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A novel multi-target regression 
framework for time-series 
prediction of drug efficacy
Haiqing Li1, Wei Zhang1, Ying Chen2, Yumeng Guo1, Guo-Zheng Li1 & Xiaoxin Zhu2

Excavating from small samples is a challenging pharmacokinetic problem, where statistical methods 
can be applied. Pharmacokinetic data is special due to the small samples of high dimensionality, which 
makes it difficult to adopt conventional methods to predict the efficacy of traditional Chinese medicine 
(TCM) prescription. The main purpose of our study is to obtain some knowledge of the correlation in 
TCM prescription. Here, a novel method named Multi-target Regression Framework to deal with the 
problem of efficacy prediction is proposed. We employ the correlation between the values of different 
time sequences and add predictive targets of previous time as features to predict the value of current 
time. Several experiments are conducted to test the validity of our method and the results of leave-
one-out cross-validation clearly manifest the competitiveness of our framework. Compared with linear 
regression, artificial neural networks, and partial least squares, support vector regression combined 
with our framework demonstrates the best performance, and appears to be more suitable for this task.

Predicting drug efficacy with the assistance of machine learning techniques gives guidance to doctors on curing 
different patients in specific situations. Selecting sensitive drugs in a timely manner is helpful which can pre-
vent the spread of diseases, promote patients’ recovery, enable doctors to use drug rationally and save medical 
resources. In clinical treatment, individuals may show different sensitivities to the identical drug. Due to the 
difficulty for doctors to estimate the effect of drugs on patients, they often choose programs for diagnosis and 
treatment. A period is needed for doctors to determine the effectiveness, and then deciding whether to continue 
using this medication or switch to another drug. In most cases, this approach can achieve good results. However, 
sometimes there may be a delay in giving the medication during the best time of treatment.

As a typical medicine, Wuji pill1–4 is prescribed for irritable bowel syndrome5,6, ulcers, and other gastrointes-
tinal diseases. Wuji pill consists of coptis, evodia fructus and radix paeoniae alba, but according to the variety 
of ancient medical books7, the compatibility proportion of Wuji pills is diverse. In the 2010 edition of Chinese 
Pharmacopoeia, the compatibility proportion of coptis, evodia rutaecarpa and radix paeoniae is 6:1:6. Studies 
have shown that with different compatibility proportions, the efficacy is variational. For example, when the com-
patibility proportion is 1:1:1, Wuji pill is more effective as an analgesic; however, when the proportion is 5:1:1, 
Wuji pill is better as an anti-inflammatory drug. Therefore, predicting drug efficacy with different compatibility 
proportions is necessary and meaningful.

Traditional way to measure the efficacy of a drug is achieved by observing the patient’s physical signs and 
determining the drug concentration in human blood. Van Westen et al.8 employed proteochemometric models 
generated from antivirogram data to predict the HIV inhibitor efficacy. Qiu et al.9 used multiple kernel support 
vector regression to solve the siRNA efficacy prediction problem. Yamada et al.10 studied the efficacy prediction 
of cevimeline in patients with sjögren’s syndrome, and multiple regression is employed to examine the relative 
contributions of the clinical and immunological factors. According to pharmacokinetic studies, there is a complex 
process for medicine to take effect. The oral drug is absorbed into the bloodstream through the stomach, so we 
determine the drug efficacy through the concentration of drugs in the blood. Blood-drug concentration at differ-
ent time constitutes a time series, then we can infer many pharmacokinetic indicators by recording the changing 
process of the drug in patient’s blood. In this paper, we predict the drug efficacy by utilizing a blood-drug con-
centration time series, which is considered as a multi-target problem. Traditional time series prediction method 
of fitting the time series curve is not suitable for this problem. We employ the proportion of different drug 
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compositions as features for these datasets. In addition, we believe that there might be some correlations between 
the targets at different time, so we add corresponding targets as assistance to predict the value of the current time.

Recently, many approaches have been proposed to deal with the increasing and challenging multi-target pre-
diction task. Multi-target regression11–15 which is also known as multi-output, multi-variate16–18, or multi-response 
regression19,20, aims to predict the value of multiple real-valued target variables simultaneously. Many researchers 
have studied the multi-target regression problem. Kocev et al.13 used single- and multi-target regression to model 
a compound index of vegetation conditions. Burnham et al.21 applied multi-target regression to infer concentra-
tions of analytes with multi-variate spectral data. Tuia et al.22, who used multi-output support vector regression 
to simultaneously estimate the different biophysical parameters from remote sensing images, and it is also used to 
predict the wind noise intensity of vehicle components23. Hanen et al.24 categorized state-of-the-art multi-target 
regression methods as transformation methods and algorithm adaptation methods. Problem transformation 
methods convert the multi-target regression problem into single-target problems, build models for each target, 
and then concatenate all the predictions. Spyromitros-Xioufis et al.14 transformed multi-label classification meth-
ods to deal with the multi-target regression problem. The are inspired by popular multi-label classification meth-
ods, and proposed multi-target regressor stacking and regressor chains for multi-target regression. They used 
ridge regression25, support vector regression machines26, regression trees27, and stochastic gradient boosting28 in 
their experiments. The researchers believed that approaches based on a single label may be used for multi-target 
regression by utilizing regression instead of a classification algorithm. Meanwhile, Tsoumakas et al.15 proposed a 
new problem transformation method based on the random k-labelsets (RAkEL) method.

Chen et al. used latent tree models to analyze Chinese medicine formula data and to reveal the underlying 
latent structures in predicting drug efficacy prediction29. They analyzed the herb prescription data for patients 
who have a condition known in Chinese medicine as “disharmony between liver and spleen syndrome(DBLS)”. 
Poon et al. introduced a parameter-free algorithm to discover all the possible sets of interacting herbs, which 
might lead to a good outcome30. The efficacy of a traditional Chinese medicine medication derived from the com-
plex interactions of herbs in a formula, is considered as a problem in efficacy prediction.

In this paper, the multi-target regression framework is proposed to deal with the time-series prediction 
of drug efficacy problem. With a comparative study of Time-Linear Regression (LR), Polynomial Regression 
(PR)31, Support Vector Regression (SVR)32–34, Artificial Neural Networks (ANN)35–37 and Partial Least Squares 
Regression (PLSR)38,39 methods which are applied in a real data set of the drug efficacy of Wuji pill, our frame-
work demonstrates the superiority.

Materials and Methods
Datasets and experimental procedure. Datasets are obtained from the Institute of Chinese Materia 
Medica at the China Academy of Chinese Medical Sciences. The coptis, evodia, and peony extracts (19.3%, 17.7%, 
9.37%) come from the China-Japan Friendship Hospital as dried solid powder in vacuo. The mass fractions of 
each extract are included as follows: in coptis extract, berberine (Ber) 23.03%, palmatine (Pal) 5.52%; in evodia 
extract, evodiamine (Evo) 0.38%, rutecarpine (Rut) 0.48%; and in peony extract, paeoniflorin (Pae) 13.41%. The 
compatibility prescription is a mixture of Chinese medicinal herbs, and all experiments used the same batch of 
extracts.

L9(34) orthogonal design is used to study on Wuji pill in this experiment. According to the clinic dose and pro-
portion of the pharmacopoeia of 2010 edition and medical prescription in all dynasties, coptis, evodia and peony 
are designed to 3 levels, then 9 compatibility prescriptions (1#~9#) are obtained, and the corresponding prescrip-
tions for each herb are designed as comparison (10#~18#) for a total of 18 prescriptions, shown in Table 1.

Based on the above orthogonal design, we form 12 groups of prescription compatibility, each is used in 3 
experiments, totally producing 36 samples. For each sample, we get the time-blood curve of drug concentra-
tion (see Fig. 1) and then we calculate the first order elimination constant (Lambda_z), delay time (Tlag), the 
time of maximum blood drug concentration (Tmax), the maximum blood drug concentration (Cmax), the 
area under the blood drug-time curve (AUClast), the area under the curve of zero to infinity time blood drug 
concentration-time (AUCINF_obs), the apparent volume of distribution (Vz_F_obs), and the plasma elimination 
rate (Cl_F_obs).

As mentioned above, the time series forecasting mentioned herein is obviously different from general time 
series prediction. Time series forecasting is traditionally fitted by regression algorithms directly, but in this paper, 
we predict the blood drug concentration values of corresponding moments. We specifically regard different com-
patibilities as features, and value of time series as targets, so as to calculate the prediction. Value of time series 
measured in this experiment is different for various samples, so we normalize this data, and get a total of 9 points 
which is in common for each process, they are 5 min, 15 min, 30 min, 60 min, 120 min, 180 min, 240 min, 360 min, 
480 min. To better understanding the distribution of blood concentration data, we demonstrate it on Fig. 1. The 
solid line is the curve of original data, and we employed polynomial regression to fit the curve and formed the 
dashed line, which is expressed with the following formula:

= − . ⋅ + . ⋅ − . ⋅ + .x x xy 0 001 0 021 0 75 25 98, (1)3 2

where y means the blood concentration, and x denotes time.
We firstly extract one column as target, then we utilize LR, PR, SVR, ANN, and PLSR to predict a target, lastly, 

we predict the overall time series with correlation between targets, and the correlation among different time in 
time series. We then propose a multi-target regression time series prediction framework for this data, and it 
shows significant improvement of the prediction accuracy.
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Problem definition and algorithm framework. When the medical components are determined, infer-
ing the prescription compatibility from blood-drug time series data can be defined as a classification problem. 
If we consider each medicine component as variable, then this problem is regarded as a regression problem, in 
which prescription compatibility is inferred by time series data. In reality, we hope every component is changea-
ble, so in this experiment, it can be regarded as a regression problem, in which the time-blood-drug concentration 
curve can be predicted by varying prescription compatibility. Traditional approach utilizes the regression predic-
tion of every time node and does not consider about the correlation among time nodes. Therefore, we add target 
of the previous time except the first one to the feature set to improve the prediction precision.

Motivated by this idea, we use multi-target regression framework to process the datasets as shown in Fig. 2.  
< x1, x2, x3>  is the input feature set used to predict the time series of blood-drug concentration denoted as < y1, y2, 
y3, … yn>  and yi is the predicted value of the ith time node. Considering the correlation between x and y, we add 
yi to < x1, x2, x3> , hence we get < >x x x y, , , i1 2 3 , which is used to generate a model and predicted yi+1. After that, 
we get 

+yi 1, then we add 
+yi 1 to < x1, x2, x3>  which is used to generate a model and predict targets iteratively. In 

this framework, we add the value of the latest target as one feature to improve the precision of prediction. LR, PR, 
SVR, ANN and PLSR are used to train the input data and generate models.

According to this framework, we describe the multi-target regression algorithm in Table 2.

Category Coptis Evodia Peony

1# 0.48 0.15 0.23

2# 0.48 0.29 0.47

3# 0.48 0.88 0.93

4# 0.96 0.15 0.47

5# 0.96 0.29 0.93

6# 0.96 0.88 0.23

7# 1.92 0.15 0.93

8# 1.92 0.29 0.23

9# 1.92 0.88 0.47

10# 0.48 0 0

11# 0.96 0 0

12# 1.92 0 0

13# 0 0.15 0

14# 0 0.29 0

15# 0 0.88 0

16# 0 0 0.23

17# 0 0 0.47

18# 0 0 0.93

Table 1.  L9(34) test schedule of Wuji pill.

Figure 1. Data distribution of original data and fitted curve. Only part of the Cmax data was chosen as 
original data in order to show it more clearly. The dashed curve was obtained by polynomial regression, whose 
order was set to two.
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Results
Assessment of algorithms. The regression accuracy is computed using the learning algorithms described 
above, which are measured by using the following error measures:

Root mean square error (RMSE) for the jth component is defined as
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where y ij
p means the jth predicted target value of ith example, yij means the jth real target value of ith example, l 

denotes the number of cross validations and n denotes the number of targets, which is 9 in this paper.
Mean absolute error (MAE) for the jth component is defined as
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where y ij
p, l and n have the same meaning as in the definition of RMSE mentioned above.

Mean absolute percentage error (MAPE), for the jth component, is defined as
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Figure 2. Multi-target Regression Framework. Relation among Time-series data is utilized here to improve 
the precision of prediction.

Input: Training dataset Tr(x, y) and test dataset Ts procedure:

1)  Train a model L on the training set Tr with the first time node by 
using regression algorithm and calculated the training error.

2)  Add the prediction value of previous target to the feature set, then 
use regression algorithm to predict the current target and calculate 
the training error.

3)  Perform step 2 iteratively up to and including the last target. 
Combine all the parameters and run on the test data.

Output: Test error E0

Table 2.  The Multi-target Regression Algorithm.
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Results and analysis. Datasets in this experiment are processed by LR, PR, SVR, ANN, and PLSR. During 
the experiment, the max order of polynomial regression is set to 2, and the number of the hidden layers of ANN 
is set to 1. When it comes to SVR, the linear kernel is adopted as the kernel function. Leave-one-out is used as the 
validation method. The results of MAE, MAPE and RMSE are illustrated in Tables 3, 4 and 5.

We then adopt the multi-target (MT) regression framework and calculate the errors for the five components. 
The random multi-target15 is employed as a comparison. For single target regression, the best result of each com-
ponent is distributed randomly, it is difficult to find a method that satisfied every dataset, so we try to find the 
relationship between targets to improve the precision of most datasets. Multi-target regression framework could 
reduce the error and improved the precision for many datasets as shown in Fig. 3. In all methods, SVR combined 
with multi-target regression framework performs better than the other methods and seems to be more suitable 
for this task.

MAE ber pal evo rut pae

LR-ST 61.92 ±  25.78 35.90 ±  9.58 21.91 ±  9.23 12.34 ±  7.39 80.94 ±  43.51

LR-MT 55.54 ±  31.17 27.49 ±  14.84 10.39 ±  6.04 10.21 ±  7.01 47.04 ±  30.26

LR-RMT 51.20 ±  32.10 26.86 ±  12.76 20.65 ±  7.32 13.62 ±  8.24 84.09 ±  47.76

PR-ST 67.42 ±  33.70 35.05 ±  8.02 18.30 ±  7.43 14.89 ±  8.79 65.19 ±  33.99

PR-MT 57.79 ±  35.14 27.88 ±  8.99 18.18 ±  6.87 13.57 ±  7.88 53.23 ±  25.74

PR-RMT 61.78 ±  33.33 30.80 ±  8.87 19.57 ±  8.38 14.98 ±  8.84 70.73 ±  39.22

SVR-ST 62.23 ±  28.11 35.90 ±  8.50 20.62 ±  8.89 11.47 ±  6.46 74.47 ±  42.51

SVR-MT 50.36 ±  29.75 24.59 ±  11.33 10.18 ±  5.64 9.95 ±  8.31 44.60 ±  32.17

SVR-RMT 62.99 ±  26.37 33.11 ±  12.57 19.86 ±  8.00 12.04 ±  6.73 78.71 ±  45.61

ANN-ST 109.6 ±  46.73 59.84 ±  25.89 34.27 ±  13.32 18.01 ±  9.28 106.08 ±  55.64

ANN-MT 95.26 ±  60.89 47.53 ±  13.99 23.82 ±  9.55 17.86 ±  10.72 82.89 ±  60.43

ANN-RMT 88.68 ±  61.26 51.68 ±  22.84 30.28 ±  14.45 18.15 ±  8.00 110.23 ±  51.89

PLS-ST 64.97 ±  37.20 33.32 ±  7.08 21.39 ±  8.63 18.70 ±  9.47 66.24 ±  32.85

PLS-MT 63.09 ±  31.63 43.65 ±  14.13 64.38 ±  27.25 32.04 ±  21.64 73.38 ±  45.61

PLS-RMT 70.04 ±  32.40 33.90 ±  9.77 24.18 ±  10.69 22.02 ±  14.29 74.65 ±  37.64

Table 3.  Comparison among the mean absolute errors of each component, processed with LR, PR, SVR, 
ANN and PLS. Here ST denotes Single-target regression, MT denotes Multi-Target regression with last target, 
RMT denotes Multi-Target regression with random target. All data here means MAE ±  SD, SD is standard 
deviation.

MAPE ber pal evo rut pae

LR-ST 0.464 ±  0.128 1.073 ±  0.491 1.950 ±  0.581 0.692 ±  0.144 0.878 ±  0.224

LR-MT 0.375 ±  0.062 0.752 ±  0.431 0.800 ±  0.446 0.491 ±  0.111 0.525 ±  0.199

LR-RMT 0.394 ±  0.156 0.895 ±  0.620 1.874 ±  0.688 0.750 ±  0.177 0.926 ±  0.217

PR-ST 0.511 ±  0.159 1.136 ±  0.333 1.383 ±  0.391 0.677 ±  0.132 0.651 ±  0.125

PR-MT 0.383 ±  0.074 0.890 ±  0.374 1.422 ±  0.391 0.633 ±  0.123 0.493 ±  0.146

PR-RMT 0.436 ±  0.103 0.983 ±  0.346 1.512 ±  0.407 0.694 ±  0.136 0.737 ±  0.201

SVR-ST 0.468 ±  0.172 0.947 ±  0.303 1.413 ±  0.356 0.540 ±  0.131 0.711 ±  0.136

SVR-MT 0.338 ±  0.060 0.574 ±  0.217 0.721 ±  0.497 0.426 ±  0.212 0.473 ±  0.250

SVR-RMT 0.493 ±  0.203 0.889 ±  0.382 1.302 ±  0.331 0.544 ±  0.139 0.820 ±  0.259

ANN-ST 0.872 ±  0.317 1.846 ±  0.746 3.620 ±  1.667 0.895 ±  0.269 1.286 ±  0.391

ANN-MT 0.654 ±  0.490 1.411 ±  0.454 2.265 ±  0.893 0.957 ±  0.258 1.068 ±  0.712

ANN-RMT 0.668 ±  0.404 1.594 ±  0.816 2.573 ±  1.193 1.063 ±  0.247 1.373 ±  0.362

PLS-ST 0.462 ±  0.137 1.035 ±  0.348 1.529 ±  0.402 0.890 ±  0.288 0.701 ±  0.144

PLS-MT 0.471 ±  0.234 1.507 ±  1.136 5.595 ±  2.686 1.602 ±  0.639 0.899 ±  0.767

PLS-RMT 0.523 ±  0.137 1.051 ±  0.361 1.769 ±  0.461 1.039 ±  0.413 0.775 ±  0.239

Table 4.  Comparison among the mean absolute percentage errors of each component, processed with LR, 
PR, SVR, ANN and PLS. Here ST denotes Single-target regression, MT denotes Multi-Target regression with 
last target, RMT denotes Multi-Target regression with random target. All data here means MAPE ±  SD.
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Based on the error results of the Tables 3–5, we calculate the error reduction rate of single-target regression 
and multi-target regression, as shown in Tables 6–11. All the units in the table are percentage, the positive value is 
the percentage which is improving, and the negative value is the decreasing percentage. most experimental errors 
decrease with the application of multi-target regression framework for RMSE. Although few results become 
worse, we even cannot figure it out with the error of single-target regression. When we compare MT with RMT, it 
is obvious that in few results, RMT is superior to MT, and in most situation, MT performs better. Especially when 
the basic method is SVR, all the results show that MT is better.

RMSE ber pal evo rut pae

LR-ST 66.88 ±  27.08 37.46 ±  9.99 22.49 ±  9.31 13.08 ±  7.48 82.05 ±  43.61

LR-MT 60.92 ±  32.56 29.38 ±  14.66 11.07 ±  6.07 11.17 ±  7.09 48.61 ±  30.77

LR-RMT 55.52 ± 33.68 28.52 ±  13.55 21.43 ±  7.56 14.39 ±  8.41 85.85 ±  48.09

PR-ST 71.83 ±  34.23 36.63 ±  8.51 18.89 ±  7.58 15.58 ±  8.84 66.50 ±  34.10

PR-MT 63.03 ±  37.46 29.53 ±  9.23 18.78 ±  6.95 14.32 ±  7.92 54.68 ±  25.97

PR-RMT 66.71 ±  34.41 32.46 ±  9.28 20.36 ±  8.66 15.75 ±  8.96 72.10 ±  39.36

SVR-ST 67.09 ±  28.61 37.37 ±  8.91 21.18 ±  8.98 12.22 ±  6.62 75.79 ±  42.53

SVR-MT 55.72 ±  30.95 26.42 ±  11.41 10.83 ±  5.71 10.83 ±  8.29 45.96 ±  32.78

SVR-RMT 68.00 ±  26.80 34.98 ±  12.70 20.67 ±  8.31 12.81 ±  6.92 80.33 ±  45.75

ANN-ST 113.71 ±  47.65 61.09 ±  26.01 34.73 ±  13.38 18.80 ±  9.44 107.3 ±  55.69

ANN-MT 99.38 ±  62.11 49.43 ±  14.31 24.48 ±  9.74 18.89 ±  10.79 84.48 ±  60.39

ANN-RMT 92.62 ±  63.76 53.80 ±  23.29 31.19 ±  14.59 19.11 ±  8.26 113.69 ±  53.18

PLS-ST 69.61 ±  38.04 34.91 ±  7.56 22.02 ±  8.77 19.31 ±  9.58 67.66 ±  32.99

PLS-MT 68.47 ±  32.59 45.02 ±  14.38 64.80 ±  27.23 32.64 ±  21.59 74.72 ±  45.71

PLS-RMT 75.07 ±  33.80 35.62 ±  9.92 24.89 ±  10.83 22.65 ±  14.39 76.24 ±  37.99

Table 5.  Comparison among the root mean square errors of each component, processed with LR, PR, SVR, 
ANN and PLS. Here ST denotes Single-target regression, MT denotes Multi-Target regression with last target, 
RMT denotes Multi-Target regression with random target. All data here means RMSE ±  SD.

Figure 3. Mean absolute percentage error of pal. Pal data is trained with LR, PR, SVR, ANN, PLS, MT, RMT 
and leave-one-out cross validation is applied to test the performance.

MT-RMSE-imp[a] LR PR SVR ANN PLS

ber 8.91 12.25 16.94 12.60 1.64

pal 21.57 19.39 29.30 19.09 − 28.98

evo 50.76 0.56 48.86 29.53 − 194.3

rut 14.65 8.07 11.36 − 0.05 − 69.01

pae 40.76 17.78 39.36 21.27 − 10.43

Table 6.  Percentage improved by MT compared with ST in RMSE. [a]MT-RMSE-imp =  (ST_RMSE-MT_
RMSE)/ST_RMSE*100%.
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From the improvement percentage of MAPE, it is obvious multi-target regression framework does improve the 
precision of time series prediction. The result is similar to RMSE’s, most experiments improve the precision a lot, 
few of them become worse, but the altitude of them can be ignored. For the result of PLS, most of them get worse.

From the improvement percentage of MAE, we draw a conclusion the same as MAPE and RMSE.

RMT-RMSE-imp[a] LR PR SVR ANN PLS

ber − 9.73 5.52 18.06 − 7.30 8.79

pal − 3.02 9.03 24.47 8.12 − 26.39

evo 48.34 7.76 47.61 21.51 − 160.35

rut 22.38 9.08 15.46 1.15 − 44.11

pae 43.38 24.16 42.79 25.69 1.99

Table 7.  Percentage improved by MT compared with RMT in RMSE. [a]RMT-RMSE-imp =   
(RMT_RMSE-MT_RMSE)/RMT_RMSE*100%.

MT-MAPE-imp[a] LR PR SVR ANN PLS

ber 19.13 24.95 27.66 24.97 − 2.07

pal 29.89 2163 39.37 23.57 − 45.56

evo 58.96 − 2.80 49.00 37.41 − 266.01

rut 29.11 6.50 21.10 − 0.69 − 80.01

pae 40.17 24.20 33.46 16.93 − 28.23

Table 8.  Percentage improved by MT compared with ST in MAPE. [a]MT-MAPE-imp =  (ST_MAPE-MT_
MAPE)/ST_MAPE*100%.

RMT-MAPE-imp[a] LR PR SVR ANN PLS

ber 4.82 12.16 31.44 2.10 9.94

pal 15.98 9.46 35.43 11.48 − 43.39

evo 57.31 5.95 44.62 11.97 − 216.28

rut 34.53 8.79 21.69 9.97 − 54.19

pae 43.30 33.11 42.32 22.21 − 16.00

Table 9.  Percentage improved by MT compared with RMT in MAPE. [a]RMT-MAPE-imp =  (RMT_
MAPE-MT_MAPE)/RMT_MAPE*100%.

MT-MAE-imp[a] LR PR SVR ANN PLS

ber 10.31 14.30 19.07 13.08 2.90

pal 23.41 20.44 31.50 20.56 − 31.02

evo 52.55 0.62 50.63 30.48 − 200.84

rut 17.21 8.91 13.27 0.83 − 71.31

pae 41.89 18.35 40.10 21.87 − 10.78

Table 10.  Percentage improved by MT compared with ST in MAE. [a]MT-MAE-imp =  (ST_MAE-MT_
MAE)/ST_MAE*100%.

RMT-MAE-imp[a] LR PR SVR ANN PLS

ber − 8.48 6.46 20.05 − 7.42 9.92

pal − 2.35 9.48 25.73 8.03 − 28.76

evo 49.69 7.10 48.74 21.33 − 166.25

rut 25.04 9.41 17.36 1.60 − 45.50

pae 44.06 24.74 43.34 24.80 1.70

Table 11.  Percentage improved by MT compared with RMT in MAE. [a]RMT-MAE-imp =  (RMT_
MAE-MT_MAE)/RMT_MAE*100%.
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All in all, SVR with multi-target regression framework performs better for this data sets and compared with 
linear regression and other methods, the overall error is the smallest, so we believe multi-target regression frame-
work is suitable for this task.

Experiments in this paper are running on a laptop, the configuration is as follows: GEFORCE GT540M graph-
ics, 1GB video memory, 6 G memory, CPU Intel(R) Core(TM) i5-2410, dominant frequency 2.3 GHz, operating 
system is 64-bit Windows 7 Ultimate.

Discussion
The thorough comparative analysis with the most state-of-the-art approaches reveal that methods with our 
framework achieve satisfying performance. At the same time, SVR with linear kernel is more suitable for these 
datasets, which are potentially linear, so PR and ANN are hard to treat this linear data set well34, especially when 
the datasets are small. We set the order of PR as three, four or more, results become worse. The number of hidden 
layers of ANN is also analyzed with bad results, so the three-layer neural network is adopted. When the relation-
ship between targets is considered, the prediction results from most methods are further improved, while SVR 
obtained the best results among all of the learning algorithms.

Furthermore, we try to add different combinations of targets to the feature, such as the last two targets, three 
targets, etc. up to all the targets14. They perform worse compared to the results that use the last target. Considering 
the correlation between them, we believe that the last target has the closest correlation with the current target 
value. When the correlation between two targets is strong, performance of our algorithm is excellent, otherwise 
when the value of time series changes rapidly, results become worse. Even though, compared with single target 
regression, our algorithm obtains better results. Besides, in order to guarantee the performance of our algorithm, 
attribute estimation of datasets is needed for the optimum solution before choosing a suitable kernel function40.

Conclusion
In this paper, we propose a surprisingly simple, useful, and high quality multi-target regression framework, which 
employs the correlation between targets to improve performance of learning methods, i.e. LR, PR, SVR, and 
ANN. We apply the proposed methods to the real-world TCM datasets. Experimental results with three evalu-
ation measures, i.e. MAE, RMSE and MAPE demonstrate that methods with our framework outperform other 
state-of-the-art ones34. This framework efficiently predicts the time series value of blood-drug concentration for 
different prescription compatibility.

Plasma drug concentration might be as an objective criterion of therapeutic, so topic of discovering plasma 
drug concentration time series is interesting. Our future work is concentrated on improving results with more 
careful design by the inclusion of more challenging datasets24. Additionally, we are exploring how to utilize 
plasma drug concentration time series datasets to infer the prescription compatibility, which would offer guid-
ance to design a drug with the specific efficacy2.
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