
nies. After initial positioning, each rectangle is moved

independently towards the edge of the image in a step-
wise process by a distance equivalent to the smaller
dimension of each rectangle. At each step, the rectangles
are queried for the presence of colonies within their bor-
ders. Once no colonies are found within the borders of a
rectangle, its movement stops. The interior edge of that
rectangle is considered to be the border of colonies.
Using these algorithmically defined borders, the images
are cropped and will contain a grid of colonies that lie in a
specific number of rows and columns based on the den-
sity of the screen conducted (Figure 4b). The integrity of
this grid layout is validated by drawing a thin selection
line between each row and column of colonies based on
where they are expected to lie if they were properly
aligned and cropped. The ImageJ "Measure" command is
used to determine if any of these lines significantly over-
lap colonies. If they do not, the integrity of the grid layout
is validated and the image is successfully cropped.

In our tests, over 98% (1313 of 1333) of plate images
were successfully processed into properly rotated, fine-
cropped images. If an error occurs with an image during
this process (i.e., cropping or alignment), the image is
moved into a folder labeled "fine_crop_errors". In this
case, the images may be manually cropped, as described
below. When fine cropping is completed, the CM Engine

Figure 3 CM Engine measurement modes. (a) Images of colonies in grayscale before and after application of a threshold filter. These images repre-
sent the three main ways cells are deposited onto agar plates in high-throughput growth experiments (discrete points, blunt tipped and liquid spot-
ted). Three different CM Engine measurement modes (Standard, Summation and Background Subtracted) have been developed to handle each of 
these colony deposition methods. The grayed boxes in b, c and d indicate the preferred measurement mode. Prior to analysis, each image is symmet-
rically divided into partitions, one for each colony. (b) Standard mode is designed for robot pinned colonies that come from a discrete point. Images 
are subjected to a threshold filter and only the largest particle of each partition is considered. Anomalies are presented to the user and may be re-
moved manually. All colonies in image I are measured accurately since the linear artifact in partition 2 was detected and removed. In image II, only 
colony 1 is correctly measured since Standard mode chooses the largest particle in each partition, incorrectly measuring the non-contiguous growth 
in partitions 2 and 3. None of the colonies in image III were measured accurately since the automatic threshold filter used in Standard mode is insen-
sitive to density differences between partitions. (c) Summation mode is designed for colonies from blunt tipped pins. Images are subjected to a 
threshold filter and all particles within each partition are considered part of the colony. In this case, all colonies in image II are measured accurately. 
Colony 2 of image I was incorrectly measured due to the inclusion of the linear artifact in that partition. This mode also fails for image III since, like 
Standard mode, it is insensitive to density differences. (d) Background Subtracted mode is designed for cells spotted from a liquid culture. The back-
ground of the grayscale image is subtracted from each partition and the remaining pixel values are averaged to quantify cell density. In this mode, 
image III colonies are measured accurately, while image I was not due to the linear artifact in partition 2. Additionally, image II was not measured ac-
curately due to the high background value of the grayscale image. For b, c and d, values are normalized to the largest colony size. Accuracy was de-
termined by manual threshold and measurement as described in the documentation of ImageJ software.
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calculates colony growth using one of the three user-des-
ignated processing modes (Standard, Summation or
Background Subtracted).

After successful colony measurement, images are
moved to the "measurements_passed" folder. CM Engine
produces a text-based log file that lists all colony mea-
surements for every plate that was successfully processed.
If errors occur at any point in image processing, addi-
tional log files are generated that describe which plates
are affected and the type of error that occurs (error fold-
ers, Figure 4a). Most images can be manually edited to
overcome a particular error. For instance, images in the

"fine_crop_errors" folder can be manually aligned and
fine-cropped then moved by the user into the
"fine_crops" folder. Upon re-running CM Engine, these
manually-adjusted images are detected in the
"fine_crops" folder, processed and the measurements are
saved to a new log file allowing specific plates to be rean-
alyzed without having to re-process all plate images.
Once all plates have been successfully measured, the user
may upload the log file to the web-based DR Engine pro-
gram. If multiple log files are present, they must be com-
bined into one "master" log file before proceeding with
DR Engine.

Figure 4 CM and DR Engine Details. (a) Workflow of the CM Engine. Processing of images typically begins with multi-plate image files in a "Parent 
Directory." Prior to processing, CM Engine copies the multi-plate image files to the "original_scans" folder. The rough crop algorithm divides multi-plate 
images into individual plate images and moves them to the "rough_crops" folder. Rough cropped images that are successfully aligned and fine 
cropped are moved to the "fine_crops" folder. If unsuccessful, the affected images are moved to the "fine_crop_errors" folder. In most cases, the im-
ages in the "error" folder can be manually aligned and fine cropped and then moved to the "fine_crops" folder for processing in a subsequent run of 
the CM Engine. Next, colonies are measured, the results are appended to a log file and the images are moved to the "measurements_passed" folder. 
In the event of a measurement error, results are not appended to the log file and the image is moved to the "measurement_errors" folder (See Addi-
tional File 1 for details). Red "error" folders are also marked with a dagger (†). (b) Image of a 1536 SDL screen plate containing four 2 × 2 replicates of 
each strain (384 strains total) that has been fine cropped by the CM Engine. (c) DR Engine normalized representation of the plate in b based on Standard 
mode measurements by the CM Engine. Circles are generated for each yeast colony on the plate. Circle size and color is directly correlated to normal-
ized colony size. Colony color ranges from light gray for small colonies, to black for those that are equal to the plate median, to blue for those colonies 
larger than the plate median. Colonies highlighted in yellow are below 25% of the median. Colonies highlighted in red have been marked for exclusion 
from statistical consideration.
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Data Review Engine (DR Engine)
The DR Engine is a web-based application that normal-
izes raw screen data, provides a visual interface for
removing common pinning errors and generates popula-
tion statistics. The standard input for the DR Engine is the
log file of growth data generated by the CM Engine, but
other appropriately formatted quantitative data (e.g., flu-
orescence intensity, microtiter plate readings etc.) can be
used. Strain information is associated with the log file by
specifying a text-based key file with information about
the strain library format. Key files for several strain librar-
ies are available directly from the ScreenMill web inter-
face, but custom key files for other libraries can be
uploaded prior to analysis (see Additional File 1 for for-
matting instructions).

The DR Engine normalizes uploaded data to allow col-
ony sizes to be compared between plates, even if there is a
general growth effect due to experimental treatment or
media differences. Through the web interface, the user
may choose to normalize data to the "Plate Median"
(default) where each raw value is divided by the median
growth value from its plate. The plate median growth
value was chosen for normalization instead of the mean
growth normalization method implemented in other
work [20,21]. We chose the median value since it is less
sensitive to fluctuation in cases where multiple positions
on the plate are blank due to pinning errors or slow
growth of specific strains. Alternatively, data can be nor-
malized to the median growth value of "Designated Con-
trols" located at specific positions on the plates. This is
the preferred method if the user expects most of the
tested strains to show a growth effect (e.g., when known
affected strains from a larger screen are being validated).
For this option, the positions of designated controls must
be indicated in the key file (See Additional File 1 - Log
and key file format information). Finally, the user may
choose to turn off normalization altogether ("Do NOT
normalize") so that only raw growth values are used when
calculating descriptive statistics. Further information
about normalization is available in Additional File 1.
Normalized colony values are used by the DR Engine to
determine the size and color of the circles that depict col-
onies in cartoon representations of plate images (Figure
4c).
DR Engine - Data Exclusion Algorithms
Plate images rendered by the DR engine are color-high-
lighted to aid the review process. First, the data is evalu-
ated for colonies that fall below 25% of the plate growth
median and these are highlighted with a yellow back-
ground (Figure 4c). Next, two algorithms are run to iden-
tify, and highlight in red, colonies to be excluded from
statistical consideration. The first exclusion algorithm is
employed to identify pinning errors in which a section of
a plate was not inoculated (e.g., the upper left of Figure

4b). The algorithm recursively selects colonies for exclu-
sion by examining the size of each colony and its adjacent
neighbors. If at least six out of eight neighboring colonies
fall below 25% of the plate growth median (parameter 1)
or at least two neighboring colonies have already been
excluded (parameter 2), the program highlights the col-
ony in red for exclusion. We tested values in the range of
2-7 for parameters 1 and 2 prior to assigning "6" and "2"
as their optimized values (see Additional File 3 for
details). An additional algorithm to exclude spurious data
is applied to plates that have 4 replicate samples of each
strain arranged in 2 × 2 arrays (n.b., it does not run with
other replicate configurations). This algorithm starts by
comparing the value of each replicate to one another. Sig-
nificant differences are determined by comparing the
normalized size of each colony to the median of the 4 rep-
licates. If a colony is within 45% of this median value, it is
highlighted in red for exclusion. This range for exclusion
was empirically chosen after analyzing the performance
of many different ranges and determining that it most
successfully excluded spurious data without affecting
valid data (see Additional File 3 for details).

We find that these two exclusion algorithms provide an
appropriate check on spurious data for many types of
pin-transfer experiments and is not available in any of the
previously described software [16,17]. However, any algo-
rithmically-defined exclusion can be changed in the user
interface using a mouse click on the colony image to tog-
gle the exclusion on or off. In addition, the behavior of the
exclusion algorithms can be modified or turned off using
the advanced settings of DR Engine (Additional File 1).
DR Engine - Statistical Methods
After the data review is complete, plate normalized
growth values are used to calculate p-values between
strains on comparer and experimental plates. P-values are
calculated using the normal distribution or t-test for
parametric data, or the Mann-Whitney test for nonpara-
metric data; the user selects the test that will be used at
runtime. In addition, p-values may be calculated with or
without multiple test correction using the Bonferroni
method [22] (also selected at runtime). For small sample
sizes, (e.g. ≤4 replicates) it is often difficult to determine if
data is parametric (normal) or nonparametric. A graph-
ing tool to generate histograms of raw data has been
included on the DR Engine website to help evaluate data
distribution. Histogram bin widths are calculated as in
Shimizaki et al [23].

When the population as a whole (e.g. all the data on all
the plates, or the collection of log(comparer/experimen-
tal) ratios) approximates a parametric distribution, the
normal distribution method should be used to calculate
p-values. Using this method, normalized growth values
for the replicates of each strain are averaged and the
resulting values are used to compute the log growth ratio.
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This ratio is defined as log(average comparer strain
growth/average experimental plate growth). The popula-
tion of log ratios for a screen experiment is assumed to
exhibit a normal distribution, if they do not, it is up to
users to transform their data appropriately before using
this method within the DR Engine. Since the data are
assumed to be normal, the mean and standard deviation
are easily calculated. From these values, z-scores and
two-tailed p-values are calculated. Two tailed p-values
are calculated from z-scored using "uprob" function of
the Perl Statistical Distributions module and multiplying
the values returned by 2 [24].

The normal distribution method has the added benefit
of automatically performing multiple test correction
since each p-value is assigned based on the rank of the
corresponding z-score within the entire distribution of
data. As a result, Bonferroni correction of p-values
should not be selected for this method.

As an alternative to the normal distribution method,
the t-test method may be used when it is known that the
value of each set of replicates independently is paramet-
ric. For this option, a Welch's t-test is carried out between
comparer and experimental strain replicates [25,26]. T-
test calculations are performed using the unpaired t-test
for samples of unequal variances. T-scores and the
degrees of freedom are calculated for each set of values
using the traditional method [25]. A p-value is deter-
mined by passing these two values to the "tprob" function
of the Perl Statistical Distributions module [24].

Finally, if the underlying distribution of the data is non-
parametric or unknown, the Mann-Whitney test should
be performed [27]. The Mann-Whitney test was imple-
mented in Perl and calculates two-sided p-values. Exact
p-values calculations are made unless there are more than
20 samples, in which case the normal approximation is
used to calculate p-values from the U values (using the
"uprob" function of the Perl Statistical Distributions mod-
ule [24]) [28].

For both the Welch's t-test and the Mann-Whitney test
it is recommended to apply Bonferonni correction the p-
values.
DR Engine - Output
The data generated by the DR Engine web application
(growth ratios, plate position, log ratios, z-scores, and p-
values) are merged with the strain position information
from the user-selected key file and displayed on a results
page. These results are presented to the user in three tab-
delimited downloadable text files. The first contains data
from every strain that has been screened in the experi-
ment (date-ScreenMillStats-all.txt). The second file con-
tains information from those strains whose growth on the
experimental plate is 50% or less than the control value
(date-ScreenMillStats-positive-hits.txt). The third file
contains information from strains whose growth on the

experimental plate is greater than or equal to twice that of
the control plate (date-ScreenMillStats-suppressors.txt).

Statistics Visualization Engine (SV Engine)
The final element of ScreenMill is a novel web-based pro-
gram called SV Engine, which has been developed to visu-
alize the statistical data contained within the
"ScreenMillStats-all.txt" file on a plate-by-plate basis. In
this application, cartoon representations of a control and
a corresponding experimental plate are presented side by
side. The user can "mouse" over a set of colonies simulta-
neously highlighting both the control and corresponding
experimental colonies. At the same time, the calculated
statistical data for that strain and experimental treatment
as well as identifier information present in the key file are
displayed. Additionally, the tabbed interface enables the
user to easily toggle views between plates allowing visual-
ization of data from multiple experimental conditions
(Figure 5). The user can then select strains considered
interesting by a mouse click. Statistical data from the
user-selected strains may be downloaded to a Microsoft
Excel file.

The SV Engine uses the p-value threshold calculated by
the DR Engine to determine which strains to highlight as
possibly significant. Although this value is the default, the
user may adjust the threshold via the web interface. For
instance, if users are interested in more subtle growth
defects (e.g., only a 20% or greater difference between
control and experimental strains) or more stringent
defects (e.g., more than 70% growth difference), they can
increase or decrease, respectively, the p-value threshold.
Upon adjusting this threshold, the webpage is redrawn to
highlight only those strains that reflect the changed
parameter, thus allowing the user to immediately visual-
ize the outcome.

Results
ScreenMill has been extensively tested in our lab during
the analysis of multiple SDL screens. A bottleneck in
these high-throughput screens is the quantification and
analysis of results. Using ScreenMill, we are able to elimi-
nate this bottleneck, analyzing the data from up to 8
high-throughput screens in less than a day (almost
500,000 data).

One of the advantages of ScreenMill's first tool, CM
Engine, is that it contains three different measurement
modes to allow accurate quantification of colonies
derived from the most common cell deposition protocols
(e.g., robotic pinning, hand pinning or liquid transfer, see
Figure 3). The ability to choose a specific measurement
mode is unavailable in any published software and gives
the CM Engine the flexibility to accurately measure a
variety of colonies. To test that CM Engine properly
quantifies colony sizes we compared the measurement
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modes of CM Engine to those previously described and
readily available [16,17]. Images were quantified using all
three modes of CM Engine and then visual comparisons
were conducted between cartoons representations of the
quantifications generated by DR Engine. In all cases CM
Engine performed as well, and in some situations, much
better than the other software (see Additional File 4).

An additional benefit of CM Engine is the ability to
accurately align and crop plate images. To validate the
alignment and cropping algorithms we ran hundreds of
different multi-plate images through CM Engine. As pre-
viously stated, over 98% (1313 of 1333) of plate images
were successfully processed into properly rotated, fine-
cropped images (data not shown).

To reduce costs to users, the CM Engine is written as an
open source macro for the NIH ImageJ program. The CM

Engine source code is extensively commented and it has
an accompanying usage document. Together, the com-
ments and the usage document clearly define all of the
functions and variables contained within the macro
(Additional File 1and 5). Additionally, since the ImageJ
macro language itself is simply structured and well docu-
mented, the CM Engine source code can be easily inter-
preted to allow customization. As a result, users may
change CM Engine as they wish, and submit updates to
the code base to improve and extend the functionality of
the macro.

The second tool in ScreenMill is the DR Engine, which
provides a unique data review process to remove artifacts
before generating the descriptive statistics of screen data.
This web-based tool automatically renders cartoon repre-
sentations of plates, greatly reducing the time and com-

Figure 5 SV Engine Details. (a) Typical display from the SV Engine. Cartoons represent control and experimental plates from a yeast SDL screen. Tabs 
above the plate cartoons indicate conditions, in this case 0 or 100 μM CuSO4 ("NoCu" and "Cu"). Clicking a tab brings the corresponding plate cartoons 
to the front, in this case the "Cu" condition is visible. Strains are automatically highlighted based on their growth: Dead on control and experimental 
(orange), excluded (green), and significant (red). The plate position, ORF identifier, p-value, z-score, and growth ratios are displayed when the mouse 
pointer (black arrow) is over that strain. In this image, the pointer is hovering over position E8 (highlighted with a yellow box). (b) Magnified detail of 
the four strains (16 colonies) indicated by the green and blue boxes in a. Normalized growth values and their associated p-values are shown on the 
right.
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puting demands associated with uploading and displaying
high-resolution digital images of plates processed by the
CM Engine. The DR Engine also contains novel automatic
and manual tools to exclude spurious data thereby
improving the quality of the statistics generated. Further-
more, parameters of the DR Engine affecting plate nor-
malization and exclusion algorithms can be modified
through its web-interface to adapt the program to diverse
data sets.

The third tool, the SV Engine, overlays statistics gener-
ated by the DR Engine on top of side-by-side cartoon rep-
resentations of control and experimental plates. The
cartoons and statistical calculations are based on normal-
ized colony sizes calculated by the DR Engine and allow
for comparison between plates, even if their overall
growth differs. Users may refine lists of statistically signif-
icant data by toggling between views of different condi-
tions, while also viewing relevant statistical information
and strain identities. For example, the user may wish to
limit data to only those having significant p-values across
multiple experimental conditions. Thus the review pro-
cess integrates the speed and ease of automation with the
accuracy and flexibility of human decision-making to
select only data of interest for further study.

Conclusions
The ScreenMill software suite provides unique tools to
measure, visualize, and review colony growth data from
high-throughput screens. All ScreenMill components
have been written using open-source software, eliminat-
ing any costs for academic users. Since ScreenMill is not
proprietary, all algorithms are transparent and can be
judged accordingly. Furthermore, the data files used by
the individual ScreenMill components are defined in
detail, so that each "Engine" can function independently
of the others. For example, measurements from other
sources can be formatted for use with the DR and SV
Engines. Additionally, data visualization in the DR and SV
engines is unique to ScreenMill and allows users to
manipulate and review screen data in a manner previ-
ously unavailable. All of these features, combined with a
simple user interface, make ScreenMill a valuable tool for
analyzing high-throughput experiments.

Availability and requirements
Project name: ScreenMill

Web page: http://www.rothsteinlab.com/tools/
Operating system: Platform independent
Programming languages: Perl, Ruby, ImageJ macro lan-

guage, JavaScript, HTML and CSS
Other requirements: ImageJ 1.42 or higher (CM

Engine). DR and SV Engines require JavaScript enabled
browsers and have successfully been tested on Google
Chrome 4.0, Safari 4.0 and Firefox 3.5

License: GNU GPL
Any restrictions to use by non-academics: license

needed
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Additional file 1 ScreenMill - Instructions for use (Dittmar et al, addi-
tional file 1.pdf) This file contains the supplementary information and fig-
ures referenced in the main text. This information includes: • CM Engine 
instructions for use � Provides step-by-step instructions on how to use CM 
Engine. • CM Engine image orientation and naming conventions � Describes 
how plates must be laid out in images and how to properly name them 
prior to processing with CM Engine. • CM Engine straightening and fine crop-
ping algorithms � Describes the straightening and fine cropping algorithms 
used when CM Engine processed images. • Log and key file format informa-
tion � Describes the way data is formatted in log and key files used/gener-
ated by ScreenMill. • DR Engine Normalization Options � Describes the data 
normalization methods available in DR Engine • DR Engine advanced options 
� Describes the advanced options available when using DR Engine.
Additional File 2 Image formats for use with CM Engine (Dittmar et al, 
additional file 2.zip). This file includes 5 files: • Additional file 2 - 
readme.pdf: included instructions on how to process the example images 
with CM Engine • Additional File 2 - multiplate setup.zip: a sample multi-
plate image (.tif ). • Additional File 2 - rough crops setup.zip: sample "rough 
cropped" images (.tif ). • Additional File 2 - fine crops setup.zip: sample "fine 
cropped" images (.tif ). • Additional File 2 - colonyAreas.txt: contains the 
quantification of the multi-plate image in Additional File 2 - multiplate 
setup.zip using CM Engine - Standard mode.
Additional File 3 Optimization of the parameters used in exclusion 
algorithms (Dittmar et al, additional file 3.zip) This file contains 3 files: • 
Additional File 3 - Exclusion Algorithm Parameters.pdf: explains the analysis 
performed. • Additional File 3 - GlobalExclusionCartoons.zip: contains all of 
the cartoons generated when optimizing the global exclusion parameters • 
Additional File 3 - ReplicateExclusionCartoons.zip: contains all of the car-
toons generated when optimizing the global exclusion parameters
Additional File 4 Comparison of Measurement Modes (Dittmar et al, 
additional file 4.zip). This file contains data comparing CM Engine's three 
measurement modes to HT Colony Grid Analyzer [16] and Growth Detector 
[17]. This file contains data in several files: • Additional File 4 - Comparison of 
Measurement Modes.pdf: A summary of the results and notes on how the 
analysis was performed. • Cartoons: Cartoon representations of raw mea-
surements generated in DR Engine (.png file formats). • CM Engine: the origi-
nal images analyzed by CM Engine (.tif ). • Growth Detector Data: Original 
images (.tif files) and results of running Growth Detector (.png files). • HT 
Colony Grid Data: Original images (.jpg) and results of running HT Colony 
Grid Analyzer (.dat and .png files).
Additional File 5 Source code for CM, DR and SV Engines (Dittmar et 
al, additional file 5.zip). This file include two zip files: • ScreenMill - CM 
Engine.zip: contains two copies the CM Engine. One for ImageJ version 1.42, 
one for version 1.43+ (.txt files). • ScreenMill - DR and SV Engines.zip: con-
tains the HTML, CSS, JavaScript, Image, and CGI (Perl) files needed to run DR 
and SV Engines.
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http://www.biomedcentral.com/content/supplementary/1471-2105-11-353-S2.ZIP
http://www.biomedcentral.com/content/supplementary/1471-2105-11-353-S3.ZIP
http://www.biomedcentral.com/content/supplementary/1471-2105-11-353-S4.ZIP
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