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Stroke often leads to hand motor dysfunction, and effective rehabilitation requires keeping
patients engaged and motivated. Among the existing automated rehabilitation
approaches, data glove-based systems are not easy to wear for patients due to
spasticity, and single sensor-based approaches generally provided prohibitively limited
information. We thus propose a wearable multimodal serious games approach for hand
movement training after stroke. A force myography (FMG), electromyography (EMG), and
inertial measurement unit (IMU)-based multi-sensor fusion model was proposed for hand
movement classification, which was worn on the user’s affected arm. Two movement
recognition-based serious games were developed for hand movement and cognition
training. Ten stroke patients with mild to moderate motor impairments (Brunnstrom Stage
for Hand II-VI) performed experiments while playing interactive serious games requiring 12
activities-of-daily-living (ADLs) hand movements taken from the Fugl Meyer Assessment.
Feasibility was evaluated by movement classification accuracy and qualitative patient
questionnaires. The offline classification accuracy using combined FMG-EMG-IMU was
81.0% for the 12 movements, which was significantly higher than any single sensing
modality; only EMG, only FMG, and only IMU were 69.6, 63.2, and 47.8%, respectively.
Patients reported that they were more enthusiastic about hand movement training while
playing the serious games as compared to conventional methods and strongly agreed that
they subjectively felt that the proposed training could be beneficial for improving upper limb
motor function. These results showed that multimodal-sensor fusion improved hand
gesture classification accuracy for stroke patients and demonstrated the potential of
this proposed approach to be used as upper limb movement training after stroke.
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INTRODUCTION

Stroke is one of the most common causes of severe and long-term
disability, affecting 15 million people each year worldwide
(World Health Organization, 2018). Up to 60% of stroke
survivors suffer from upper extremity impairments (Van Der
Lee et al., 1999). The functional improvement of upper
extremities primarily depends on the hand function (Kwakkel
and Kollen, 2007). However, in the recovery process from upper
extremity hemiplegia, the restoration of distal motor function
comes later and is more strenuous than the restoration of
proximal motor function (Twitchell, 1951). Intensive,
repetitive, goal-oriented, and feedback-oriented movement
training is critical to restoring neural organization (Ada et al.,
2006) and reducing hand motor function impairment (Ada et al.,
2006). In addition, depression (Robinson and Benson, 1981) and
cognitive dysfunction (Madureira et al., 2001) are also common
symptoms after a stroke. Patients often suffer from a decreased
mental state, accompanied by a decline in attention, execution,
and memory (Jaillard et al., 2009). Thus, recovery of the mental
state and cognitive function also play an essential role in recovery
(Song et al., 2019).

For hospital-based rehabilitation of low hand motor function,
exoskeleton gloves are commonly used for passive training
(Vanoglio et al., 2017). Patients with moderate to high hand
function typically perform goal-oriented and activities-of-daily-
living (ADLs)-related movements repeatedly under the guidance
of therapists, such as pinching a pen or using a spoon to hold
beans. However, therapy-assisted training is often challenging
because of high costs and the required medical resources needed.
The most common home-based approach is based on plans
prescribed by clinicians, however these have low compliance
and a high dropout rate due to boredom and a lack of
motivation (Cox et al., 2003). In addition, studies have shown
intense goal-oriented training has little value unless the stroke
patient is engaged and motivated (Winstein and Varghese, 2018).

Robot-assisted systems have also been proposed for more
intensive stroke therapy (In et al., 2015). Although these
systems can improve hand function, an unassisted system
could be more effective (Lum et al., 2002) for patients with
mild to moderate hand dysfunction. Unassisted rehabilitation
systems can be classified into three categories: camera-based,
tangible-interaction-objects-based, and wearable-sensor-based.
Rehabilitation systems that use cameras for motion tracking
(Mousavi Hondori et al., 2013), (Liu et al., 2017a) can be
accurate, however, this method involves privacy issues
(Alankus and Kelleher, 2015). Also, the environment cannot
be too cluttered (Cheung et al., 2013), and other people
should not appear in the camera’s view to avoid skeleton
merging (LaBelle, 2011). Tangible-interaction-objects-based
rehabilitation systems (Ozgur et al., 2018), (Delbressine et al.,
2012) enable users to interact through manipulating tangible
digital devices. These systems can be easy to use for the elderly
and can reduce a learning times (Apted et al., 2006). However,
these systems are generally limited to a single training
mode and have poor scalability. Another approach is using a
wearable-sensor-based system, such as those based on a data

glove (Sun et al., 2018), (Zondervan et al., 2016), surface
electromyography (sEMG) (Yang et al., 2018), force
myography (FMG) (Sadarangani and Menon, 2017) or inertial
measurement units (IMU) (Friedman et al., 2014). Data gloves
commonly use flex sensors, accelerometers, and/or magnetic
sensors (Rashid and Hasan, 2019). Although data gloves can
detect finger movements precisely, it is difficult for stroke patients
to wear gloves due to spasticity (Thibaut et al., 2013).

Electromyography sensors have been widely utilized for hand
movement estimation (Jiang et al., 2018) and rehabilitation
systems (Chen et al., 2017). However, classification accuracy
for stroke patients is typically much lower than that of healthy
individuals due of neural damage (Cesqui et al., 2013). The
combination of EMG and IMUs has produced better training
systems (Liu et al., 2017b), (Lu et al., 2014). Electromyography
has the advantage of directly measuring comprehensive
information from muscle activity, though signal quality can be
affected by sweat (He et al., 2013). Also, EMG-based recognition
strategies are usually hyposensitive to low-strength gestures.
Instead of directly measuring the muscle activity, FMG
measures the contact pressures profiles caused by tendon slide
of the wrist. This mechanism (Jung et al., 2015), and FMG sensor-
based wristbands have been used to detect the various hand
gestures (Dementyev and Paradiso, 2014), (Zhu et al., 2018).
Force myography is more sensitive to low-strength gestures (Cai
et al., 2020), and also less susceptible to sweating. Therefore,
multi-sensor fusion could be a promising method to improve
EMG-based recognition accuracy for stroke patients. In addition,
to optimize the engagement of patients (Witmer and Singer,
1998), serious games have been designed and utilized in
rehabilitation systems (Mohammadzadeh et al., 2015), (Heins
et al., 2017), (Nissler et al., 2019). The effectiveness of serious
games has been shown to show better results than conventional
approaches for upper limb motor function rehabilitation (Tăut
et al., 2017).

To the best of our knowledge, this is the first paper to propose
wearable FMG-EMG-IMU serious games hand movement
training for stroke patients involving Activities of Daily Living
hand movements. We aimed to test the feasibility of such an
approach and hypothesized that multimodal sensing would
demonstrate higher hand gesture recognition classification
accuracy for stroke patients during directed ADL-related hand
movements as compared to single modality sensing. We also
hypothesized that the proposed sensing and algorithm
configuration could detect stroke patient hand gestures during
the cognitive and motor tasks required in the serious games.
Finally, we hypothesized that stroke patients would qualitatively
be more enthusiastic about movement training based on this
approach as compared to conventional rehabilitation.

METHODS

General Structure
The general structure of the wearable multimodal-based
movement training approach consists of five elements: human
fine movements, multi-sensor model, feature extraction,
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classification algorithms, and serious games (Figure 1). Stroke
patients first perform fine movements selected from the Fugl
Meyer Assessment (FMA) (Fugl-Meyer et al., 1975). The
physiological signal and kinematic signal of the user’s affected
upper extremity are then collected by the multi-sensor model: the
contact pressure profile is measured by barometric pressure
sensors around the wrist, the EMG data is collected by
wireless electrodes on the forearm, and kinematic data
(including acceleration, angular velocity, magnetic field
strength, and Euler angle) is collected by an IMU on the wrist.
After preprocessing, features extracted from barometric sensor
data, EMG data, and IMU data are put into the movement
classification algorithms. Finally, the estimated fine movements
are sent to the serious games. More details about this proposed
approach are presented below.

Upper Extremity Movement Selection
The FMA is an effective and detailed evaluation tool for assessing
motor function after stroke (Gladstone et al., 2002). It is the most
widely used clinical assessment scale, and the test items are highly
correlated to ADLs. Eleven upper extremity fine movements
(Figure 2) are selected from the FMA and are suitable for
motor function rehabilitation via a wearable multimodal-based
system. The movements include hand movements: mass flexion
(MF), mass extension (ME), hook-like grasp (HG), thumb
adduction (TA), opposition (O), cylinder grip (CG), spherical
grip (SG); wrist movements: wrist volar flexion (WF) and wrist
dorsiflexion (WE); forearm movements: forearm pronation (FP)

and forearm supination (FS). A no-motion (NM) movement is
also included. Some selected movements, including HG, TA, O,
CG, FP, and FS, are also included in another practical motor
function scale - Wolf Motor Function Test (WMFT) (Wolf et al.,
2001). These movements are highly related to ADLs, which are
relevant for recovering stroke patients.

Prototype Design
A wearable multi-sensor model for upper limb fine movement
estimation was developed, containing six EMG sensors around
the forearm and eight barometric pressure sensors plus one
IMU around the wrist (Figure 1). There are multiple major
superficial muscles around the forearm: the extensor carpi
ulnaris, extensor digitorum, extensor carpi radialis longus and
brevis, brachioradialis, pronator teres, flexor carpi radialis,
flexor carpi ulnaris, and palmaris longus. Instead of applying a
muscle-targeted layout, a low-density surface electrode layout
was selected to detect the electromyographic signal of these
muscles for practical use. Thus, six EMG wireless sensors from
the Trigno Wireless EMG System (MAN-012-2-6, Delsys Inc.,
Natick, MA, United States) were selected and placed evenly
around the forearm of the patient’s affected side, about 10 cm
away from the elbow (Tchimino et al., 2021), covered and kept
in place by an elastic band. The direction of sensors was
parallel to the direction of muscle fiber. The placement of
EMG electrodes and the number of electrodes used in this
paper were informed by previous similar studies (Liu et al.,
2014), (Yu et al., 2018).

FIGURE 1 |Wearable multimodal-serious game rehabilitation approach developed to improve upper extremity motor function and cognitive function after stroke.
Patients performed 12 different ADLs-related fine movements. Kinematics data, morphology profile changes around the wrist and EMG data of forearm were extracted
via IMU, FMG sensors and EMG sensors. Effective features were extracted from data after pre-processing and were put into classification algorithms. Two serious
games were developed, and the predicted movement was used as input for the games, allowing the patients to interact with the targets in the game and get vision
and sound feedback.
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During wrist and hand movements, tendons of the wrist
shorten and lengthen, and muscles are deformed, resulting in
large contour changes to the underside of the wrist. The optimal
number of locations of the FMG sensors were selected based on
previous recommendations in related research (Shull et al., 2019).
Thus, a flex wristband containing eight barometric pressure
sensors was developed to obtain contact pressure profiles
around the wrist. Barometric sensors (MPL115A2, Freescale
Semiconductor Inc., Austin, TX, United States) were covered
by VytaFlex rubber and placed at the wrist near the distal end of
the ulna to estimate the force myography of the tendon slide. The
fourth and fifth pressure sensors of the eight sensors-flex-
wristband were aligned to the center of the underside of the
patient’s wrist, with other pressure sensors placed evenly on the
inside and both sides of the wrist. A 9-axis IMU (BNO055;
BOSCH Inc., Stuttgart, Baden-Württemberg, German) was
mounted on the back of the flex wristband to detect kinematic
information. The output data of the IMU included 3-dimensional
accelerations, 3-dimensional angular velocities, 3-dimensional
magnetic field strengths, and 3-dimensional Euler angles. FMG
data and IMU data were transmitted to a microcontroller
(STM32F401; STMicroelectronics N.V., Geneva, Switzerland)
for processing and analysis.

Custom multi-threaded MATLAB (MathWorks, Natick, MA,
United States) data collection software was developed to collect,
synchronize, and process streaming sensor data. EMG data were
collected at 1926 Hz, and FMG and IMU data were collected at

FIGURE 2 | Hand gestures including 11 FMA movements (Fugl-Meyer et al., 1975) and one no-motion gesture.

FIGURE 3 | Example stroke patient playing a serious game while
wearing the wearable multimodal-based system.
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36 Hz. Also, a user-friendly instruction program (Supplementary
Figure S1) was developed in MATLAB to instruct subjects to
perform various movements during the training phase. Users
were asked to perform movements corresponding to the text and
pictures shown on the software interface for training data
collection. The start button was used to start each trial of the
test, and then the software would automatically time the current
movement and change to the next movement. The stop button
was used to stop the system. Data collection and instruction
software were communicated by a virtual serial port. While each
picture was shown (Supplementary Figure S1), corresponding
triggers were transmitted to the data collection software via the
virtual serial port in real-time. At the end of data collection, all
data for each user was automatically saved.

Testing Protocol
A clinical experiment was conducted to validate the estimation
accuracy and practicality of the proposed approach (Figure 3).
Ten stroke patients (Brunnstrom stage for Hand II-VI) (Table 1)
were recruited in this experiment (Supplementary File S1 Patient
inclusion criteria). Power analysis sample size calculation (power:
90%, alpha: 5%) was performed based on a cohort of healthy
subjects from a previous related study (Jiang et al., 2020) to
determine that 10 subjects were sufficient to detect differences in
performance between multimodal and single sensor
configurations. An experienced clinician was recruited to assist
in conducting the experiment with all patients and record the
special circumstances. The experiment was conducted in the
Rehabilitation Medicine Department of Huashan Hospital
(Shanghai, China). All the participants provided informed
consent. The experiment was pre-approved by the Huashan
Hospital Institutional Review Board (CHiCTR1800017568)
and was performed in accordance with the Declaration of
Helsinki.

An experienced clinician first explained the experimental
process to each patient and told the patient to stop and report
any discomfort during the experiment. The patient was then
asked to sit on a chair without an armrest, so that the affected
upper extremity naturally hung to the side of the body. Patients
donned the device with the clinician’s assistance.

The experiment was divided into two phases: the training
phase and the game phase. At the start of the training phase, the

clinician explained all the movements to the patients in detail and
showed instructional pictures to them. Next, patients were asked
to perform movements following the instruction software we
developed (Supplementary File S2 Interface of the instructional
software) to get familiar with the movements and the system. The
software shows the text and pictures of the current movement and
the movement that comes next. Then, patients were asked to
perform five formal trials in the training phase, with 1-min breaks
in between. Each trial consisted of the data collection of 12
movements, and each movement lasted 6 s, with a 4-s break
between movements.

After finishing the training, patients rested for 10 min while
watching a game demo video to get familiar with two serious
games. Then, patients started to play two movement-
estimation-based serious games. Each game session consisted
of five trials. Six patients finished all the 10 trials, two subjects
lack of one trial, and two subjects quit due to back and waist
fatigue when two trials were left. After completing the serious
games, patients were asked to fill out a questionnaire (Table 2)
about their experience of using this serious-games rehabilitation
system. There were 10 questions, each of which could be
answered with “strongly agree,” “agree,” “neutral,” “disagree,”
and “strongly disagree.” Besides, we also solicited opinions from
patients on improving this system.

Serious Games Design
Two serious games (Figure 4) were developed based on
movement estimation. The games provide visual and audio
feedback to the patients. When patients perform each correct
movement, the text “excellent” appeared on the screen, and the
score on the screen increased by one. Patients also heard a
positive audio cue. The games were written in python based
on the pygame library.

The game “Find the Sheep” was designed for both motor and
cognitive function training. Patients need to concentrate during
the whole game and perform the required movements. Three
cards appeared in the game interface, with a sheep and two wolves
on the front. Then, all three cards were flipped over such that the
animals were hidden and randomly swapped positions. After
swapping, the patient was required to find which card is the one
with the sheep and perform the corresponding hand movement
shown below that card.

TABLE 1 | Stroke participant characteristics.

Sex (M/F) 8/2
Age (mean ± SD) 58.3 ± 18.09
Diagnosis (ischemic/hemorrhagic) 7/3
Hemiplegic side (left/right) 4/6
MMSEa (mean ± SD) 27.7 ± 1.25
Brunnstrom stage for handb (mean ± SD) 4.5 ± 1.58
FMA upper extremity scorec (mean ± SD) 44.2 ± 13.9

Higher scores in MMSE, Brunnstrom stage, and FMA indicate better cognitive/motor
function.
aMini–Mental State Examination, used tomeasure the cognitive impairment, ranging from
0 to 30.
bBrunnstrom stages range from 1 to 6.
cIncludes 33 FMA test items for upper extremity. Score range is 0–66.

TABLE 2 | Questionnaire for Serious-Games Rehabilitation system.

Symbol Questions

1 Does the game make you more enthusiastic about rehabilitation?
2 Were you relaxed and happy while playing the games?
3 Did you feel frustrated while playing the games?
4 Are the serious games challenging?
5 Was your body uncomfortable while playing the game?
6 Was the training part before the games a burden to you?
7 Do you think the game is suitable for home-based rehabilitation?
8 Is this sleeved sensor setup more practical than a glove setup?
9 Do you think the game is beneficial for improving your cognitive function?
10 Do you think the game is beneficial for improving your upper limb motor

function?
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The score in this serious game represents the number of times
participants successfully located the sheep card and made the
corresponding gesture. The 12 movements are divided into four
groups for “Find the Sheep,” displayed in different game rounds
(Supplementary File S3 Grouping of the different movements).
Many of the movements we selected are similar, such as the
spherical grasp and the cylinder grasp. By dividing the
movements into several groups, the real-time recognition
accuracy of the system is improved. The system loads the
classification model trained for the current movement group
during the game. The game has multiple difficulty levels. The
higher the difficulty level, the more times the cards will be
rearranged.

The game “Best Salesman” was designed to train motor
function and improve performance in ADLs. In this game, the
user owns a grocery store that sells seven types of food. Customers
keep coming to the store to buy one to three types of food. Users
need to pass the right food to the customers by performing the
correct corresponding movement: hold a cup, take a cup with a
handle, cover top burger bread, hold bottom burger bread, pinch
a piece of watermelon, lateral pinch a popsicle, and hold a tomato.
Patients can intuitively know which hand gestures should be
performed when they see the object pictures, like in normal daily
activities. The score in this serious game represents the number of
objects that participants successfully “sold” to customers. Like the
“Find the Sheep” game, different movements are divided into
groups to increase the accuracy of the classification model for
“Best Salesman” (Supplementary File S3 Grouping of the
different movements).

Signal Processing
Custom multi-threaded MATLAB (MathWorks) data collection
software was developed, in which triggers were added to different
sensor data in real-time for data synchronization. Also, Data of
different movements were segmented automatically based on

triggers in the data collection code, which correspond to
different movements. During the transition period between
movements, related muscle activities erupt and cause a larger
EMG amplitude. Besides, stroke patients are generally older and
slower to respond. Thus, for the data collected in the training
phase, the first 2 s and the last 0.5 s of each movement are
removed to reduce interference.

EMG data were collected at 1926 Hz, and FMG and IMU data
were collected at 36 Hz. For EMG segmentation, overlapped
segmentation with a window length of 200 ms and an
increment of 50 ms has a short response time while ensuring
accuracy, which is suitable for the real-time movement
classification (Oskoei and Huosheng Hu, 2008). Considering
the performance of the algorithm and the synchronization of
EMG, FMG, and IMU data, overlapped segmentation with a
window length of 222 ms and a step size of 55.6 ms was adapted to
divide the raw EMG data into windows. Disjoint segmentation
with a window size of 55.6 ms was used to segment both the FMG
and IMU data. The FMG data that exceeded the measuring range
was deleted during the preprocessing phase.

Time-domain features are very effective in EMG pattern
recognition (Rechy-ramirez and Hu, 2011). Four reliable time-
domain features (Supplementary File S4 Feature formulas) were
selected and extracted from EMG signals: Mean Absolute Value
(MAV), Waveform Length (WL), Zero Crossings (ZC), Slope
Sign Changes (SSC) (Englehart and Hudgins, 2003). MAV
contains information about a signal’s strength and amplitude.
WL reflects the signal’s complexity. ZC and SSC reflect the
frequency information of the signal, both containing a
threshold ( ϵ � 4e − 6 ) to reduce noise interference. A
frequency-domain feature was also selected from the EMG
signal: Auto-Regressive Coefficients (AR), which describes
each signal sample as a linear combination of previous
samples plus white noise error terms ek (Proakis and
Monolakis, 1996). The fourth-order AR was used

FIGURE 4 | Serious games for upper extremity motor function and cognitive function rehabilitation. Patients select the correct target in the serious game and
perform the corresponding movement with their affected hand. (A), “Find the Sheep” game: find the location of the sheep card at the end of each round and perform
corresponding movements. (B), “Best Salesman” game: perform corresponding movement to provide customers with the food they need. The corresponding
movements are only shown during training to stimulate cognitive rehabilitation.
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(Supplementary File S4 Feature formulas). Also, MAV was
chosen as the feature of FMG and IMU signals.

In total, six channels of EMG data, eight channels of FMG
data, and 12 channels of IMU data were used. Eight features were
extracted from each window of each EMG channel. Meanwhile,
the MAV of each window of each FMG and IMU channel was
calculated. Thus, 48 EMG features, eight FMG features, and 12
IMU features result in a 68-dimensional feature array. Each
channel’s data was scaled and normalized via zero-mean
normalization by using the mean value and standard deviation
from each respective trial.

Signal processing for real-time classification in serious games
was the same as signal processing during the model training,
features were extracted from real-time data of sensors on patients
in MATLAB, after which they were transferred to the game in
real-time via TCP/IP communication. Then, the trained models
were loaded and used to classify movements. Finally, the
estimated movement was used as input to the game, allowing
patients to choose targets by performing the corresponding
movement. The users were given 1 s to react and perform the
target movements in each round of the serious games. Correct
selections were determined by classification majority voting of a
10 frame window 1 s after the cards stopped moving in the “Find
the Sheep” game and 1 s after the new image was shown in the
“Best Salesman” game.

Algorithm
This system uses online linear discriminant analysis (LDA) for
real-time classification, because it can simplify the computational
complexity, shorten the time, and still produce accurate results
(Englehart and Hudgins, 2003), and is robust (Kaufmann et al.,
2010). The LDA classification algorithm is based on Bayes
decision theory and the Gaussian assumption. The
discriminant function is defined as:

δk(x) � xTΣ−1μ − 1
2
μT
k Σ−1μk + logπk

Where x is the input vector, Σ is the covariance matrix, μk is the k
class’s mean and πk is the prior probability of class k.

In previous research, decision tree (DT) (Ting Zhang et al.,
2013), k-nearest neighbor (KNN) (Zhang et al., 2015), random
forest (RF) (Bochniewicz et al., 2017), and support vector
machine (SVM) (Cai et al., 2019) have also been used for
stroke rehabilitation classification. Apart from LDA, these four
algorithms were also tested for movement classification in the
study. Entropy was used to evaluate the quality of split in DT.
Euclidean distance was used as the distance metric, and the
number of neighbors was set to three to inspect in the KNN
model. In the RF model, the number of trees and the minimum
samples of leaf were determined as 40 and 1. The linear kernel was
used in SVM, and the penalty parameter C was determined
as 100.

Model Training and Evaluation
To validate the efficiency and accuracy of the proposed
multimodal-based hand gesture classification on stroke
patients, the average accuracy in classifying the 12 directed

hand movements was calculated. Five trials in the training
phase were used to perform an offline test, using leave-one-
out cross-validation. Training data and test data for offline testing
were both taken from the 2 to 5.5 s. A confusion matrix was
created to display the recognition rate of each gesture and the
misclassification between gestures.

To determine the performance of different sensor
configurations, the accuracy of single, double, and triple
sensor-based classification algorithms were calculated
separately. Also, the confusion matrixes of EMG-alone-based
hand gesture classification and FMG-alone-based hand gesture
classification were created to show the contribution of different
sensors on different gestures. Also, the roles of FMG and EMG in
multimodal hand gesture recognition were analyzed, mainly for
fine finger movements which are easily misclassified from each
other, such as CG and SG, and MF and CG. When two pairs of
hand gestures were classified: CG and SG, and MF and CG, the
most contributed features among all 56 FMG and EMG features
were selected. Gini importance of the Random Forest was used
for computing feature importance (Ling-ling et al., 2015). Feature
importance was normalized by criterion reduction, and the most
essential 10 features were sorted to demonstrate how these
sensing modalities compensate for each other. In addition,
Pearson correlation coefficients (PCCs) between EMG-based
offline accuracies, FMG-based offline accuracies, and FMG-
EMG-IMU-based offline accuracies for all subjects were
calculated to study the correlation between the performances
of different physiological information-based movement
recognition. The performance of DT, KNN, RF, and SVM was
also analyzed as compared with LDA.

To further explore the characteristics and potential uses of
different sensing modalities in stroke rehabilitation, the
correlation between subjects’ upper limb motor function and
their different information-based hand gesture classification
accuracies was analyzed. PCCs between the Fugl Meyer Upper
Extremity (FMUE) scores of stroke patients and their offline
accuracies of EMG-based, FMG-based, and FMG-EMG-IMU-
based hand gesture classification were calculated, respectively.

Because it was difficult to tell whether the system classified
incorrectly or the patient did not successfully perform the right
movement during the serious games. The performance of real-
time classification after grouping (Supplementary File S3
Grouping of the different movements) was simulated and
validated. We applied cross-validation on five trials for each
subject to validate the real-time performance. Four trials were
used as training data, all of which ranged from the 2nd to the
5.5th second. The first 10 samples starting from the first second of
the leftover trial were used to test the model. Also, different
cutoffs of training and test data were analyzed (Supplementary
File S5 Different cutoffs - Statistical analysis), and the
classification accuracies of each group (Supplementary Table
S1) were calculated with optimal cutoff settings.

In addition, the results of the questionnaires were analyzed to
define the patients’ subjective feelings about using the proposed
rehabilitation approach. Patients’ suggestions were also examined
and served as important references for future improvements to
the proposed approach. The performances of stroke patients
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playing serious games were also studied. The average scores of all
the subjects for each trial in the serious games “Find the Sheep”
and “Best Salesman” were calculated and analyzed.

Statistical Analysis
IBM SPSS Statistics Version 26 was used for statistical analysis.
Shapiro–Wilk normality test was used to confirm data were
normally distributed (p > 0.05). One-way repeated analysis of
variance (ANOVA) was conducted to assess if there were
differences between using different sensor configurations and
different algorithms. If there was a difference, LSD procedure was
used for post hoc analysis. PCC was used to assess the correlation
between patients’ motor function and gesture recognition
accuracy, the correlation between different sensor
configuration-based classifications, and the correlation between
subjects’ average scores in two serious games. The statistical
significance was set to p < 0.05.

RESULTS

The LDA-based offline classification accuracy of 12 movements
for each subject ranged from 64.3 to 96.3%, with an average
accuracy of 81.0% for all 10 patients. The predicted accuracies of
each movement range from 70.5% (for TA) to 89.1% (for FP)
(Figure 5). CG and SG were most likely to be misclassified with
each other. In addition, TA and O were commonly misclassified,
and TA was often misclassified as NM. ME was often mistakenly
recognized as HG, and HG was often misrecognized as MF or
NM. Also, WE and FP were sometimes misclassified. The
classification accuracy of using IMU alone, FMG alone, EMG
alone, FMG and IMU, EMG and IMU, EMG, and FMG or all the
sensors were 47.8, 63.2, 69.6, 71.5, 75.4, 79.7, and 81.0%,

respectively (Figure 6). There is a significant improvement
using FMG, EMG, and IMU together, as compared with: IMU
alone, FMG alone, alone, EMG and IMU together, or FMG and
IMU together. In addition, there was no significant difference
between using FMG-EMG-IMU model and using FMG-
EMG model.

For both EMG-based and FMG-based hand gesture
classification (Figure 7), recognition performances on some
gestures were the same. For example, CG and SG were easily
misclassified with each other in both models. However, when
recognizing other gestures, different models performed
differently. For instance, MF was often mistakenly identified as

FIGURE 5 | Confusion matrix for wearable multi-sensor-based movement offline classification.

FIGURE 6 | The classification accuracy of 12 movements using different
combinations of sensors. Bars represents one SD. * represents statistical
significance (p < 0.05). The application of three sensors significantly improves
the recognition accuracy compared to the application of IMU, FMG,
EMG, FMG+IMU, or EMG+IMU, respectively.
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HG when the EMG-based model was applied, and MF was easily
misrecognized as O when the FMG-based model was used.
However, when two sensing modalities EMG and FMG were
used together, the misclassify rate of CG and SG was decreased.
The 10 features that contributed the most were six FMG-related
features and four EMG-related features (Figure 8). Similarly, six
EMG-related features and four FMG-related features contributed
most to classify MF and HG (Figure 8). There’s a correlation
between classification accuracies of the EMG-based model and
classification accuracies of the FMG-based model (r = 0.69, p <
0.05), and there’s also a correlation between classification
accuracies of the EMG-based model and classification
accuracies of the FMG-EMG-IMU-based model (r = 0.73, p <
0.05). There’s a high correlation (r = 0.94) between classification
accuracies of the FMG-based model and classification accuracies
of the FMG-EMG-IMU-based model (p < 0.05). The average
offline classification accuracies of applying DT, KNN, RF, and
SVM were 62.7, 72.9, 78.4, and 80.9%, which were lower than
LDA’s 81.0% accuracy. However, LDA only had significant
difference with DT and KNN (p < 0.05).

There is a significant correlation between FMUE and offline
classification accuracies of the FMG-based model (r = 0.78, p <
0.01). There is also a significant correlation between FMUE and
offline classification accuracies of FMG-EMG-based model (r =
0.75, p < 0.05). Fugl-Meyer upper extremity and offline
classification accuracies of FMG-IMU-based model are
significantly correlated (r = 0.64, p < 0.05). However, there’s
no significant correlation between FMUE and the offline
classification accuracies of the EMG-based model (r = 0.61,
p = 0.065), or the IMU-based model (r = −0.12, p = 0.748), or
the EMG-IMU-based model (r = 0.28, p = 0.438), or the FMG-
EMG-IMU-based model (r = 0.61, p = 0.063), respectively
(Figure 9).

By splitting up the movements into groups, the accuracies of
simulation real-time classification ranged from 80.7 to 84.7% for
each movement group, and the simulated classification accuracies
were 82.5 and 83.6% for the groups used in the “Find the Sheep”
game and the “Best Salesman” game, respectively. Different
combinations of cutoffs were applied, and the simulated real-
time classification accuracies of two serious games were over 90%

FIGURE 7 | Confusion matrixes for movement classification based on different sensor configurations. (A), Confusion matrix for EMG-based movement
classification. (B), Confusion matrix for FMG-based movement classification.

FIGURE 8 | The most important 10 features on two pairs hand gestures recognition by using EMG-and-FMG-model. (A), Ten features contributed most to the
classification of hand gesture SG and CG. (B), Ten features contributed most to the classification of hand gesture MF and HG.
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when using ideal cutoffs (Supplementary File S6 Different
cutoffs - Results).

All stroke patients who participated in the serious games filled
out the questionnaires (Figure 10). The majority of patients
strongly agreed that the serious games made them more
enthusiastic about rehabilitation and that they felt relaxed and
happy while playing the games. 60% of the patients didn’t feel
frustrated during the games, while 20% felt a little frustrated. 60%
of patients strongly agreed that the games were challenging. None

of the patients experienced any upper limb discomfort during the
games. 90% of patients strongly disagreed or disagreed that the
training part before the games was a burden. 90% of patients
strongly agreed or agreed that the proposed system is suitable for
home-based rehabilitation and is more practical than wearing a
glove. Most patients also strongly agreed that the proposed
training is beneficial for improving both upper limb motor
function and cognitive function. The patients expressed other
thoughts and suggestions about the proposed system. Three

FIGURE 9 | The correlation between FMUE scores and different sensing modality-based classification accuracies for all subjects (* represents p < 0.05, **
represents p < 0.01).
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patients thought the proposed system was beneficial for brain and
neurological restoration. Two patients mentioned that the
proposed training was entertaining, which increased the
attractiveness of rehabilitation. Also, two patients thought the
selected movements were significant, involving ADLs functional
training such as grasping a cup. One patient expressed that the
training strengthened his confidence. The patient with the lowest
classification accuracy indicated that the sensing part needed
improvement and the game time should be shortened. Two
patients suggested the games should be more challenging,
while two other patients thought it was too hard for them to
complete the right movement within the prescribed time and that
the games should be simpler and slower in the future. The average
scores across all the subjects for each trial in the serious game
“Find the Sheep” were 5.6, 4.9, 5.8, 5, and 5.3. In addition, the
average scores of each trial in the serious game “Best Salesman”
were 11, 13.5, 11.5, 11.4, and 13.4. Also, there’s a correlation (r =
0.78) between subjects’ average scores of playing “Find the Sheep”
and patients’ average scores of playing “Best Salesman” (p < 0.05)
(Figure 11).

DISCUSSION

We proposed a serious games movement training approach to
recognize the movement of stroke patients’ affected sides via a
multi-sensor fusion model and provide patients with serious
games and feedback for upper limb fine movement and
cognition training after stroke.

In previous research, most studies focused on pattern
recognition for stroke rehabilitation systems (Yang et al.,
2018), (Chen et al., 2017), but only healthy subjects were
included, or the motion of each patient’s unaffected side was
included to perform bilateral training (Leonardis et al., 2015),
(Lipovsky and Ferreira, 2015). Few studies have worked on the
affected-side-based motion recognition of stroke patients. Lee
et al. (Lee et al., 2011) recruited 20 stroke patients with chronic
hemiparesis and selected six functional movements. Ten surface
electrodes were applied to record EMG signals. The mean
accuracy of moderate-function patients and low-function
patients was 71.3 and 37.9%, respectively. Zhang et al. (Ping

Zhou and Zhou, 2012) applied high-density electrodes to classify
20 movements of 12 stroke patients, resulting in a classification
accuracy of 96%. Castiblanco et al. (Castiblanco et al., 2020)
proposed a study of hand motion recognition via EMG. Healthy
subjects, stroke subjects without hand impairments, and stroke
patients with impairments were included. In their research, hand
gestures were separated into several groups, and each group
contained two to five movements; in their study, the average
recognition accuracy for stroke patients with impairments was
85%. The classification accuracy for 12 movements of the
proposed system is 81.0%, which is lower than the system
applying high-density EMG. However, we covered more
movements related to ADLs, and obtained higher classification
accuracy compared to other previous research.

Our results verify that the multi-sensor fusion method
significantly improves accuracy over single sensor-based
pattern recognition. The accuracy of applying both EMG and
FMG was close to the accuracy of using all sensors. EMG and
FMG contribute the most to movement recognition, which may
be due to the IMU being placed on the wrist and most of the
movements we selected being finger movements. The EMG-based
model and FMG-based model showed different performances on
gesture recognition. The information from these two models can
be used to compensate for each other to increase the system’s
robustness. In addition, there’s a significantly high correlation
between subjects’ FMG-based hand gesture classification
accuracies and their FMG-EMG-IMU-based hand gesture
classification accuracies. It indicates FMG information has the
most influence on the multi-sensor fusion model. The multi-
sensor fusion model we proposed contains more information and
improved robustness, improving the accuracy of motion
recognition on the affected side and expanding the range of users.

The patients we recruited range from high motor function to
low motor function. Results showed a significant correlation
between subjects’ upper limb motor function and the offline
accuracies of FMG-based hand gesture recognition. It indicates
that wrist-tendon-slide-related information can be used to assess
the upper limb motor function of stroke patients. Also, it’s
interesting that subjects showed consistency in two different

FIGURE 10 | Questionnaire results from questions in Table 2.

FIGURE 11 | The correlation between average scores of serious games
“Find the Sheep” and “Best Salesman” (r = 0.78, p < 0.05).
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serious games. In addition, when subjects were playing the game,
there was not an obvious improvement in their scores over time.
We assumed that the main reason is games were difficult for the
subjects. Most subjects were older people and suffered from brain
injuries, so their learning curve may be relatively long. The
serious games’ settings need to be further considered in future
research.

Serious games were designed for cognition and upper limb fine
movement training. Feedback is sensory information provided
during or after task performance. Training should include
appropriate feedback, which can help improve movement
(Winstein et al., 1999). The proposed system provides
extrinsic feedback, including visual feedback and audio
feedback, which has been shown to make users more
enthusiastic in training (Burke et al., 2009), (Ferreira and
Menezes, 2020), (Hocine et al., 2015).

To improve the effectiveness of the system and the patient’s
experience of playing serious games, we grouped 12 movements
during the real-time movement classification (Supplementary
File S3 Grouping of the different movements) based on
experience and prior knowledge so that three movements that
are not easily confused for each other were grouped together.
According to the results presented by the confusion matrix, it was
verified that our grouping situation was almost ideal, avoiding the
situation where movements that are easily misclassified appear in
the same group. Spherical grasp and cylinder grasp are similar
and easily misclassified with each other. In addition, the thumb
adduction and opposition are also very similar; especially
compared to other movements, it is more difficult for patients
to exert force correctly and effectively complete these two
movements, which also makes these two movements not only
easy to mix up with each other but also easy to misclassify as no
motion.

Because of poor hand function in some patients, and some of
the movements we choose having similarities, it is difficult to
observe from the outside what movement the patient is
performing in many cases. Therefore, in real-time
classification games, when patient movement was determined
to be incorrect, it was difficult to tell whether the system classified
incorrectly or the patient did not complete the right movement.
Therefore, we can not validate the real-time performance of the
multi-sensor model in this experiment. We used training data to
simulate real-time classification through cross-validation. This
simulation process was the same as the process we used in the
games. We found through this research that the cutoff settings of
training data and testing we used in the experiment was not
optimal: the simulated real-time accuracy is relatively low, and
some patients reported that the games moved too fast to complete
the movement. The response time and execution time of patients
should be analyzed, and new optimal time settings will be applied
in future. A robust technique for detecting movement period
could be explored. And formal real-time experiments could be
conducted such as a motion test to analyze the accuracy of
different algorithms and different sensor configurations to
verify the real-time performance of the proposed multi-sensor
fusion model on stroke patients. In addition, it may be necessary
to consider reducing the number of gestures to improve the

accuracy of recognition and performance of the system in future
research and commercial product development.

A limitation of this proposed study is that we only included
hand gestures and did not include arm reaching movements. To
prevent the negative effect of arm movement variation on
physiological information-based hand gesture recognition
(Fougner et al., 2011), users were asked to drop their hands
naturally on both sides of the body to perform the corresponding
hand gestures, which didn’t restore the ADLs completely. To
make the system more practical, the experiment could be carried
out in a semi-natural or total-natural environment in which
patients could perform natural ADLs-related movements, such
as drinking water, and a more practical model could be
developed. Future work could also focus on increasing the
robustness of the proposed system, addressing the problem of
decreased recognition accuracy caused by sensor picking. The
effectiveness of this approach in improving patient upper limb
motor function and cognitive function would require testing over
an extended period of time, ideally through a long-term,
randomized controlled trial. The questionnaire results in this
were subjective preliminary indicators that the proposed system
could be acceptable for future long-term testing.
Electromyography sensors were located 10 cm away from the
elbow in this study and not normalized for participant limb
length. Questionnaires in future studies should also include
standard questionnaires such as System Usability Scale
(Kortum et al., 2008) or User Experience Questionnaire
(Laugwitz et al., 2008).

The proposed approach validates the advantages of multi-
sensor fusion and its application prospects in the field of
rehabilitation. Motion pattern recognition plays an important
role in both exoskeleton-based rehabilitation training systems
and daily life assistance systems. The multi-sensor fusion model
we proposed has the potential to be applied on active assisted
robotic rehabilitation systems or active ADLs-assisted orthoses to
improve their motion recognition performance on the affected
side. For the wider application of this approach, a low-cost system
will be developed and verified in future research.

CONCLUSION

This study proposes a wearable serious-game-based training
approach for the rehabilitation of both upper limb motor
function and cognitive function. A multi-sensor fusion
model was developed for the movement recognition of
stroke patients with upper limb dysfunction. Two movement
classification-based serious games were developed to train
patients’ attention and memory. An experiment involving
stroke patients with different levels of upper limb
impairments was performed to validate the effectiveness of
the proposed approach. Results showed that the sensing and
algorithm configurations used in the proposed rehabilitation
approach could classify a variety of ADLs related to fine
movements. The proposed serious game approach stimulated
patients’ enthusiasm for rehabilitation and guided them to
actively perform repeated movements. The proposed training
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approach has the potential to be used in both clinical-based and
home-based environments by stroke patients to improve upper
extremity motor function and cognitive function. The multi-
sensor fusion method can improve the motion recognition
performance of stroke patients. This effective model can be
used both in unassisted serious-game-training systems and also
in the active robotic-assisted rehabilitation system or ADLs-
based orthosis.
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