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Theory of mind (ToM) or mentalizing difficulties is reported in attention-deficit/hyperactivity

disorder (ADHD) and autism spectrum disorder (ASD), but the mechanism underpinning

these apparently shared deficits is relatively unknown. Eighty-three young adult males, 19

with ASD alone, 21 with ADHD alone, 18 with dual diagnosis of ASD and ADHD, and 25

typically developing (TD) controls completed the functional magnetic resonance imaging

version of the Frith-Happé animated-triangle ToM task. We compared neural function

during ToM with two non-ToM conditions, random and goal directed motions, using

whole-brain and region-of-interest analysis of brain activation and functional connectivity

analyses. The groups showed comparable ToM task performance. All three clinical

groups lacked local connectivity increase shown by TD controls during ToM in the

right temporoparietal cortex, a key mentalizing region, with a differentially increased

activation pattern in both ASD and comorbid groups relative to ADHD. Both ASD

groups also showed reduced connectivity between right inferior lateral prefrontal and

posterior cingulate cortices that could reflect an atypical information transmission to

the mentalizing network. In contrast, with mentalizing both ADHD groups showed

decreasing connectivity between the medial prefrontal and left temporoparietal cortices

when compared to TD controls. Therefore, despite the complex pattern of atypical

brain function underpinning ToM across the three disorders, some neurofunctional

abnormalities during ToM are associated with ASD and appeared differentiable

from those associated with ADHD, with the comorbid group displaying combined

abnormalities found in each condition.
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INTRODUCTION

Autism spectrum disorder (ASD) is characterized by social
communication difficulties and stereotypical/repetitive
behaviors, while attention-deficit/hyperactivity disorder
(ADHD) is characterized by age-inappropriate symptoms
of inattention, hyperactivity, and impulsivity (1). Despite the
distinct presentations, up to 55% of children and adolescents with
the disorders meet both diagnostic criteria (2, 3). Furthermore,
reports of a co-occurrence of both disorders in adulthood may
indicate its persistence (4–6). Reviews and meta-analyses suggest
overlapping cognitive impairments in both disorders including
the difficulties in theory of mind (ToM), i.e., the inference of
others’ mental states or “mentalizing” (7–9), even though ToM
deficits have been thought to be ASD-specific [e.g., (10–13)].

In ASD, mentalizing problems are conceptualized as a
core symptom (11) or a consequence of diminished social
motivation (14). The deficits in ASD are commonly associated
with underactivation of temporo- and frontolimbic social brain
networks, in medial and ventrolateral prefrontal, temporo-
parietal cortices, and amygdala in children [e.g., (15, 16)] and
adults [e.g., (17–19)], leading to the “hypo-intentionality”
hypothesis of autism (20). However, overactivation of these
regions has also been reported in children and adults with ASD
(21–24). Reduced activation in the right temporoparietal
junction (TPJ) and medial prefrontal cortex (mPFC),
particularly, has been shown to correlate with increased
autism severity scores (15, 17, 25).

During mentalizing, children and adults with ASD also
showed reduced functional connectivity (FC) (17, 20, 21, 26,
27) in the social brain network that is typically increased in
TD controls (17, 28, 29). Such FC reduction in ASD has been
reported between frontal, especially mPFC, and temporo-parietal
regions, particularly on the right hemisphere (20, 26, 30), ventral
premotor and sensorimotor areas (25), and among widespread
seed regions in the network (21, 27). These findings, together with
observation of reduced FC across other cognitive domains (31–
33), have led to the theory of domain-general frontal-posterior
underconnectivity in ASD (34).

In ADHD, social cognition, and mentalizing deficits are
increasingly reported, mostly in children (35–39) but also in
adults (40–43), albeit not as consistently as in ASD (8). For the
adult age group particularly, recent studies have reported intact
mentalizing in ADHD, who are instead impaired in empathy
and in their ability for generating solutions for social problems
(44, 45). In line with these findings, a review has suggested
that social cognition deficits in ADHD are less severe and more
heterogeneous than in ASD (8).

In the context of neuroimaging of ADHD, altered
orbitofrontal and lateral fronto-striatal activation, which is
typicaly linked to executive function deficits (46–48), has been

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; ASD, autism

spectrum disorder; FC, functional connectivity; GD, goal directed movement;

fMRI, functional Magnetic Resonance Imaging; TD, typically developing controls;

mPFC, medial prefrontal cortex; ToM, Theory of mind; TPJ, temporoparietal

junction; rANG, right angular gyrus; RD, random movement; ROI, region-of-

interest.

cited as possible mediator for the social cognition deficits in
ADHD (49, 50), although, to our knowledge, no fMRI studies
have explored neural correlates of ToM in ADHD. Importantly,
it is unclear if social cognition and mentalizing deficits are
intrinsic to ADHD (41) or reflect co-occuring ASD traits in the
population (40).

Comparative fMRI studies involving people with ADHD
alone, ASD alone, and/or combined ASD+ADHD could
tease apart disorder-differentiating impairments in social brain
regions. To date, these studies have been conducted exclusively
in children and adolescents with the disorders (51–55). One
functional magnetic resonance imaging (fMRI) study has found
ASD-specific inferior frontal gyrus underactivation relative to
TD and ADHD during emotion identification (51). Furthermore,
using resting-state fMRI, ASD-differentiating intrinsic FC
impairments were observed in regions typically involved in
mentalizing, with increased local (i.e., “degree centrality”)
temporo-limbic FC in the ASD and ASD+ADHD groups relative
to TD and ADHD, and shared precuneus overconnectivity
across all clinical groups (55). Electroencephalography (EEG)
biomarkers for face and eye-gaze processings such as N170 have
also been found to be ASD-differentiating relative to ADHD
(52–54). These findings suggest that the neural abnormalities
underlying social cognition, based on a number of neural and
electrophysiological correlates, might be specific to ASD and not
ADHD. However, the hypothesis has not been tested during
mentalizing specifically.

Therefore, we directly compare hemodynamic response and
FC in brain regions during ToM relative to non-ToM conditions
across individuals with ADHD, ASD, ASD+ADHD, and typical
development. To address the lack of investigation of brain
function correlates of comorbidity in the adult population, this
study focused on young adults using the Frith-Happé animated-
triangle fMRI task that is frequently used for investigating ToM
in ASD (21, 24, 27), which has also been shown to detect
ToM deficits in ADHD, albeit in children (35). We aimed to
investigate if ToM performance deficits are similar or different
and are associated with similar or different neural correlates
across the three clinical groups. Based on previous findings of
neuroimaging (51), FC (55), and EEG (52–54), we hypothesized
that abnormalities in the social brain network, e.g., under-
activation in right TPJ and mPFC, and reduced fronto-posterior
FC during ToM (21, 27, 34) would distinguish the ASD groups,
with and without ADHD, from the group with ADHD alone, who
would show no neurofunctional impairments.

MATERIALS AND METHODS

Participants
A total of 107 young adult males aged 20–27 years with ASD,
ADHD, ASD+ADHD, and TD and full-scale intelligent quotient
(FSIQ) ≥70, estimated using the Wechsler Abbreviated Scale
of Intelligence (56), took part in the study. Only males were
included to increase group homogeneity for these predominantly
male-prevalent disorders (57, 58). Handedness was assessed
using the Edinburgh Handedness Inventory (59) and did not
differ between groups. Excluded were participants with epilepsy,
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personality disorder, current substance abuse/dependence,
lifetime history of bipolar disorder, schizophrenia or head injury,
or contraindication for fMRI. The participants completed a larger
study involving several fMRI tasks and a neurocognitive task
battery (60). After excluding 24 subjects (four with incomplete
fMRI data, seven with missing performance data due to technical
or compliance issues [these participants answered ≤3 out of 12
questions], 12 with excessive movement (>3mm) and one with
an incidental MRI finding), 83 subjects remained (19 ASD; 21
ADHD; 18 ASD+ADHD; 25 TD). The groups differed in FSIQ,
but not age (See Table 1 for descriptive statistics).

The clinical groups were recruited through specialist adult
ASD and ADHD clinics, support organizations, social media,
and from a well-characterized population-based cohort of young
adults with ASD, the Special Needs and Autism Project (SNAP),
who were followed up since 10–12 years and are now young
adults (61). Psychostimulant medications, which were withdrawn
48 h before testing, and selective serotonin reuptake inhibitors
(SSRIs) prescription, were not exclusion criteria for the clinical
groups. Participants with non-stimulant ADHD medications
were excluded due to their relatively longer withdrawal periods.

The ASD group consisted of 14 participants with clinical
diagnoses (six autism, eight Asperger’s syndrome) and five
participants with research diagnoses from SNAP [two autism,
two atypical autism, and one pervasive developmental disorder
(PDD) unspecified], based on the International Classification
of Diseases criteria (ICD-10) (62). All but one diagnoses
were accompanied by gold-standard research instruments, the
Autism Diagnostic Observation Schedule (ADOS) (63) or parent
interviews on the Autism Diagnostic Interview-Revised (ADI-
R) (64). Where available, current ADOS scores were collected
from the examiners. One participant received childhood ASD
diagnosis from a specialist neurodevelopmental clinic, supported
by an assessment on the Diagnostic Interview for Social and
Communication Disorders (DISCO) (65), but had no current
scores. None were prescribed medication.

In the ASD+ADHD group, 14 subjects had clinical diagnoses
(five autism, six Asperger’s syndrome, three atypical autism) and
four had research diagnoses of ASD from SNAP (two atypical
autism, two PDD unspecified) based on the ICD-10. All but
one ASD diagnoses were accompanied by the ADOS or the
ADI-R (ADOS score on Table 1). One participant’s childhood
ASD diagnosis from a specialist neurodevelopmental clinic was
supported by the DISCO (no current scores). Furthermore,
thirteen participants met the criteria for combined and five for
inattentive DSM-5 ADHD subtype. Nine had current clinical
DSM-5 ADHD diagnoses supported by current assessments on
the Diagnostic Interview for Adult ADHD (DIVA 2.0) (66)
or the Conners’ Adult ADHD Diagnostic Interview for DSM-
IV (CAADID) (67). Nine other participants had a significant
history of ADHD symptoms assessed through SNAP and met the
current ADHD DSM-5 criteria on the Young Adult Psychiatric
Assessment (68). Two were prescribed psychostimulants alone
[methylphenidate (MPH), dexamphetamine], one SSRIs alone
(escitalopram) and one both (MPH, sertraline).

All participants in the ADHD group met the DSM-5
diagnostic criteria: 12 with combined, eight inattentive, and

one hyperactive subtype, diagnosed by consultant psychiatrists
in specialist adult ADHD clinics. Eighteen diagnoses were
supported by the DIVA 2.0 and three by the CAADID.
Four were prescribed psychostimulants alone (MPH and
lisdexamphetamine), one with SSRIs alone (sertraline) and one
with both (MPH and sertraline).

The TD participants were from local communities, were non-
medicated, and scored below clinical cut-off on the Conners’
Adult ADHD Rating Scale (CAARS) (69) and the Social
Responsiveness Scale-2 (SRS-2) (70) for ADHD and ASD traits,
respectively. This study was in accordance of the Declaration of
Helsinki and had ethical approval from a local National Health
Service Research Ethics Committee (NHS REC 13/LO/0373).
Each participant gave written informed consent and was given
£50 and travel reimbursement.

Clinical Measures
The CAARS ADHD index and the hyperactivity/inattention
domain of the Strengths and Difficulties Questionnaires (SDQ)
for adults (http://www.sdqinfo.com) indexed ADHD traits,
while total algorithm score of SRS-2 indexed ASD traits.
The participants completed self-report measures, corroborated
by informant (e.g., parents/partner/siblings) for those in the
clinical groups.

The Frith-Happé Animated Triangles Task
The block-design fMRI version of the Frith-Happé task was
selected as it evokes large effect size of brain activation, which
is associated with increased statistical power. The task was
also selected based on its frequent use in ToM investigation
in ASD children and adult populations (21, 24, 27). A recent
study furthermore reported ToM deficits in ADHD children
using the same task (35). The task consists of twelve 26–48 s
cartoons involving two triangles whose movements express: (1)
ToM, e.g., persuading (length = 39.0±2.2s), (2) Goal-directed
(GD) interaction, e.g., following (length = 39.5 ± 9.5 s), and
(3) Random (RD) purposeless motions, e.g., floating (length =

39.8 ± 1.5 s) (71). Each condition is depicted by four different
clips, shown in the same pseudo-randomized block order across
participants. Each block consists of 1-s fixation cross (jittered
between 0.3–1.9 s), one clip, a 3-s fixation and a visual multi-
choice question prompting the participants to identify the
movement type shown with a maximum duration of 5 s. The
chosen answer is highlighted for 1 s (Supplementary Figure 1)
before the start of the next block. Response accuracy and response
time (RT) were collected during the task.

Outside the fMRI scanning, a subset of the clips (four
ToM and four GD) was shown to the participants, followed
by the question “What do you think is happening during the
clip?” Neutral prompts (e.g. “uh-hum”) were given by the
examiner when the answer was not forthcoming. Responses were
transcribed and rated by the first author DI, blinded to the
participants’ diagnoses, yielding scores for intention attributions
(0–5), their appropriateness (0–3), the primary measures; and
response length (i.e., number of clauses) and number of prompts,
our secondarymeasure of ToM ability (72). Forty-eight randomly
selected transcriptions (12 per group) were independently
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TABLE 1 | Group differences in socio-demographic variables and clinical measures.

TD

(n = 25)

ASD

(n = 19)

ASD+ADHD

(n = 18)

ADHD

(n =21)

Group

comparison

Post-hoc

M SD M SD M SD M SD F/t df p

Age 23.4 1.6 23.0 0.7 23.1 1.3 23.1 2.1 0.22 3, 79 0.88 –

FSIQ 116.8 11.9 105.2 18.9 106.9 14.0 117.8 13.1 4.2 3, 79 0.009 ADHD*, TD* > ASD

Handedness 64.8 70.4 64.7 69.9 71.1 59.0 59.5 70.9 0.09 3, 79 0.96 –

CAARS ADHD index (t-scores)

Self-rated 45.0 7.3 49.4 8.0 58.2 11.3 66.2 6.7 27.9 3, 78 <0.001 ADHD***, ASD+ADHD* > ASD;

ADHD***, ASD+ADHD*** > TD;

ADHD* > ASD+ADHD

Informant-rated – – 46.7 5.1 66.1 11.3 62.5 11.0 21.9 2, 53 <0.001 ADHD***, ASD+ADHD*** >

ASD

SDQ hyperactivity/inattention (raw scores)

Self-rated 1.8 1.4 3.1 2.2 6.6 2.2 7.3 1.6 47.6 3, 78 <0.001 ADHD***, ASD+ADHD*** >

ASD; ADHD***, ASD+ADHD***

> TD; ASD†
> TD

Informant-rated – – 2.8 1.5 7.2 1.7 7.6 1.7 48.8 2, 52 <0.001 ADHD***, ASD+ADHD*** >

ASD

ADHD symptom counts(a)

Inattention – – – – 7.4 1.2 8.1 1.5 −1.5 1, 32 0.15 –

Hyperactivity/impulsivity – – – – 4.8 2.7 4.7 2.4 0.03 1, 32 0.98 –

Total SRS-2 (t-scores)

Self-rated 48.2 5.9 61.1 9.7 63.7 10.6 61.5 7.4 16.3 3, 78 <0.001 ASD***, ASD+ADHD***,

ADHD*** > TD

Informant-rated – – 62.8 6.0 69.5 12.9 58.0 11.3 5.6 2, 53 0.006 ASD+ADHD** > ADHD

ADOS-2 Module 4(b)

Communication – – 1.7 1.9 2.4 2.4 – – −1.0 1, 30 0.33 –

Social interaction – – 3.3 2.7 4.0 4.2 – – −0.60 1, 30 0.56 –

Communication + social

interaction

– – 4.9 4.0 6.4 6.5 – – −0.79 1, 30 0.43 –

Stereotyped behaviors and

restricted interest

– – 0.3 .96 1.0 1.4 – – −1.7 1, 30 0.10 –

TD, typical development; ASD, autism spectrum disorder; ADHD, attention-deficit/hyperactivity disorder; M, mean; SD, standard deviation; df, degree of freedom; FSIQ, full-scale

intelligence quotient; CAARS, Conners Adult ADHD Rating Scale; SRS, Social Responsiveness Scale version 2; SDQ, Strengths and Difficulties Questionnaires, a version for adults was

used. (a)Current ADHD symptom counts were based on the Diagnostic Interview for Adult ADHD (DIVA 2.0) or the Young Adult Psychiatric Assessment, available in 18 participants

with ADHD and 16 participants with ASD+ADHD. (b)Current Autism Diagnostic Observation Schedule (ADOS-2) scores were available in a subset of 18 individuals with ASD and 14

participants with ASD+ADHD. Post-hoc significant threshold: *p < 0.05, **p < 0.01, ***p < 0.001, and
†
p < 0.1 with Tukey–Kramer multiple comparison correction.

rated by the second author SL, achieving good interrater
agreement for ratings of intention attribution (weighted κ =.71;
weighted agreement = 92.8%), appropriateness (weighted κ

=.69; weighted agreement= 88.6%), response length [intra-class
correlation coefficient (ICC) = 0.97], and number of prompts
(ICC = 0.99). Behavioral data were analyzed in STATA 14.0 (73)
using (Group × Condition) repeated measures ANOVA, with
post-hoc analyses corrected using the Tukey–Kramer method,
accounting for unequal sample sizes across groups.

Neuroimaging Data Acquisition
Data were acquired using a General Electric (GE) MR750 3T
scanner (General Electric, Boston, MA, United States) at the
Center for Neuroimaging Sciences, King’s College London. The
scanner’s body coil was used for RF transmission, while an
eight-channel head coil was used for signal reception. An echo
planar image (EPI) gradient-echo pulse sequence (TR/TE =

2,000/30ms, flip angle = 80◦, FOV = 19.2 × 19.2 cm, 64
× 64 matrix, in-plane resolution = 3mm, slice thickness/gap
= 3/0.3mm) was used to acquire 40 slices of T2∗-weighted
MR images angled at 20◦ up from inter-commissural plane,
prescribed consecutively top-to-bottom, covering the entire
brain. The 10-min, 14-s task produced 307 volumes in time
series. A whole-brain high resolution structural T1-weighted
scan (Sagittal ADNI-GO/2 ACC MPRAGE), co-registered with
individual activation maps during pre-processing, was acquired
in the inter-commissural plane with TE = 3.016 s, TR = 7.312 s,
196 slices, FOV = 27 cm × 27 cm, 256 × 256 matrix, and slice
thickness of 1.2 mm.

Neuroimaging Analyses
fMRI data were corrected for slice timing, realigned, co-
registered to the individual T1-weighted scan, segmented,
normalized to the Montreal Neurological Institute EPI template,
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and smoothed using an 8-mm Gaussian kernel. Statistical
analyses were completed in two steps on the Statistical Parametric
Mapping (SPM8). At the subject-level analyses, BOLD response
was predicted using a vector of onsets and durations convolved
with the canonical hemodynamic response function (HRF). Six
nuisance motion regressors [x-, y-, z-translations, rotations, and
additional regressors for each motion spike (>1mm)] controlled
for volume-to-volume head motion and abrupt movements. A
high-pass filter was applied at the cut-off of 128 s and a first-
order autoregressive model corrected for time series correlation.
Investigations were carried out in the orthogonal contrast ToM>

RD, typical of past studies (21, 27, 74–76), and separately in ToM
> GD, a higher-level contrast investigated in a recent study (72).

Both contrasts were entered to second-level analyses. Within-
group activations were analyzed with a cluster extent threshold
of p <.05, family-wise error corrected (FWEcor), and a
cluster-forming voxel threshold of p < 0.001 (Figure 2).
Between-group activation was modeled with group as predictor,
covarying for total frame-wise head displacement to control
for residual motion variation. The group differences were
analyzed, first, using an exploratory whole-brain analysis (voxel
threshold p < 0.05, FWEcor) and, second, using a hypothesis-
driven region-of-interest (ROI) analyses, by means of small-
volume correction, using 10-mm radius spherical ROIs in the
bilateral inferior frontal gyrus (IFG), bilateral medial prefrontal
cortex (mPFC), bilateral posterior cingulate cortex (PCC),
bilateral angular gyrus (ANG), and bilateral temporo-parietal
junction/superior-temporal sulcus (TPJ/STS). The ROIs were
centered on independently derived coordinates from a whole-
brain activation map of ToM > RD [http://neurovault.org/
images/3180 (77)], following Kana et al. (27). Mean beta
weights of BOLD data were extracted for post-hoc pairwise
group comparisons, applying Tukey–Kramer correction, and for
correlational analyses with primary trait and task performance
measures, applying false-discovery rate [FDR] correction.
Logarithmic transformations were applied to normalize skewed
data distribution as appropriate.

To compare FC between task conditions, we investigated the
synchronization of BOLD activation time series across regions
to facilitate comparison with previous studies [e.g., (21, 26,
27, 78)]. Activation time-series were first extracted from the
spherical ROIs for everyone. The activation time series in
ipsilateral TPJ and STS were combined by averaging due to
regional overlap, yielding eight seed regions for the subsequent
FC analyses. To control for artifacts, six orthogonal head
motion parameters, head movement spikes, white matter, and
cerebrospinal fluid signal plus their derivatives were regressed
out. Artifact-corrected time-series were segmented pertaining
to each video clip and those representing the same movement
condition were concatenated into a condition-specific time
series (27). These time series were correlated pairwise between
ROIs, yielding altogether 28 unique correlation coefficients per
movement condition (i.e., ToM, GD, and RD), which were
then Fisher’s z-transformed using an inverse hyperbolic tangent
function to produce a FC strength index. They were then
analyzed using multilevel mixed-effects linear regression models
with group, condition, and group × condition as fixed effects

and individual factor as random effects. Model fit was first
examined for the overall averaged FC, calculated by averaging z-
scores from the 28 pairwise correlations between ROIs. Further
examination of model fit then took place in each pairwise
FC. Group × condition interaction effects and main effects of
group and condition were explored in models with significant
fixed-effect model fit. Then, significant post-hoc simple effect
testing was performed and corrected for multiple testing using
the FDR method. Analyses were repeated, covarying for FSIQ
and medications in each model to assess their influence in
each model. Finally, Pearson’s correlations assessed the relation
between FC strength, primary measures of clinical traits, and task
performance during ToM, corrected for multiple testing with the
FDR method.

RESULTS

Task Performance Results
In the performance data from the out-of-scanner task,
there were no significant group × condition interactions
(Supplementary Table 1). No group differences were found
in ratings of intention attributions [F(3, 77) = 2.09, p = 0.1]
and their appropriateness [F(3, 77) = 0.88, p = 0.5]. A group
effect was found on the length of description [F(3, 77) = 2.73,
p < 0.05] and prompts required [F(3, 77) = 3.48, p = 0.02;
Figure 1A, Supplementary Table 1]. Post-hoc t-tests showed
that the ASD group gave the shortest ToM descriptions (ps <

0.01), despite receiving more prompts than the ADHD (p <

0.01) and TD groups (p < 0.05). An effect of condition was
found on the intentionality scores [F(1, 77)= 239.0, p < 0.0001],
appropriateness scores [F(1, 77) = 33.3, p < 0.0001], length
of description [F(1, 77) = 117.3, p < 0.0001] and prompts
[F(1, 77) = 184.3, p < 0.0001]. Post-hoc t-tests suggested that
intentionality scores and length of description were higher in
ToM than GD across all groups (p < 0.001); appropriateness
scores were lower in ToM than GD in the TD, ASD, and ADHD
groups (p < 0.001); and more prompts were needed during ToM
than the GD condition (p < 0.0001).

During the fMRI task, a participant with ADHD answered
eight out of 12 questions (others answered≥11 questions), which
could reflect ToM difficulties. The participant was included
in all analysis. There were no significant group × condition
interactions (Supplementary Table 1). A trend-level group effect
[F(3, 79) = 2.49, p = 0.07] and a significant effect of condition
[F(2, 158) = 42.3, p < 0.0001] were found for motion type
identification (Figure 1B, Supplementary Table 1). Post-hoc t-
tests showed GD motion were identified more accurately by the
ADHD than the ASD and ASD+ADHD groups (p < 0.01), and
that RD and ToM motions were identified more accurately than
GD motions (p < 0.001) by the TD, ASD and ASD+ADHD
groups. RT comparisons showed a trend effect of group [F(3,
79) = 2.60, p = 0.06], with the clinical groups being slower than
the TD group, although this was only statistically significant in
RD and ToM conditions for the ASD+ADHD group (p < 0.05)
and in GD for the ASD and ADHD groups (p < 0.05) when
tested post-hoc.
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FIGURE 1 | Behavioral performance outside (neuropsychological task) and during fMRI scanning (fMRI task). TD, typical development; ASD, autism spectrum

disorder; ADHD, attention-deficit/hyperactivity disorder; GD, goal directed; RD, random movement; ToM, theory of mind. Only pairwise group differences are

highlighted although an effect of condition was found in scores for intentionality, appropriateness, length of descriptions and number of prompts during

neuropsychological task. An effect of condition was also found for correct identification of motion (correct answers) during the fMRI task. *p < 0.05, **p < 0.01, ***p <

0.001, with Tukey–Kramer multiple comparison correction. Error bars represent standard error of the mean. (A) Neuropsychological task behavioral results. (B) fMRI

task behavioral results.

Motion
Total volume-to-volume head movement in the x, y, and z
rotation and translation did not differ across groups [F(3, 79) =
0.74, p= 0.53].

Within-Group Brain Activation
For the ToM > RD contrast, TD controls showed increased
activation in ToM relative to RD condition in a region
extending from inferior/middle occipital gyri (IOG/MOG) to
posterior inferior temporal gyri (ITG) (BA19/37). In ASD,
increased activation for ToM > RD was observed in bilateral
IOG/MOG/ITG, in precuneus/posterior cingulate (BA7/23), and
in bilateral supramarginal/ANG/posterior superior temporal
gyrus (STG), extending to right middle temporal gyrus
(MTG)/temporal pole (BA 22/21/38). In ADHD, increased
activation for ToM > RD was found in right occipital pole, while
in ASD+ADHD, the increased activation extended from bilateral
IOG/MOG/ITG to right fusiform and lingual gyri, and from

bilateral posterior MTG to right posterior STG/supramarginal
gyrus/ANG (BA42/39/21/22) (Figure 2).

For the ToM > GD contrast, the TD and ADHD groups
showed no clusters of increased activation at the chosen
threshold. In ASD, increased activation was observed in right
supramarginal/ANG/posterior STG (BA 42/41/40/22/48) and
right IOG/MOG reaching into fusiform gyrus. In ASD+ADHD,
increased activation was found in right IOG/MOG/lingual gyri
(Figure 2).

Between-Group Brain Activation
Whole-brain analysis revealed no group effect for the contrast of
ToM > GD. A group effect was observed for ToM > RD in the
rANG [p =.005, F = 12.5, (x = 60, y = −54, z = 34), cluster
size = 40 voxels]. Post-hoc pairwise comparisons revealed lower
right ANG activation in the ADHD than the ASD (p < 0.001)
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FIGURE 2 | Activation clusters for theory of mind (ToM) over random (RD) and goal-directed (GD) motion experimental conditions. TD, typical development; ASD,

autism spectrum disorder; ADHD, attention-deficit/hyperactivity disorder. (A) ToM > RD, (B) ToM > GD.

and ASD+ADHD (p = 0.009) groups, and a trend-level increase
in ASD relative to TD (p= 0.058; Figure 3A, Table 2).

Between-group ROI analyses of ToM > RD revealed a group
effect in rTPJ/STS [p< 0.001, F= 10.1, (x= 58, y=−52, z= 30),
k = 78 voxels] and rANG [p =.026, F = 5.6, (x = 50, y = −60, z
= 34), k = 49 voxels]. Post-hoc t-tests revealed significant higher
activation in ASD than ADHD (ps≤ 0.016) in both regions and a
trend-level increase in rANG in ASD+ADHD relative to ADHD
(p = 0.070). Corresponding analyses of ToM > GD contrast
showed a trend-level group effect in rTPJ/STS [p= 0.069, F= 5.5,
(x = 54, y = −54, z = 28), k = 25 voxels] and rANG [p = 0.063,
F = 5.0, (x = 52, y = −60, z = 32), k = 4 voxels], with higher
activation in ASD than ADHD (ps≤ 0.004) for both regions, and
a higher increase in ASD+ADHD than ADHD in rTPJ/STS (p
= 0.025) and a trend-level increase rANG (p= 0.067; Figure 3B,
Table 2).

In all analyses, the effects of FSIQ (ps ≥ 0.34), prescription of
SSRI alone (ps≥ 0.38), psychostimulant alone (ps≥ 0.49), and all
medication together (ps ≥ 0.17) were non-significant.

In the TD group, RT to ToM clips showed significant positive
correlation with ROI-based activation, for the ToM > RD and
ToM>GD contrasts, respectively, in rANG (r= 0.59, p= 0.008,
r= 0.46, p= 0.021) and rTPJ/STS (r= 0.55, p= 0.014, r= 0.52, p
= 0.016) and in the whole-brain analysis based rANG cluster for

ToM > RD (r = 0.66, p= 0.002). In the ASD group, the number
of prompts during ToM was significantly positively correlated
with activation in rANG (r = 0.58, p= 0.022), and at trend-level,
in the whole-brain rANG cluster (r= 0.44, p= 0.071) in the ToM
> RD contrast; and with ROI activation in rANG (r = 0.63, p =
0.020) and, at a trend-level, in rTPJ (r = 0.45, p = 0.093) for the
ToM > GD contrast.

None of the activation clusters correlated with the severity of
ASD or ADHD traits (ps ≥ 0.26).

Functional Connectivity
Analyses of overall averaged FC revealed significant effects of
condition [χ2(2) = 7.79, p = 0.02] and of group × condition
interaction [χ2 (6) = 16.3, p = 0.012] but not group. Post-hoc
t-test showed increased overall FC during ToM relative to RD
or GD in TD controls only (ps ≤ 0.001), although the pattern of
findings subtly differed for the individual FC pairs.

Among the ROI pairs, a significant mixed-effect model fit was
found between rIFG and PCC, [χ2(11) = 46.6, p < 0.0001);
and trend-level significance between mPFC and lTPJ [χ2(11)
= 27.7, p = 0.051]; and between rANG with lTPJ [χ2(11) =

24.9, p = 0.076] and rTPJ [χ2(11) = 24.5, p = 0.076] (see
Figure 4). Between rIFG and PCC, there was a significant effect
of condition [χ2(2) = 36.4, p < 0.0001], qualified by increased
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FIGURE 3 | Significant peak activation by clusters and bar graphs showing within pairwise comparisons. (A) Whole-brain analysis and (B) Region of interest (ROI)

analyses. TD, typical development; ASD, autism spectrum disorder; ADHD, attention-deficit/hyperactivity disorder; BOLD, blood-oxygen-level dependent; GD, goal

directed; RD, random movement; ToM, theory of mind; rANG, right angular gyrus; rTPJ/STS, right temporoparietal junction/superior temporal sulcus *p < 0.05, **p <

0.01, ***p < 0.001,
†
p < 0.1 with Tukey–Kramer multiple comparison correction.

FC during ToM relative to RD or GD in the TD (ps ≤ 0.0004)
and the ADHD groups (ps ≤ 0.04). Between mPFC and lTPJ,
a significant group × condition interaction [χ2(6) = 14.5, p
= 0.024) and a significant group effect [χ2(3) = 9.3, p =

0.025) were found. Post-hoc analyses for the interaction showed
FC increase in TD controls and decrease in ASD+ADHD and
ADHD (ps≤ 0.007) during ToM relative to RD; and comparable
FC during ToM and GD in TD controls, and FC decrease
during ToM relative to GD (ps ≤ 0.045) in ASD+ADHD and
ADHD. Post-hoc analyses for the group effect showed increased
FC in ADHD relative to TD controls during RD condition
(p = 0.024), and relative to ASD during the GD condition
(p = 0.024). Between rANG and bilateral TPJ, there was a
significant effect of condition [rANG-lTPJ: χ

2(2) = 10.2, p =

0.006; rANG-rTPJ χ
2(2) = 15.8, p = 0.0004] due to increased

FC in TD controls during ToM relative to RD or GD (ps≤ 0.025)
between rANG and rTPJ; and during ToM relative to GD (p =

0.002) between rANG and lTPJ. No other effects or interactions
were significant.

The FSIQ (ps ≥ 0.10), SSRIs alone (ps ≥ 0.72),
psychostimulants alone (ps ≥ 0.42), and all medications
together (ps≥ 0.38) exerted non-significant effects in the models.

The FC strength neither correlated with the severity of ASD
and ADHD traits (ps >0.39) nor task performance measures
(ps > 0.11).

DISCUSSION

To our knowledge, this is the first study to investigate
brain activation and FC associated with ToM in young adult
males with ASD, ADHD, ASD+ADHD, and TD. Despite
comparable task performance, ASD adults with and without
ADHD had increased activation relative to ADHD alone
during mentalizing in a key temporo-parietal ToM region,
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TABLE 2 | Significant peak activation by cluster for the contrasts theory of mind (ToM) over random (RD) and goal-directed (GD) motion in the whole-brain and

region-of-interest (ROI) analyses.

Voxels MNI coordinates F Zscore pFWEcorr Post-hoc

x y Z

Contrast ToM > RD

Whole-brain analysis

rANG 40 60 −54 34 12.5 4.76 0.005 ASD***, ASD+ADHD** > ADHD; ASD†
> TD

ROI analyses

rTPJ/STS 78 58 −52 30 10.1 4.24 <0.001 ASD** > ADHD

rANG 49 50 −60 34 5.58 2.95 0.026 ASD*, ASD+ADHD†
> ADHD

44 −62 36 5.34 2.86

Contrast ToM > GD

Whole-brain analysis

–

ROI analyses

rTPJ/STS 25 54 −54 28 5.49 2.91 0.069 ASD**, ASD+ADHD* > ADHD

58 −52 30 5.31 2.85

rANG 4 52 −60 32 4.98 2.72 0.063 ASD**, ASD+ADHD†
> ADHD

TD, typical development; ASD, autism spectrum disorder; ADHD, attention deficit/hyperactivity disorder; ToM, theory of mind; RD, random movement; rANG, right angular gyrus;

rTPJ/STS, right temporo-parietal function/superior temporal sulcus. MNI, Montreal Neurological Institute; ***p < 0.001, **p < 0.01, * p < 0.05, and
†
p < 0.1, with Tukey–Kramer

multiple comparison correction.

which was trend-wise increased relative to TD in the ASD
group without ADHD. In FC, during mentalizing, there were
mixed patterns of findings with all clinical groups sharing
the lack of increased average FC over all connectivity pairs
when compared to TD, which was particularly significant when
considering the individual FC pairs in posterior temporo-parietal
regions. Furthermore, underconnectivity between right inferior
frontal and posterior cingulate cortices was found in the ASD
groups, with and without ADHD, while the decreasing FC in
medial frontal cortex and left temporo-parietal junction with
mentalizing was found only in the ADHD groups, with and
without ASD.

Increased temporoparietal activation in rANG during
mentalizing appears to differentiate adults with ASD, with or
without ADHD, from those with ADHD alone, and at a trend-
level from TD controls. Therefore, we show for the first time that
this overactivation is ASD-specific relative to the ADHD. This
finding was significant in whole-brain analyses of ToM > RD
contrast, and either significant or at trend-level in ROI analyses of
both mentalizing contrasts. Previous studies have shown reduced
rANG activation in children and adults with ASD relative to
controls (15, 17–19). However, some studies have also found
overactivation in the social brain regions during mentalizing in
children and adults with ASD relative to TD (21–24), typically
concomitant with unimpaired mentalizing task performance.
The present findings could reflect increased processing effort
in ASD to perform mentalizing as well as the TD controls and
ADHD group [e.g., (23, 24)]. Supporting this interpretation
was the positive correlation between rANG activation and the
increased prompts for describing ToM movement in ASD, and
between rANG activation and RT for classifying ToM clips in
TD controls.

Discrepancies of findings were observed across contrasts
(ToM > GD vs. ToM > RD) and analysis types (e.g., whole brain
vs. ROI). Specifically, the ToM > GD contrast, relative to ToM
> RD in whole-brain and ROI analyses, reduced some brain
activation differences to non-significance. Thus, GD motion
seems to evoke temporoparietal activation at intermediate
level between RD and ToM, which could express parametric
modulation of right temporoparietal activation when observing
interaction based on goal pursuit alone compared to interaction
involving the attribution of mental states in others.

Overall, the clinical groups showed a lack of increased FC
during ToM compared to TD controls. The underconnectivity
between rANG and bilateral TPJ/STS in particular seemed in line
with the findings of anterior and posterior TPJ dysconnectivity
between ASD and ADHD during resting state (79). The
right-lateralized local rANG-rTPJ/STS underconnectivity during
ToM is interesting, given the strong evidence of a positive
association between BOLD activation and local FC density
during mentalizing (80). Specifically, the rANG activation in
both ASD groups, with and without ADHD, exhibited opposite
effect to what is expected from a reduced local temporoparietal
connectivity between rANG and rTPJ. This supports the
atypical brain hypothesis [e.g., (21–24, 27)], instead of the
hypo-intentionality hypothesis of ASD (20), which now extends
to the comorbid group.

The lack of increased connectivity in rIFG-PCC during ToM,
was found in ASD and ASD+ADHD but not in ADHD or TD
controls. As well as implicated during mentalizing, the rIFG
is part of the mirroring networks and is implicated in action
processing and social attention. The rIFG is hypothesized as a
gateway into the mentalizing networks (81, 82), which include
the PCC. Thus, the rIFG-PCC underconnectivity may reflect
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FIGURE 4 | (A) Functional connectivity (FC) matrices within each group for theory of mind (ToM), goal-directed (GD), and random (RD) movement among medial

Prefrontal Cortex (mPFC), posterior cingulate cortex (PCC), bilateral angular gyrus (ANG), bilateral inferior frontal gyrus (IFG), and bilateral temporoparietal junction

(TPJ), combined with superior temporal sulcus (STS). Bar graphs of FC for right IFG-PCC (B), mPFC-left TPJ/STS (C), right ANG with left (D), and right TPJ/STS

(E) by group and condition. *G × C represents significant group by condition interaction. Error bars represent 95% confidence interval. TD, typically developing

controls; ASD, autism spectrum disorder; ADHD, attention-deficit/hyperactivity disorder. *p < 0.05 with false-discovery rate multiple comparison correction.

information transmission failures across the two networks (26,
30), which is ASD-differentiating.

Relative to TD controls, ADHD and ASD+ADHD showed
decreasing FC between mPFC and lTPJ with increasing ToM.
Functional coupling between mPFC and the temporal cortices
occurs bilaterally duringmentalizing [e.g., (28, 75, 82, 83)].While
it has not been discussed as much as the rTPJ in the context
of mentalizing, the lTPJ is implicated in explicit ToM in meta-
analytic connectivity modeling (84), and lesions in the region
impaired spontaneous ToM in adults (85, 86). Those specific
subdomains of ToM difficulties could perhaps be investigated
further in ADHD.

The findings of the study should be viewed with its strengths
and limitations. Firstly, the sample size was relatively small,
which may have reduced statistical power to detect small effects
and increased probability of false positives. The inclusion of
young adult males only enhanced the group homogeneity at
the expense of the finding’s generalizability to other population
groups, including female, children, and older adults with the

conditions. The absence of correlations between primary ToM
measures and brain activation and connectivity also constrained
the interpretation of findings. There was limited variance of
task performance across all participant groups, which could have
reflected reduced symptom severity in non-clinically referred
participants (87) or a lack of sensitivity of the simplistic
animated-triangle fMRI task for detecting differences between
groups. Finally, it is also possible that ToM impairments are
present in ADHD in a subtle form that was undetectable by the
animated triangle task. Future studies could investigate clinically
referred participants, using more complex and naturalistic
mentalizing tasks [e.g., (18, 26)].

To summarize, despite evidence of reduced connectivity
in all three clinical groups relative to TD controls during
ToM, a differentially increased activation pattern was found
in both ASD and comorbid groups relative to ADHD in
right temporoparietal cortex, which is a key mentalizing
region. Both ASD and comorbid groups also showed reduced
right inferior frontal and posterior cingulate coupling, which
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may reflect an atypical information transmission to the
mentalizing network. In contrast, both ADHD and comorbid
groups showed decreasing connectivity between medial
prefrontal and left temporoparietal cortices with increasing
ToM when compared to TD controls. These findings denote
a complex pattern of atypical brain function underpinning
mentalizing in these three conditions in young adult males,
with some evidence of ASD- and ADHD-differentiating
features and a combined neurofunctional atypicality in the
comorbid group.
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