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LETTER TO EDITOR

Susceptibility to false discovery in biomarker research using
liquid chromatography–high resolution mass spectrometry
based untargeted metabolomics profiling

Dear Editor,
Our study demonstrates that biomarker research using liq-
uid chromatography (LC)-high resolution (HR)mass spec-
trometry (MS) based untargeted metabolomics profiling is
susceptible to the discovery of false positive biomarkers.
LC-MS, especially LC-HRMS, is popularly used to dis-

cover putative biomarkers through comparing untargeted
metabolomic profiles between a patient group and a con-
trol group.1,2 This approach is susceptible to various pre-
analytical, analytical, and post-analytical biases.3 More-
over, isotopes, adducts, in-source fragment products of
some metabolites, artifacts, and contaminants could be
wrongly considered as unique metabolomic features.4,5 To
what extent the putativemetabolomic biomarkers could be
false remains unknown.
We attempted to identify putative biomarkers for differ-

entiating two artificial groups of plasma samples (12 sam-
ples in each group) with well-defined differences in their
metabolome contents (Figure 1A, Table 1; Tables S1 and
S2). By design, a maximum of 22 putative biomarkers are
true, and the rest of the putative biomarkers must be false.
The number of metabolomic features depended on the

signal-to-noise ratio threshold (snthresh) used for feature
extraction (Table 2). A snthresh of 5 had been widely used
(Table S3). Using a snthresh of 5 and a false discovery
rate (FDR) cutoff of 5% for data mining, 22 true biomark-
ers (i.e., true positives) and 165 false positive biomarkers
were observed (Table 3; Table S4). Therefore, the actual
FDR (i.e., the false positive rate) was 88% instead of 5%
(Table 2). Increasing the snthresh and reducing the sam-
ple size (e.g., n = 6 for each group) could decrease the
number of false positive biomarkers. However, the actual
FDR remained > 60% (Table 2; Table S5). We also per-
formed a negative control experiment using two groups
of plasma samples (n = 12 for each group) having iden-
tical metabolome contents. No differential metabolomic
features were found (Supplemental Table S6). This indi-
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cated that our experimental methods did not suffer from
any obvious pre-analytical biases and analytical biases.
We revealed identities of 93% (154) of the false positive

biomarkers (Table 4; Table S4). Eighty-five percent (141)
of the false positive biomarkers were contributed by in-
source fragmentation products (29), in-source complexes
(23), adducts (79), and isotopes (10) of the true biomark-
ers (Figure 1B–1G), whereas 8% (13) were contributed by
metabolites irrelevant to the true biomarkers (Figure S1).
We named these two types of false positive biomarkers
as “relevant false positive biomarkers” and “irrelevant
false positive biomarkers,” respectively. Those adducts, in-
source complexes, etc. should be considered as false posi-
tives because their signal intensities cannot be accurately
measured in biological specimens.8
Metabolomic features corresponding to 88 (62%) rele-

vant false positive biomarkers were observed in the LC-
HRMS profiles of the respective mixtures of the pure
metabolites (i.e., Set A and Set B, Table S7). This confirmed
they were originated from the true biomarkers. Although
CAMERA andMS-FLOwere used to annotate and remove
redundant peaks, redundant features still existed in the
final list of metabolomic features (Table S4). Similar anno-
tation mistakes could be found in the previous studies.6,7
It was not possible to differentiate the relevant false pos-
itive biomarkers from the true biomarkers according to
signal intensity change (Figure 1H). However, they could
be identified through manual inspection of the MS and
MS/MS spectra. A true biomarker and its relevant false
positive biomarkers shared nearly the same retention time
and commonMS/MS fragmentation products (Figures 1B–
1G).
For the irrelevant false positive biomarkers, one possi-

ble cause for their presence was matrix effect.9 In elec-
trospray ionization MS, matrix effect is characterized as
an alteration of signal response by co-eluting substances.
Nine (69%) of 13 irrelevant false positive biomarkers had
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F IGURE 1 The experimental workflow of the present study (A), MS and MS/MS spectra of representative relevant false positive
biomarkers (B – G), and the observed change-folds of true biomarkers and false positive biomarkers (H, I). (A) When using real patient
samples for biomarker discovery, it is not possible to tell which putative biomarkers are false, and it is also not possible to avoid pre-analytical
biases. To overcome these two problems, two groups of plasma samples (12 samples in each group) mimicking those collected from a disease
group and a non-disease group were created by spiking separately with two different sets of 11 metabolite standards into a preparation of
pooled human plasma. Each of the 24 plasma samples (i.e., 12 from the disease group and 12 from the non-disease group) was treated as a
unique patient sample and subjected to separate metabolite extraction and LC-HRMS based untargeted metabolomics profiling. XCMS was
employed for feature extraction, grouping and retention time alignment. CAMERA and MS-FLO were used to annotate and remove the
redundant peaks. At a false discovery rate of ≤ 5%, metabolomic features with statistically significant differential intensities were regarded as
putative biomarkers. By the design, a maximum of 22 putative biomarkers could be true, and the rest of the putative biomarkers were false.
Six relevant false positive biomarkers which were identified as the in-source fragmentation products (B, C) and adducts (D,E) of a true
biomarker (e.g., Tryptophan, Trp). The retention times of the in-source fragmentation products (B) and adducts (D) was the same as that of
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TABLE 1 Information of the two sets of metabolite standards spiked into the human pooled plasma

Metabolite standard Set
Reported concentration in
human plasma (μM)

Estimated
mean
concentration
(μM) in human
plasma

Spiked
amount
(μM)

Supplemental
References

L-Leucine A 123 ± 25, 140, 66 to 170 125 250 [17–19]
Creatine A 44 ± 28, 22.5 to 62 55 110 [20, 21]
L-Histidine A 82 ± 10, 78.8 ± 18.9 80 160 [17, 22]
L-Phenylalanine A 57 ± 9, 70 ± 10.98, 63.0 ± 11.7 65 130 [17, 23, 24]
D-(+)-Glucose A 4700 to 6100, 5770 5000 10000 [17, 25]
L-Aspartic Acid A 54 ± 4, 3 ± 1, 19.3 ± 4.8, 30 ± 14 20 40 [17, 22, 26, 27]
L-Valine A 233 ± 43, 212.0 ± 61 230 460 [17, 28]
L-Alanine A 333 ± 74 330 660 [17]
L-Serine A 114 ± 19, 258 ± 27, 104 ± 26, 159.8

± 26.6
140 280 [17, 26–28]

L-Carnitine A 25.4 to 54.1, 43.6 ± 9.9, 50 ± 30 45 90 [23, 29, 30]
L-Glutamine A 586 ± 84, 590 590 1180 [17, 31]
Creatinine B 35 to 122, 74.12 ± 10.91 75 150 [32, 33]
L-Proline B 168 ± 60, 339 ± 51, 163.6 240 480 [17, 26, 34]
Betaine B 20 to 144, 57.0 ± 15.4 75 150 [17, 35, 36]
L-Glycine B 230 ± 52, 255.4 ± 65.9 230 460 [17, 31]
L-Arginine B 110 ± 21.4, 99.0 ± 22.8, 82.2 to

140.9
110 220 [23, 37, 38]

L-Threonine B 140 ± 33, 127.9 ± 28.2 140 280 [17, 39]
L-Tryptophan B 67 to 72, 44 ± 7 50 100 [26, 40]
L-Lysine B 188 ± 32, 150 ± 2.1, 183 ± 39 180 360 [17, 41, 42]
L-Glutamic Acid B 24 ± 15, 87.0 ± 37.1, 72.0 ± 10.1 85 170 [17, 22, 43]
L-Asparagine B 41 ± 10, 40.0 40 80 [17, 44]
Hypoxanthine B 8.14 ± 2.86, 11.02 ± 3.67 10 20 [45, 46]

their retention times overlapping with the spiked metabo-
lites (Table 4). Since the negative control experiment did
not find any differential metabolomic features, our data
suggested that increasing the plasma levels of 22 metabo-
lites (11 in each study group) by about two-folds were
sufficient to alter the “matrix” significantly. Fortunately,
fold-changes of the irrelevant false positive biomarkers

were significantly lower than those of the true biomark-
ers and the relevant false positive biomarkers (Figure 1H).
A fold-change cutoff of 1.5 could reject 11 of 13 irrelevant
false positive biomarkers in the present study, thus sug-
gesting that any differential metabolomic features with
a fold-change < 1.5 have a high chance of being false
positive.

the original metabolite. Them/z values of the in-source fragmentation products (B) identical to them/z value of one of the peaks in the
MS/MS spectrum of the original metabolite (C). The MS/MS fragmentation patterns of the adducts (D) and the principal ion of original
metabolite shared common fragment ions (E). An example of a relevant false positive biomarker which was identified as in-source complex of
a true biomarker (Valine) and an endogenous metabolite (Taurine) (F). The extracted ion chromatogram (10 ppm tolerance) of valine (upper
panel), taurine (middle panel) and in-source complex of valine and taurine (lower panel) (F), and the MS/MS fragmentation spectra showed
fragments of the relevant false positive biomarker [Taurine+Valine+2Na+H-2H]+ (G). The box-plots (H) of the absolute log2 fold-change
values of the true biomarkers, relevant false positive biomarkers and irrelevant false positive biomarkers and their comparisons (Mann
Whitney test, two-tailed P-values). ROC curve (I) for differentiation the true biomarkers and relevant false positive biomarkers from the
irrelevant false positive biomarkers using various cutoffs of the absolute value of log2 fold-change. For each cutoff, the true acceptance rate
was the proportion of true biomarkers and relevant false positive biomarkers having their absolute values of log2 fold-change higher than the
cutoff, whereas the false acceptance rate was the proportion of irrelevant false positive biomarkers having their values higher than the cutoff
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Unlike real biomarker discovery studies, in the present
study “true” biomarkers and other metabolites were iden-
tical among the plasma samples within each study group.
Such “homogeneous” design allowed us to identify arti-
facts unambiguously using a small sample size. With
respect to the complexity of metabolomes among patient
specimens in real life, the false positive rate of putative
metabolomic biomarkers in a real study could be higher
or lower than the value reported by us. The amount of
false positive biomarkers should depend on various factors,
such as number, quantity, and properties of true biomark-
ers, complex interactions between the true biomarkers and
background metabolites in individual specimens, detec-
tion sensitivity of the MS platform, and the study sample
size. We showed that larger sample size (n = 12 vs. n = 6
for each group) resulted in more false positive biomark-
ers because of higher statistical power. In general, about 50
cases or more for each study group are needed for reliable
biomarker discovery.10 We speculate that with sufficient
statistical power, similar types of false positive biomarkers
could be identified.
To our knowledge, this study is the first to demonstrate

that the use of LC-HRMS based metabolomic profiling for
metabolite biomarker discovery are susceptible to false dis-
covery. Without knowing the identities, it is risky to treat
any statistically differential features as putative biomark-
ers. Relevant false positive biomarkers could be identified
through careful manual inspection of the retention time,
MS, and MS/MS information. Informatics tools which can
accurately and effectively annotate the LC-HRMS features
need to be developed. Irrelevant false positive biomarkers
could be minimized by using an appropriate fold-change
cutoff (Figure 1I). Other approaches, such as multicenter
study, validation using an independent patient cohort and
orthogonal chemical analysis, should also help eliminate
the false positive biomarkers.
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TABLE 4 Origins of 165 false positive biomarkers obtained using a signal-to-noise ratio threshold value of 5

Origins Classification

Number of false positive biomarkers
(number of them having retention
times overlapping with those of spiked
metabolite standards)

Spiked metabolite standards In source fragmentation products 29 (29)
Adducts 79 (79)
Isotopes 10 (10)
In-source complex 23 (23)
Subtotal 141 (141)

Irrelevant metabolites Principal ion 11 (7)
In source fragmentation products 0 (0)
Adducts 2 (2)
Isotopes 0 (0)
In-source complex 0 (0)
Subtotal 13 (9)
Unidentified 11 (9)
Total 165 (159)

https://www.metabolomicsworkbench.org, where it
has been assigned Project ID PR000757. The data can be
accessed directly via it’s Project DOI: 10.21228/M8TQ2B.
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