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A molecular hypothesis to explain 
direct and inverse co-morbidities 
between Alzheimer’s Disease, 
Glioblastoma and Lung cancer
Jon Sánchez-Valle1, Héctor Tejero2, Kristina Ibáñez3, José Luis Portero4, Martin Krallinger1, 
Fátima Al-Shahrour2, Rafael Tabarés-Seisdedos5, Anaïs Baudot  6 & Alfonso Valencia1,7,8

Epidemiological studies indicate that patients suffering from Alzheimer’s disease have a lower risk of 
developing lung cancer, and suggest a higher risk of developing glioblastoma. Here we explore the 
molecular scenarios that might underlie direct and inverse co-morbidities between these diseases. 
Transcriptomic meta-analyses reveal significant numbers of genes with inverse patterns of expression 
in Alzheimer’s disease and lung cancer, and with similar patterns of expression in Alzheimer’s disease 
and glioblastoma. These observations support the existence of molecular substrates that could at least 
partially account for these direct and inverse co-morbidity relationships. A functional analysis of the 
sets of deregulated genes points to the immune system, up-regulated in both Alzheimer’s disease and 
glioblastoma, as a potential link between these two diseases. Mitochondrial metabolism is regulated 
oppositely in Alzheimer’s disease and lung cancer, indicating that it may be involved in the inverse co-
morbidity between these diseases. Finally, oxidative phosphorylation is a good candidate to play a dual 
role by decreasing or increasing the risk of lung cancer and glioblastoma in Alzheimer’s disease.

Alzheimer’s disease (AD) is a leading global healthcare burden1 and, while over one hundred drugs have 
been developed to treat this disease, only a dozen have been approved for AD treatment in the past 20 years. 
Unfortunately, none of these halt the disease’s progression2. Lung cancer (LC) is the leading cause of cancer-related 
mortality, with nearly 1.4 million deaths every year3. Malignant glioblastomas (GBM) are the most common pri-
mary brain tumors in adults and, despite recent therapeutic advances, the life expectancy of patients with GBM 
continues to be less than 2 years4. Thus, these three diseases are considered among the most challenging public 
health conditions worldwide, emphasizing the need for innovative approaches to deal with them.

Insight into the connections between diseases offer new opportunities to better understand their pathogen-
eses5, 6. Direct co-morbidities are common for many diseases, representing a higher-than-expected joint occur-
rence of medical conditions in individuals. For example, a direct co-morbidity between AD and brain tumors is 
currently suspected7–9. By contrast, inverse co-morbidities are defined as a lower-than-expected probability of a 
specific disease in individuals diagnosed with another medical condition. For instance, AD is associated with a 
lower risk of various cancers, including LC9, 10.

Various factors have been proposed to be involved in direct and inverse co-morbidities, such as the environ-
ment, lifestyle or drug treatments11, and we hypothesize that genetic and molecular factors could also play a role 
in these relationships. We recently studied a set of Central Nervous System (CNS) disorders and cancers known 
to display patterns of inverse co-morbidity. Thanks to transcriptomic meta-analyses, we were able to identify a 
molecular signature of deregulated genes in opposite directions in these diseases12. Here we aim to challenge the 
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molecular bases of inverse and of direct co-morbidities, and the role of the affected tissues in these associations. 
As such, we conducted a systematic meta-analysis of transcriptomic gene expression data in AD, GBM and LC, 
comparing the deregulated genes in each disease to each other. Brain and lung control samples were used to 
detect basal tissue-associated gene expression in order to rule out confounding data. Accordingly, we identified 
a significant number of genes that were deregulated in opposite directions in AD and LC, inverse expression that 
was associated to the proteasome, protein folding and mitochondrial processes. We propose that such deregu-
lation could represent a molecular substrate for the inverse co-morbidity observed between these 2 diseases. By 
contrast, we found a significant number of genes that were deregulated in the same direction in AD and GBM. 
This deregulation affected the immune system and the potential establishment of a chronic inflammatory state, 
suggesting that these changes are associated with direct co-morbidity between AD and GBM.

Results
Gene expression variations associated to the tissues of origin. To take into account any variations 
in gene expression associated to the diseased tissues when comparing AD and GBM with LC, we first com-
pared control brain and lung samples (see Methods). A Principal Component Analysis revealed distinct basal 
expression of genes in the control brain and lung samples, with 66% of the variability explained by the origin of 
the tissue (Supplementary Fig. S1). An enrichment analysis showed that genes up-regulated in the control lung 
samples relative to the brain tissue are significantly enriched in immune system-related processes (e.g., “defense 
response”, “cytokine-cytokine receptor interaction”, “immune response”, “inflammatory response”: Supplementary 
Table S1). Conversely, the genes up-regulated in the control brains relative to the lung tissue are enriched in 
brain-related processes, such as “synaptic transmission”, “neurotransmitter release”, “neuron differentiation” and 
“glucose metabolism” (Supplementary Table S2). All the processes differentially expressed in lung and brain tis-
sues will be further used in our analyses in order to distinguish tissue-associated variations from true changes in 
gene expression associated to the disease.

Molecular relationships between Alzheimer’s disease and lung cancer. We conducted transcrip-
tomic meta-analyses and identified “significantly Differentially Expressed Genes” (sDEGs) in AD, GBM and LC 
(see Methods, Supplementary Table S3). We first focused on the molecular relationships between AD and LC, 
two diseases that display inverse co-morbidity according to epidemiological data9, 10. As such, we compared the 
up- and down-regulated sDEGs in these 2 diseases, finding significant overlaps (FDR ≤ 0.05) between sDEGs 
deregulated in opposite directions in AD and LC (i.e., AD+/LC− or AD−/LC+: Fig. 1a), confirming previ-
ous observations12. These results persisted when more stringent FDR cut-offs were established for the detection 
of sDEGs (FDR ≤ 0.05, 5 × 10−4 and 5 × 10−6: Fig. 1a), as well as with an alternative meta-analysis approach 
(Methods and Supplementary Fig. S2).

We conducted gene set enrichment analyses independently for each disease13, and we found 395 biological 
processes and pathways significantly deregulated in either AD and/or LC (Supplementary Table S4). Of these, 92 
were common to both diseases, including 21 processes up-regulated in AD and down-regulated in LC (AD+/
LC−), and 71 processes down-regulated in AD and up-regulated in LC (AD−/LC+: Fig. 2, Table 1). These com-
mon processes annotate a total of 31% (315/1031) of the AD+/LC− sDEGs and 29% (553/1934) of the AD−/
LC+ sDEGs (Supplementary Table S5). No processes were deregulated in the same direction in AD and LC at the 
threshold selected (FDR ≤ 0.05).

The processes in which the genes up-regulated in AD and down-regulated in LC are enriched include immune 
and inflammatory responses (Table 1). These functions are also expressed differentially between control brain and 
lung samples, and the enrichment is probably due to the tissue of origin of the diseases (Supplementary Table S1). 
This was confirmed by extracting information regarding tissue-specific gene expression from GTEx14 and by 
conducting a gene enrichment analysis15 on AD+/LC− lung-specific genes (Supplementary Table S6). Similarly, 
the processes down-regulated in AD and up-regulated in LC included processes related to synaptic transmis-
sion (Table 1), that were also expressed differentially between control brain and lung samples (Supplementary 
Table S2). As described previously, these results were confirmed with an enrichment analysis on AD−/LC+ 
brain-specific genes (Supplementary Table S6).

Nevertheless, other processes associated with either AD−/LC+ or AD+/LC− are unlikely to be related with 
the tissue of origin. These include processes related to mitochondrial activity, such as “proteasome”, “protein fold-
ing”, “glutathione metabolism”, “TCA cycle and respiratory electron transport” and “oxidative phosphorylation” 
(Table 1). The deregulation of these processes in opposite directions in AD and LC could be implicated in the 
inverse co-morbidity observed between these diseases at the epidemiological level.

Given the enrichment observed in mitochondrial-related processes, we assessed whether the gene expression 
signatures associated to both diseases might be related to inhibition of the electron transport chain (ETC). With 
this in mind, we collected a set of inhibitors of the respiratory chain from the LINCS library (http://www.lincs-
cloud.org), and we used a drug-set enrichment approach to compare the expression signature induced by these 
drugs to the expression signature of both AD and LC. This approach reveals that the changes in gene expression 
associated to inhibitors of the respiratory chain are similar to the changes in gene expression associated with AD 
in patients, but they are not significantly different to those observed in LC (FDR ≤ 0.05).

Overall, using different datasets and meta-analysis approaches these results confirm our previous results from 
a comparison of CNS disorders (AD, Parkinson’s disease and schizophrenia) and three types of cancer (LC, pros-
tate and colorectal)12.

Molecular relationships between Alzheimer’s disease and glioblastoma. We applied the same 
methodology to analyze the molecular relationships between AD and GBM. The epidemiological data con-
cerning the association between these diseases point to a direct co-morbidity relationship7–9. This tendency to 
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a higher risk of developing brain tumors in AD patients is also described in HuDiNe, reporting a relative risk 
value of 2.94616. We conducted 6 independent meta-analyses using control samples from 5 different regions of 
post-mortem brains, and one set of epileptic pre-mortem brains (Methods, Supplementary Fig. S3). We found 
that sDEGs in GBM varied depending on the brain samples used as controls, as described elsewhere17–19, and in 
the 6 meta-analyses, only 35% and 26% of the sDEGs were consistently up- and down-regulated, respectively 

Figure 1. Overlaps between significantly differentially expressed genes (sDEGs) in Alzheimer’s disease (AD), 
lung cancer (LC) and glioblastoma (GBM). The grey circles represent each of the diseases studied and their 
size is proportional to the total number of sDEGs identified for each disease with a FDR ≤ 0.05. (a) Pairwise 
comparisons of sDEGs identified as significantly up- and down-regulated with 3 different FDR cut-offs 
(FDR ≤ 0.05, 5 × 10−4 & 5 × 10−6) after gene expression meta-analyses for AD, LC and GBM. Orange and green 
cells indicate significant overlaps between the genes significantly differentially expressed (sDEGs) in the same 
and opposite direction, respectively (Fisher’s exact test, FDR ≤ 0.05). White cells correspond to non-significant 
overlaps (FDR > 0.05). The number of sDEGs in each disease and in the pairwise overlaps are indicated in their 
corresponding cell. (b) Numbers of overlapping sDEGs identified jointly in the 3 diseases.
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(Supplementary Fig. S4). We considered the genes that were consistently deregulated in all 6 GBM meta-analyses 
as GBM sDEGs (see the sDEGs and their corresponding FDR in Supplementary Table S3).

By contrast to the AD−LC molecular relationships, we found significant overlaps between the sDEGs dereg-
ulated in the same direction in AD and GBM (AD+/GBM+ and AD−/GBM−: Fig. 1a). The results were also 
consistent for the selection of sDEGs with more stringent FDR cut-offs (FDR ≤ 0.05, 5 × 10−4 and 5 × 10−6), and 
with an alternative meta-analysis approach (Supplementary Fig. S2). Since the incidence of seizures in GBM 
patients is between 25–50% at onset and 20–30% during the course of the disease20, we verified the significance of 
the overlaps between AD and GBM using control healthy and epilepsy samples separately for GBM. Irrespective 
of the samples used as controls (healthy or epilepsy), we obtained significant overlaps between the sDEGs in the 
same direction in AD and GBM (Supplementary Table S7).

Functional enrichment analyses revealed 301 processes significantly enriched in either AD or GBM, of which 
8 are AD+/GBM+, 14 AD−/GBM− and 11 AD−/GBM+. We found that AD+/GBM+ processes were related 
to the immune system (Table 1). As AD and GBM develop in the same organ, these processes could potentially 
be molecular substrates of a direct co-morbidity between both diseases at an epidemiological level. Additionally, 
10 AD−/GBM− processes denote potentially common neuronal features, such as “synaptic transmission” and 
“generation of neurons”. Finally, 10 of the 11 processes deregulated in opposite directions (AD−/GBM+) were 
also associated to LC, as will be discussed in the global comparison of the 3 diseases.

Figure 2. Overlaps between processes and pathways significantly enriched in Alzheimer’s disease (AD), lung 
cancer (LC) and glioblastoma (GBM). Grey circles represent each of the diseases studied, and their size is 
proportional to the total number of processes/pathways up- or down-regulated in each case. (a) Number of 
Biological Processes, and KEGG and Reactome pathways significantly up- and down-regulated (FDR ≤ 0.05) 
in at least two of the three diseases. Dark and light arrows represent pathways up- and down-regulated, 
respectively. The Processes/Pathways deregulated in two diseases are located in between their corresponding 
grey circles, and correspond to the 4 possible combinations: up or down in both diseases, up in one disease 
and down in the other, and vice versa. Green circles denote the number of pathways deregulated in the same 
direction in two diseases, while the orange circles denote numbers of pathways deregulated in opposite 
directions in two diseases. (b) The Pathways/Processes significantly enriched in all 3 diseases.
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AD+/GBM+ AD−/LC+ GBM+/LC+

ECM receptor interaction Alanine aspartate and glutamate metabolism° Activation of the pre replicative complex

Interferon alpha beta signaling Aminoacyl tRNA biosynthesis Base excision repair

Response to virus APC C CDH1 mediated degradation of CDC20 and other 
APC C CDH1 targeted proteins in late mitosis early G1 Cell cycle phase

RIG I MDA5 mediated induction of IFN alpha 
beta pathways Cell cycle

APC CDC20 mediated degradation of NEK2A Deposition of new CENPA containing 
nucleosomes at the centromere

Asparagine N linked glycosylation

Assembly of the pre replicative complex DNA integrity checkpoint

AD−/GBM− Autodegradation of CDH1 by CDH1 APC C DNA metabolic process

Cardiac muscle contraction Autodegradation of the E3 ubiquitin ligase COP1 DNA repair

DARPP 32 events
Biosynthesis of the n glycan precursor dolichol lipid 
linked oligosaccharide LLO and transfer to a nascent 
protein*

DNA replication

G alpha z signaling events DNA strand elongation

GABA synthesis release reuptake and degradation CDK mediated phosphorylation and removal of CDC6 Double strand break repair

Generation of neurons Citrate cycle TCA cycle Extracellular matrix organization*

Neuron differentiation Cross presentation of soluble exogenous antigens 
endosomes G1 S specific transcription

Neuronal system Cyclin e associated events during G1 S transition G2 M checkpoints

Neurotransmitter receptor binding and 
downstream transmission in the post-synaptic cell Cytosolic tRNA aminoacylation Global genomic NER GG NER

Destabilization of mRNA by auf1 HNRNP D0 Homologous recombination repair of 
replication independent double strand breaks

Neurotransmitter release cycle Double strand break repair

Potassium channels ER phagosome pathway Homologous recombination

Synaptic transmission Formation of RNA pol II elongation complex M phase of mitotic cell cycle

Transmission across chemical synapses Formation of the HIV1 early elongation complex M phase

Transmission of nerve impulse Formation of transcription coupled NER TC NER repair 
complex Meiosis I

Gluconeogenesis° Meiosis

Glutathione metabolism Metabolism of nucleotides

AD−/GBM+ HIV infection Mitosis

Nucleotide excision repair HIV life cycle Mitotic cell cycle checkpoint

Interactions of VPR with host cellular proteins Mitotic cell cycle

Late phase of HIV life cycle NEP NS2 interacts with the cellular export 
machinery

AD+/LC− M G1 transition p53 signaling pathway

Allograft rejection* Metabolism of amino acids and derivatives Regulation of cell cycle

Cell adhesion molecules CAMS Metabolism of non coding RNA Regulation of glucokinase by glucokinase 
regulatory protein

Cellular defense response* Metabolism of proteins Regulation of mitosis

Chemokine receptors bind chemokines* MHC class II antigen presentation Response to DNA damage stimulus

Complement and coagulation cascades* Mitochondrial protein import Response to endogenous stimulus

Complement cascade* Mitochondrion organization and biogenesis Transport of ribonucleoproteins into the host 
nucleus

Cytokine cytokine receptor interaction* mRNA capping

Defense response* mRNA processing

Graft versus host disease* mRNA splicing minor pathway GBM−/LC−

Hematopoietic cell lineage* N glycan biosynthesis Effects of PIP2 hydrolysis

Immune response* Nucleobasenucleoside and nucleotide metabolic process Phospholipase C mediated cascade°

Immune system process* Nucleotide excision repair

Immunoregulatory interactions between a 
lymphoid and a non lymphoid cell* p53 dependent G1 DNA damage response

p53 independent G1 S DNA damage checkpoint GBM+/LC−

Inflammatory response* Processing of capped intron containing pre mRNA Response to wounding*

Interferon gamma signaling* Proteasome

Leishmania infection* Protein folding

NOD like receptor signaling pathway* Pyruvate metabolism and citric acid TCA cycle AD−/GBM+/LC+

Recruitment of mitotic centrosome proteins and 
complexes

Activation of ATR in response to replication 
stress

Continued
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Molecular relationships between glioblastoma and lung cancer. Finally, we studied the molecular 
relationships between GBM and LC. To our knowledge, no epidemiological data are available to determine the 
co-morbidity between these two cancers, although lung cancers often produce brain metastases21, 22. We discov-
ered significant overlaps between the sDEGs deregulated in the same direction in both diseases (GBM−/LC− and 
GBM+/LC+), as well as in those up-regulated in GBM and down-regulated in LC (GBM+/LC−: Fig. 1a).

Among the 70 processes up-regulated in GBM and the 177 processes up-regulated in LC, 43 are up-regulated 
in both conditions (GBM+/LC+: Table 1 and Fig. 2). Most of these functions are related to the cell cycle, for 
instance “mitosis” or “DNA repair”. Conversely, only two of the 37 and 82 processes down-regulated in GBM and 
LC, respectively, are down-regulated in both diseases (GBM−/LC−). As expected from the comparisons between 
control lung and brain samples, the 5 processes deregulated in opposite directions between the two cancer types 
(GBM+/LC−) are related to the immune system, and they correspond to variations in tissue-related gene expres-
sion (Table 1 and Supplementary Table S1).

Global comparison of the three diseases. We finally searched for sDEGs and processes that are dereg-
ulated jointly in the three diseases, and that therefore might potentially play a dual role in protecting against 
LC development and promote GBM development in AD patients. With the more restrictive lists of sDEGs 
(FDR ≤ 5 × 10−6: Fig. 1b), 112 of the 198 genes significantly deregulated in the three diseases had a similar pat-
tern of deregulation in AD and GBM, and the opposite pattern in LC, with 60 AD+/GBM+/LC− sDEGs and 
52 AD−/GBM−/LC+ sDEGs (Table 2 and Fig. 1b). Similar results were obtained with the lists of sDEGs with a 
FDR ≤ 0.05 (Supplementary Fig. S5). A comparison of the pathways and processes enriched in AD, GBM and/or 
LC revealed “oxidative phosphorylation” to be down-regulated in AD and GBM, and up-regulated in LC, pointing 
to potential metabolic differences between these two types of tumor (Table 1). Additionally, 10 of the 11 processes 
down-regulated in AD and up-regulated in GBM were also up-regulated in LC. Among these processes, the large 
majority were related to the cell cycle, a central activity in tumorigenesis (Table 1).

We applied text-mining and information extraction methods specifically to these 112 sDEGs, and the 
same pattern of deregulation was observed in AD and GBM in PubMed abstracts associated with these dis-
eases, and the opposite in LC. Among the most cited genes in papers related to the three diseases we found 
CDKN1A, NFKBIA, MYD88 and CD44, which were up-regulated in AD and GBM, and down-regulated in LC 
(Supplementary Fig. S6). For instance, CD44 is involved in cell-cell interactions, as well as cell adhesion and 
migration, and it is down-regulated in LC, potentially favoring escape from tumoricidal effector cells23. By con-
trast, CD44, which may favor migration, is expressed weakly in normal brain tissues and overexpressed in GBM, 
with even greater intensity in high-grade glioblastoma than in low-grade astrocytomas24. In AD patients, CD44 
appears to be up-regulated in blood vessel-associated astrocytes25 and in lymphocytes, perhaps playing a role in 
the immune response in affected tissues26. Hence, CD44 appears to be clearly associated to the three diseases and 
it is a good candidate to play a role in their co-morbidity.

On the other hand, UCHL1, ENO2 and CDK5 are among the most cited sDEGs with an AD−/GBM−/LC+ pat-
tern (Supplementary Fig. S7). UCHL1 is a gene encoding a thiol protease that is specifically expressed in neurons, 
and it has been strongly associated with a poor prognosis when overexpressed in LC as it seems to promote metas-
tasis by abrogating HIF-1α ubiquitination27. By contrast, this gene is down-regulated in GBM brains28, increasing 
NF-κB activity by activating IKK29, and in AD mouse brains where its up-regulation improves memory deficits30.

Respiratory electron transport ATP synthesis by 
chemiosmotic coupling and heat production by 
uncoupling proteins

Cell cycle checkpoints

AD+/GBM+/LC− Cell cycle mitotic

Cell surface interactions at the vascular wall* Respiratory electron transport DNA replication

Innate immune system* RNA pol II pre transcription events G1 S transition

Response to other organism* RNA pol II transcription pre initiation and promoter 
opening Mitotic G1 G1 S phases

Viral myocarditis* RNA pol II transcription Mitotic M M G1 phases

RNA polymerase S phase

RNA processing Synthesis of DNA

AD−/GBM−/LC+ SCF beta TRCP mediated degradation of EMI1 DNA repair

Oxidative phosphorylation SCFSKP2 mediated degradation of p27 p21

TCA cycle and respiratory electron transport

Transcription coupled NER TC NER

tRNA aminoacylation

VIF mediated degradation of APOBEC3G

Table 1. Overlap between the processes and pathways significantly enriched in Alzheimer’s disease (AD), 
glioblastoma (GBM) and lung cancer (LC). Biological Processes, KEGG and Reactome pathways significantly 
up- and down-regulated (FDR £ 0.05) in pairwise and three-way comparisons are identified through the GSEA 
approach. The Pathways/Processes also significantly down-regulated in brain vs. lung control samples, and 
those which then correspond to tissue-related expression variation are indicated with asterisks, while those 
significantly up-regulated in brain vs. lung control samples are indicated by circles.

http://S1
http://S5
http://S6
http://S7


www.nature.com/scientificreports/

7Scientific RepoRts | 7: 4474  | DOI:10.1038/s41598-017-04400-6

Through text-mining and information extraction, we were able to confirm that some of the most significant 
sDEGs were among the most cited ones in each of the disease-specific abstracts for all three diseases. These genes 
could be good candidates to study the molecular mechanisms shared between these three diseases.

Discussion
Alzheimer’s disease, glioblastoma and lung cancer have been widely analyzed at the transcriptome level, although 
studying each condition separately. Thus, to our knowledge we present here the first joint analysis of these three 
diseases at the transcriptome level.

Molecular substrates for the inverse co-morbidity between Alzheimer’s disease and lung can-
cer. We identified 92 processes that were deregulated in both AD and LC, none displaying a pattern of dereg-
ulation in the same direction. If we increase the threshold of significance from 0.05 to 0.1, only three pathways 
appear to be down-regulated in both AD and LC, and none were up-regulated in both diseases.

Many processes linked to down-regulated genes in AD and up-regulated genes in LC are related to or have 
been described to influence mitochondrial activity, such as “proteasome”, “protein folding”, “oxidative phospho-
rylation” and “glutathione metabolism”. Based on these results and previous publications, we propose the fol-
lowing scenario (see Fig. 3a). First, proteasome inhibition could promote mitochondrial dysfunction in AD31, 32, 
dampening oxidative phosphorylation and TCA cycle rates33, 34, while increasing the generation of mitochondrial 
Reactive Oxygen Species (ROS)30, 31. Oxidative phosphorylation is required for A549 lung adenocarcinoma cell 
line growth and thus, it might decrease tumor growth capacity in AD patients32. The increase in ROS is one of 
the first observable changes in AD brains, preceding even Aß plaque deposition and neurofibrillary tangle for-
mation35, and it might be facilitated by diminished levels of glutathione36. Indeed, glutathione has potentially 
a major influence on chemoresistance in LC and a decrease in glutathione would make LC more sensitive to 
chemotherapy37. Additionally, mitochondrial ROS generation drives the activation of redox-sensitive transcrip-
tion factors like FOXO, and these in turn induce cell cycle arrest in the G1 phase by repressing CDK4 activity38–41. 
In our analyses, FOXO is AD+/LC− and it might play a role in the inverse co-morbidity between both diseases.

AD+/GBM+/LC− AD−/GBM−/LC+ AD−/GBM−/LC− AD+/GBM+/LC+

NFKBIA EMP3 PFN2 KCNK1 B3GNT1 CX3CL1 SPP1

CEBPD EMP1 ENO2 NMNAT2 OLFM1 NTRK3 DDIT4

S100A10 TRIP10 STMN2 DOCK3 RTN3 RND1 PLOD3

CDKN1A TNFAIP3 UCHL1 GABBR2 TCEAL2 PLK2 UNG

CSDA GIMAP4 SCG5 LRRC20 MOAP1 PPL PPP1R14BP3

PXDC1 MYO1F WASF1 SEMA4F TSPAN7 HLF GTF2IRD1

BCL6 CD163 INA UNC13A RTN1 TMEM246 TIMP1

ID3 IL10RA TUBA4A PORCN PEBP1 PRKCB CHI3L1

FCGRT S100A4 PGBD5 DLG3 PRKCZ CD200 INHBB

HLA-DMB DOCK6 SULT4A1 NELL1 MAST3 RP11-287D1.3 ABCB7

ANXA2P2 CTSS SCAMP5 FBXO41 GPRASP1 BCAS3 RHBDF2

TSPO SOCS3 RAB15 RFPL1-AS1 NDRG4 PTK2B CDKN2C

MYD88 CCR1 HPRT1 HOOK1 NDN REPS2 PLP2

VSIG4 TRAF3IP2 NDUFS2 CGREF1 NCALD ELMO1 SLC35F2

VEZF1 HERC5 KIF3C ACTL6B SNRPN PEG3 BACE2

PIEZO1 TCF7L1 EEF1A2 RP11-18A3.4 NRN1 PIP5K1B FAM60A

ARHGDIB ZNF516 CKMT1B TTC9 REEP1 SHANK2 PPIC

CFLAR LCAT FNDC4 CNTNAP2 BEX4 SMARCA2 ZNF217

MSX1 TGFB1I1 CDK5 CABYR LDB2 C2CD2L TP53

LAMB2 FAM129A STX1A RAB3B MICU1 EPB41L3 CASP6

SRGN PLBD1 LAMP5 RGS7 CCK TMEM35 KCNE4

TRIM22 GBP1P1 SEZ6L2 RP11-430B1.2 NAP1L2 KCNAB1 AD−/GBM+/LC+

DDR2 SP100 GOT1 SYNDIG1 SNCA CLCN4 SNRPEP4

C3AR1 ANG CDH18 TMEM59L GABARAPL1 CHRM3 SEC61G

RAB20 ECM2 OGDHL ATP13A2 MEF2C HAS1 AIMP2

ITGA5 CD58 SH3BP1 SPINT2 APBB1 HSPB3 FTSJ2

STAB1 FLI1 AD+/GBM−/LC− RUNX1T1 CRY2 METTL1

ARHGEF40 C5AR1 RAPGEF3 CYFIP2 TYRP1 RP11-77H9.2

SLC7A7 LYZ SLC6A12 WDHD1

CD44 MSR1

Table 2. Significantly differentially expressed genes (FDR ≤ 5 × 10−6) as: AD+/GBM+/LC−, AD−/GBM−/
LC+, AD+/GBM−/LC−, AD−/GBM+/LC+, AD−/GBM−/LC− and AD+/GBM+/LC+.
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Finally, DNA repair is hindered as a consequence of the down-regulation of the proteasome42, which could 
make LC more sensitive to radiotherapy43 and at the same time, enhance mitochondrial dysfunction as a conse-
quence of the DNA-damage caused by ROS44. Furthermore, proteasome and protein folding inhibition has been 
seen to attenuate cell migration and to increase cell death in non-small cell lung cancer cell lines45. Together, 
these distinct mechanisms are candidates to reduce the incidence of LC in patients with AD. The proposed chain 
of events that follow mitochondrial dysfunction as indicated above has also been described in the SK-N-MC 
neuroblastoma cell line when treated with the insecticide rotenone. This compound mediates NADH:ubiquinone 
oxidoreductase inhibition46, as confirmed by drug enrichment analysis using LINCS, and we found that the 
changes in gene expression produced in AD were similar to those observed when treating cells with such electron 
transport chain inhibitors.

Molecular substrates for direct co-morbidity of Alzheimer’s disease and glioblastoma. There is 
little epidemiological data on the co-morbidity relationships between AD and brain tumors7–9. However, current 
evidence seems to point to the existence of direct co-morbidities between brain tumors and CNS diseases16, 47, 48. 
Additionally, a mouse model of AD displays high sensitivity to brain tumors49. We propose here that the signifi-
cant number of genes deregulated in the same direction in both diseases could be an additional argument in favor 
of direct co-morbidity between AD and GBM. Interestingly, 10 of the 71 genes mutated in GBM50 are found in the 
overlap between sDEGs in AD and GBM (Supplementary Table S8).

Given the complexity of these diseases, it is obvious that these initial results will require additional confirma-
tion with larger and better datasets. For example, the white matter control samples available in public databases 
(6 control samples in GSE35864) are insufficient to pair with the GBM cases, and grey matter controls were used 
as –admittedly imperfect- surrogates. As such, deregulation of similar sets of genes in both brain diseases might 
be due to different processes as a consequence of different cellular composition, with grey matter characterized 
by the presence of neuronal bodies and astrocytes, and white matter characterized by the predominance of axons 
and oligodendrocytes.

Comparing the sDEGs in AD and GBM, we found “oxidative phosphorylation”, “synaptic transmission” and 
“neurotransmitter release cycle” to be down-regulated in both diseases (AD−/GBM−), and “innate immune 
system”, “Rig-1 MDA-5-mediated induction of IFN alpha beta” and “interferon alpha beta signaling” to be 

Figure 3. Potential scenario of the molecular pathways driving inverse and direct co-morbidities between 
AD and LC, and AD and GBM, respectively. (a) Potential molecular processes involved in the direct co-
morbidity between AD and GBM. Proteasome inhibition could drive mitochondrial dysfunction, dampening 
oxidative phosphorylation and the TCA cycle. ROS are generated as a consequence of decreased rates of 
oxidative phosphorylation and glutathione levels. ROS generation activates the innate immune system, driving 
tumorigenesis by establishing a chronic inflammatory state through autocrine and paracrine loops. Synaptic 
transmission is decreased due to low levels of mitochondrial energy generation. (b) Potential molecular 
processes involved in the inverse co-morbidity between AD and LC. In this case, proteasome activity is 
enhanced, accompanied by increased levels of oxidative phosphorylation, TCA cycle and glutathione. As a 
consequence, lower levels of ROS are generated and so, redox sensitive transcription factors like FOXO are not 
activated, favoring the G1/S phase transition.

http://S8
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up-regulated (AD+/GBM+: Table 1). The down-regulation of oxidative phosphorylation in cancer is usually 
accompanied by an increase in the rate of aerobic glycolysis, a process termed the Warburg effect51. Our finding 
that oxidative phosphorylation is down-regulated in both AD and GBM is supported by two independent studies 
proposing the use of methylene blue to treat both AD52 and GBM53 as it increases oxidative phosphorylation. As 
a consequence of the diminished oxidative phosphorylation, less mitochondrial energy is generated and synap-
tic transmission fails54. Finally, we propose that persistent activation of the immune system by different routes 
– including activation through Aß’s interaction with pattern recognition receptors55 and interferon alpha beta 
signaling – leads to the establishment of a local chronic inflammatory state. Such a state was previously pro-
posed to be potentially related to bacterial56 or viral infection57, increasing the risk of developing brain tumors in 
AD patients at the epidemiological level8, 9 (Fig. 3b). This hypothesis is supported by associations between local 
chronic inflammation and cancer described previously in various tissues (e.g., chronic asthma and lung cancer 
or chronic pancreatitis and pancreatic cancer)58. In support of the hypothesis that inflammation promotes tumor 
growth, M2 macrophage polarization markers CD163 and MSR1 favor tumor development59, and they were 
found to be up-regulated in both AD and GBM.

Finally, the joint analysis of AD, GBM and LC, allowed us to propose potential molecular substrates of the 
direct and inverse co-morbidities between these diseases. These results could help to suggest drug repurposing 
and drug combination strategies in the future. Initial relevant examples could include combinations of protea-
some and chaperone inhibitors, anti-oxidants and oxidative phosphorylation or TCA cycle inhibitors for LC 
treatment.

Materials and Methods
Comparison of control Brain and Lung samples. The LIMMA package was used to identify gene 
expression variations60 in control brain and lung samples, merging all the samples from the HG U133 Plus 2 
microarray platform and using fRMA61 for data normalization. We applied a Principal Component Analysis 
to normalized expression data to evaluate the variability explained by the tissue’s origin. Gene Set Enrichment 
Analysis (GSEA)13 was applied to the pre-ranked list of genes based on z-scores to identify enriched pathways/
processes. In addition, brain and lung specific genes were extracted from GTEx14, selecting the genes with a 
RPKM value of 1 or higher as those expressed in a given tissue. The genes expressed in the brain and lung were 
compared to each other. Those found to be expressed only on the brain were selected as brain-specific genes, 
while those found to be expressed only on the lung were selected as lung-specific genes. Enrichment analysis were 
conducted using gProfileR15 on brain and lung specific genes present in AD+/LC− and AD−/LC+ sDEGs using 
Gene Ontology Biological Processes62, KEGG63 and Reactome64 pathways.

Microarray gene expression data. Raw data on gene expression (CEL files) were downloaded from the 
Gene Expression Omnibus (GEO, GSE* files http://www.ncbi.nlm.nih.gov/geo), ArrayExpress (EMTAB* files 
https://www.ebi.ac.uk/arrayexpress/) and The Cancer Genome Atlas (TCGA; https://tcga-data.nci.nih.gov/
tcga/) for AD, GBM and LC (Supplementary Table S9). Studies undertaken on HT HG U133A, HG U133A, and 
HG U133Plus2 Affymetrix microarray platforms were selected to allow the frozen Robust Multiarray Analysis 
(fRMA) normalization method to be used and to reduce inter-platform differences65.

Study design and meta-analyses. Gene expression data preprocessing and meta-analysis. Following 
steps defined previously66, disease-specific meta-analyses were conducted to increase the statistical significance 
and to minimize the noise intrinsic to gene expression measurements. Microarray datasets were normalized using 
fRMA61 from the R Affy package67. When multiple probes matched the same gene symbol, probes presenting the 
greatest inter-quartile range were selected. Only genes present in all the selected platforms were considered (using 
the MetaDE.match and MetaDE.merge functions of the MetaDE package68).

The P-values and effects sizes (ES) were calculated for every gene associated with each disease using the ind.
analysis and ind.cal.ES functions of the MetaDE package68, respectively. Inter-study heterogeneity was evaluated 
calculating Q-statistic for every gene (assumed to follow a Chi-squared distribution under the hypothesis of 
homogeneity), representing quantile-quantile plots of observed vs. expected distributions. The Random Effects 
Model was applied to combine ES due to the existence of inter-study variability based on quantile-quantile plots 
(Supplementary Fig. S8). In addition, we conducted an alternative meta-analysis to double-check our results. 
Left- & right-tailed p-values were combined separately to identify down- and up-regulated genes using the maxP_
OC function of the MetaDE package68 (Supplementary Fig. S2).

Particular case of GBM. Healthy brain samples are not available for obvious ethical reasons. To overcome this 
problem, we used five sets of healthy post-mortem control samples from different brain regions (anterior cin-
gulate cortex, dorsolateral prefrontal cortex, post-central gyrus, entorhinal cortex and occipital lobe) and one 
set of epileptic brain biopsies as controls. One meta-analysis was performed with each of the 5 control sets 
(Supplementary Fig. S3). For the TCGA study, carried out on the HT HG U133A platform, epileptic samples were 
the only control samples available.

The sDEGs for GBM were selected restrictively as those deregulated in the same direction in all GBM 
meta-analyses. The small percentage of genes consistently expressed differentially in GBM (35% up-regulated and 
26% down-regulated) may be explained by differences in gene expression profiles due to the delay between death 
and the time of tissue freezing, as described previously17–19, or by differences between brain regions, as indicated 
by Khaitovich69, who proposed that these variations were driven by distinct neuron-oligodendrocyte ratios70.

Overlap analysis between sDEGs. Following an earlier strategy12, overlaps between pairs of diseases (AD/
GBM, AD/LC and GBM/LC) were assessed by one-tailed Fisher’s exact tests on lists of sDEGs with three different 
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FDR thresholds (FDR ≤ 0.05, 5 × 10−4 and 5 × 10−6), followed by the Bonferroni test to correct for multiple com-
parisons, and establishing the background number of genes as 14,538 (corresponding to the number of genes 
studied in the smallest platform, HT HG U133A). In the case of GBM, the intersection of the sDEGs found when 
using the different sets of control samples was selected.

Functional enrichment analysis. A GSEA13 was performed separately on the ranked list of gene expres-
sion data for each disease (based on the z-scores obtained by the meta-analysis), and using annotations from Gene 
Ontology Biological Processes62, KEGG63 and Reactome64 pathways. Pathways and processes with a FDR ≤ 0.05 
were considered significant. The pathways deregulated in more than 1 disease were selected for further analyses. 
We use the syntax “up-regulated pathways” and “down-regulated pathways” in the manuscript to refer to the 
pathways associated to up- and down-regulated genes according to the GSEA13 analyses. In addition, gProfileR15 
was used to conduct gene set enrichment analysis when working on sets of sDEGs rather than the ranked list of 
differentially expressed genes.

L1000 LINCS analysis. The 250 genes most strongly up- and down-regulated in AD and LC were used as 
gene expression signatures of the diseases, and compared against the LINCS L1000 library (http://www.lincs-
cloud.org/), as performed previously71. The LINCS L1000 library is a large catalogue of gene expression signatures 
in cancer cell lines induced by drug treatment or gene knockdown. All signatures from all the cell lines were 
considered for the analysis. The Compute Connectivity on the Cloud (C3) environment was used to obtain the 
similarities between the AD and LC gene expression signatures with those of the drugs in L1000. The Weighted 
Connectivity Score13 was used as a similarity measure.

Drug-set Enrichment Analysis. The drug enrichment analysis was carried out by applying the GSEA algo-
rithm13 but using a ranked list of drugs and drug-sets instead of genes and gene sets. As in the classical GSEA, 
this approach reveals if a given group of drugs, a drug set, is preferentially located in one the extremes of a ranked 
list of drugs. In this case, the drugs were ranked according to the similarity of their L1000 gene expression with 
respect to the AD or LC gene expression signatures. A search of rotenone-like ETC inhibitors in the L1000 LINCS 
collection gave 30 different perturbagens, corresponding to 21 different drugs. We used the drug set enrichment 
approach to study if the drugs with similar or opposite signatures to those of AD and LC were enriched by this 
type of compound.

Text mining analysis. Abstracts of papers in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) associated 
to AD, GBM and LC were analyzed (disease-specific queries on Supplementary Information) looking for any of 
the genes mentioned in relation to each of these diseases. Then, the AD+/GBM+/LC− and AD−/GBM−/LC+ 
sDEGs (FDR ≤ 5 × 10−6) located over the third-quartile of genes mentioned in the abstracts of the three diseases 
were selected as the most relevant genes common to the three diseases.
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