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Abstract

PURPOSE: As massively parallel sequencing is increasingly being used for clinical decision-
making, it has become critical to understand parameters that affect sequencing quality and to
establish methods for measuring and reporting clinical sequencing standards. In this report, we
propose a definition for reduced coverage regions and have established a set of standards for
variant calling in clinical sequencing applications.

METHODS: To enable sequencing centers to assess the regions of poor sequencing quality in
their own data, we optimized and used a tool (ExCia) to identify reduced coverage loci within
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genes or regions of particular interest. We used this framework to examine sequencing data from
500 patients generated in ten projects from sequencing centers in the NHGRI/NCI Clinical
Sequencing Exploratory Research (CSER) Consortium.

RESULTS: This approach identified reduced coverage regions in clinically relevant genes,
including known clinically relevant loci that were uniquely missed at individual centers, in
multiple centers, and in all centers.

CONCLUSIONS: This report provides a process roadmap for clinical sequencing centers looking
to perform similar analyses on their data.

Keywords

Sequencing standards; clinical sequencing; exome; genome

INTRODUCTION

Exome and genome sequencing (ES and GS) using massively parallel sequencing (also
known as next generation sequencing, NGS) is increasingly being implemented in clinical
settings®. At present there is the potential for wide variation in sequencing metrics between
institutions, between samples sequenced at the same institution, and even within a single
sample. Thus, as sequencing moves increasingly into the clinical arena, the application of
these methods needs to be accompanied by the development of performance metrics and by
an understanding of potential technical limitations of GS and ES as a clinical test. Indeed,
the misnomers of “whole” exome and “whole” genome sequencing demonstrate that our
field is communicating a confusing message to end-users — neither are truly whole. To this
end, there has been increased focus on clinical sequencing standards, including the
development of professional standards and guidelines for the use of NGS in clinical
laboratories?~’.

Under current recommendations, putative clinically relevant variants identified through NGS
should be validated using Sanger sequencing or other orthogonal methods34, although this
practice has been challenged®8:9. In addition to knowing that positive results are accurate,
clinicians and patients need information to accurately interpret a “negative” clinical
sequencing result. This includes distinguishing when negative findings may be attributable
to incomplete sequencing results. A key contributor to incomplete sequencing is reduced
coverage in regions lacking sufficient high quality aligned bases for variant calling3:19,
Understanding the effects of reduced coverage requires a number of steps, including: a)
setting definitions for “reduced coverage” regions that are not well represented in NGS
results; b) establishing methods for measuring and reporting reduced coverage regions as
part of clinical sequencing quality; and ¢) examining the potential impact of reduced
coverage in the interpretation of clinically relevant regions of the genome.

The Clinical Sequencing Exploratory Research (CSER) Consortium, funded by the National
Human Genome Research Institute and the National Cancer Institute, supports both the
methods development needed to integrate sequencing into the clinic and the ethical, legal,
and psychosocial research required to responsibly apply personal genomic sequence data to
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medical care!l. The CSER Sequencing Standards Working Group (SSWG) worked to
collectively establish a framework for identifying reduced coverage regions in the clinical
sequencing setting. This report provides a summary of, and rationale for, the definitions and
methods used in this framework. As a demonstration we examined clinical sequencing data
on 500 patients generated between 2011 and 2015 from ten CSER centers (eight performing
germline ES and two performing germline GS) and identified reduced coverage regions
within and across projects. To provide clinical context, we examined reduced coverage
regions in an exemplar gene list: 4,656 genes taken from the GeneTests database, a
collection of genes for which a clinical test is available in a diagnostic lab (as of February
2015).

By presenting a framework for identifying reduced coverage bases, this report provides a
process roadmap for other clinical sequencing centers looking to perform similar analyses
on their data. This work summarizes factors, such as capture methods and GC content, that
contribute to reduced coverage. In addition, the demonstrative analysis on 500 samples
identifies regions of clinically relevant genes that appear to be universally difficult to
sequence using lllumina-based sequencing technology. This highlights the importance of
communicating sequencing standards in clinical reports and suggests that orthogonal or
advanced methods may be needed to identify variants in some clinically relevant regions.

METHODS

Sequencing at Each Center

All human subjects provided informed consent to participate in these studies. Institutional
Review Boards at each center approved their respective studies. Data sets analyzed in this
study have been deposited in dbGaP, corresponding to the CSER studies at each center.

Generation of GeneTests Target Files

The February 2015 version of GeneTests, was obtained February 24 2015. Genomic
coordinates for coding exons associated with transcripts of coding genes and genomic
coordinates for all exons associated with non-coding genes were compiled.

Analysis of Reduced Coverage Regions

The Exome Coverage and Identification (ExCI D) Report is a software tool to assess
sequence depth in user-defined regions from read data (BAM file), annotate regions with
gene, transcript and exon information and report intervals below a user-defined coverage
threshold. For this study we consider a base to have reduced coverage if the base is covered
<20X in at least 90% of the samples within each center. EXCID Version 2.1 was used for all
analyses, and is available on GitHub *https://github.com/cbuhay/ExCID’.

Regions of Clinical Interest

We used two curated databases, the May-04-2015 release of ClinVar? and the 2015.1 release
of Human Gene Mutation Database (HGMD)3, to assess if any of these reduced coverage
regions in the GeneTests list contained clinically actionable variants. Variants in each
database were separately intersected with reduced coverage regions identified in GeneTests
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across eight ES centers, across two GS centers and across all ten centers using BEDTools.
We also used the Aug-03-2015 release of Online Mendelian Inheritance in Man (OMIM) to
relate reduced coverage regions identified in GeneTests to clinical phenotypes.

RESULTS

Clinical sequencing cohorts across ten institutions

To compare reduced coverage regions across multiple clinical sequencing projects, we
collected data from ten centers conducting clinical sequencing research projects as part of
the NHGRI CSER consortium. Each center provided sequencing data for a cohort of 50
patient samples sequenced in their respective projects. An overview of the sequencing
approach taken in each project at the time of data collection is shown in Table 1. Eight of the
ten centers used germline ES for their projects, while two centers used germline GS. All ten
projects used Illumina sequencing, though the read length, targets captured, depth of
coverage, and other parameters varied between projects (Table 1). Standard sequencing
metrics for each cohort using these respective approaches is shown in Supplementary Table
1.

An Approach for Identifying Reduced Coverage Regions in Sequencing Data

To identify the reduced coverage regions in these projects, we first needed to establish
definitions for regions that had insufficient coverage for variant calling, and therefore
clinical utility. Although raw coverage counts (the number of reads at any given locus) is
frequently used as a marker for usability, coverage is not the sole determinant of the ability
to call variants. In addition to coverage, the assessment of a region requires base pair level
inspection of the mapping quality (MQ) of the reads placed in this region and base quality
(BQ) of the individual base pairs in each read. Therefore, we established the concept of
usable bases. a high quality base (BQ >20) that comes in a read with high mapping quality
(MQ =20) from a properly paired read. Setting quality thresholds at 20 assures there is a
99% probability that each base in each read are correctly called and uniquely mapped213,
We defined any site (locus) to be well covered if it contains at least 20 usable bases (=20X
coverage with BQ =20 and MQ =20). It is important to note that although raw coverage may
exceed 20X, requiring 20 usable bases increases confidence that most germline variants are
detected1 and that stochastic sequencing errors are not detected as false positive variants!®.
To focus on loci that were consistently unusable across multiple samples at any given
sequencing center, we defined the reduced coverage loci as those that had less than 20 usable
bases in at least 90% of the samples in that center’s cohort.

To identify the reduced coverage loci in any collection of sequencing data, we used a tool
called Exome Coverage and Identification (ExC/D), which assesses sequence depth in user-
defined targeted regions from read data (BAM file), annotates targets with gene, transcript,
and exon information and reports intervals below a user defined coverage threshold. Input
parameters (see Methods) include the input BAM files, the targets to interrogate, and the
definitions of reduced coverage loci (i.e., more than 90% of samples in the cohort with less
than 20x usable base coverage). Targets may be specified to include any regions of particular
interest. The information reported includes coverage metrics and bases covered below the
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coverage threshold for each sample in the cohort, exact bases that are reduced coverage, the
length of the reduced coverage region, gene, transcript and exon information, and percentage
of genes covered greater than the threshold. We further determined the GC content of each
interval, position in the original target and mapability over the reduced coverage regions
using standard approaches (see Methods).

Defining Critical Genes

While these tools could be applied to all sequencing data, a more practical approach might
be to apply these sequencing standards to a list of critical genes for any given clinical
application. Such a list might include the genes of interest in a particular clinical condition
or a set of genes selected for interpretation by a clinical sequencing lab. To demonstrate the
approach of identifying critical regions, we selected an exemplar gene list that might be
representative of the types of genes a clinical sequencing lab would find of interest. For this
exemplar gene list, we used a publicly available curated list of 4,656 genes for which a
clinical test is available in a diagnostic lab, as registered in GeneTests (https://
www.genetests.org) as of February 2015 (Supplementary Table 2).

To examine reduced coverage loci within this gene list, we first needed to convert the list of
gene names to specific genomic coordinates that corresponded to coding regions of interest.
We compiled the coordinates for the coding exons for the canonical isoform of each gene,
using the RefSeq transcript annotated in the Human Gene Mutation Database (HGMD)6
(http://www.hgmd.cf.ac.uk/ac/index.php). The RefSeq and HGMD nomenclatures and
genomic coordinates continued a standard that was already being used at the participating
institutions; it adheres to the nomenclature guidelines in HUGO Gene Nomenclature
Committee (HGNC; http://www.genenames.org/guidelines.html). We chose the CDS
coordinates to include each coding gene. For the GeneTests gene list, the total size of the
target regions was 9 Mbp. Sequencing metrics across the GeneTests genes for each cohort
are shown in Supplementary Table 3.

Reduced Coverage Regions in GeneTests genes across ten centers

Using the ExC/Dtool and the GeneTests list, we surveyed the clinical sequencing data from
each of the ten project cohorts. The goal of this analysis was to determine the reduced
coverage regions—characterized as bases below 20x usable base coverage in 290% of the 50
samples in each cohort—specifically within the GeneTests genes.

The survey of reduced coverage regions in the 4,656 genes in the GeneTests list
demonstrated some variability among the ten projects (Figure 1). The total reduced coverage
bases in each of the ten projects ranged from 107 kb to 817 kb, comprising between 1.2%
and 9.1% of the total coding bases contained within the GeneTests genes (Figure 1A). The
number of reduced coverage exons (defined as exons containing at least one reduced
coverage base) across the projects varied from 1,237 to 6,519, comprising between 1.8% and
9.6% of the total number of exons within the GeneTests list (Figure 1B). There were 533
exons (0.8%) that had reduced coverage at all ten centers. There was wider variation in the
number of reduced coverage genes at each site (defined as genes containing at least one
reduced coverage base), with a range of 526 to 2,816, comprising between 11.3% and 60.5%
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of the 4,656 GeneTests genes (Figure 1C). 146 genes (3.1%) were affected by bases that had
reduced coverage at all centers, totaling up to 66.4 kb (Supplementary Table 4). To test the
robustness of results, we also used the GATK DepthOf Coverage tool on the same data sets,
which yielded similar results (Supplementary Table 5)

This 66.4 kb region that had reduced coverage in all ten centers comprises 0.74% of the
coding bases in the GeneTests lists. These loci represent the regions that had reduced
coverage in 90% of the 50 samples from each of the eight ES projects as well as the two GS
projects. Repeat analyses using 100 samples from nine centers demonstrated similar results,
suggesting that this is not a function of sample size (Supplementary Table 6). Figure 1D
illustrates a pairwise comparison of the centers, demonstrating both the percent overlap and
absolute overlap in reduced coverage regions between any two centers. Greater correlation
was seen between the two GS centers (I and J) and between the ES centers using similar
capture designs.

Amongst the centers performing ES, 201,011 bp had reduced coverage at all eight centers
(Figure 2A). Additional bases with reduced coverage uniquely at each ES center ranged
from 171 bp to 205,293 kb. Figure 2B illustrates the number of bases, complete exons, and
complete genes in the GeneTests list successfully covered at one or more centers using ES.
94% of the genes in GeneTests (4,370) were successfully covered in their entirety by at least
one of the eight ES centers. Only 17% of the genes (814) were completely covered by all
eight centers. 286 genes from GeneTests contained at least one region that had reduced
coverage in all eight ES centers. The specific genes involved in these reduced coverage
regions are listed in Supplementary Table 4. There were different regions that had uniquely
reduced coverage by the ES centers and the GS centers. Of the 201kb that had reduced
coverage by all eight ES centers, 134.7 kb were successfully sequenced in the two GS
centers (Supplementary Figure 1). Conversely, of the 105 kb that had reduced coverage in
both GS centers, 39.4 kb were successfully sequenced in at least one of the exome centers.

To assess potential clinical relevance, these reduced coverage regions were cross referenced
with two curated databases of relationships between genetic variants and clinical
phenotypes, ClinVarl” and HGMD16, The goal of this analysis was to determine if any of
the reduced coverage regions contained any known disease-associated loci. Amongst 30,861
disease-associated variants in the ClinVar database, the reduced coverage bases at each
sequencing center ranged from 93 to 1,323 (Figure 1E). Of the 146 GeneTest genes that had
reduced coverage by all ten centers, 22 genes had a reduced coverage region that overlapped
with a clinical variant in the HGMD or Clinvar databases (Table 2). Similarly, of the 286
GeneTest genes that had reduced coverage by the eight ES centers, 28 genes had a reduced
coverage region that overlapped with a clinical variant in the HGMD or Clinvar databases
(Table 2). Details of the phenotypes associated with these specific clinically relevant
positions can be found in Table 2.

Characteristics of Reduced Coverage Regions and Exons

The reduced coverage bases across all centers were made up of 735 distinct contiguous
intervals. 42% of these intervals (309) had lengths ranging from 1-5 bp (Figure 3A), and
these short fragments were predominantly GC-rich (>70%). The remaining reduced
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coverage intervals ranged in length from 5-490 bp and though they only made up 58% of
the reduced coverage intervals, they accounted for 65.7 kb (97%) of the total bases for the
reduced coverage regions in this analysis. A similar analysis for just the exome centers is
shown in Supplementary Figure 2.

The 4,656 genes in the GeneTests list are made up of 67,759 exons. Of those, 533 exons had
reduced coverage loci at all ten centers. The reduced coverage loci fell into two distinct
groups. In the first group, less than 20% (and most often less than 10%) of the entire exon
had reduced coverage bases. In the second group, most of the exon (>90%) had reduced
coverage (Figure 3B). Exons with missing intervals spanning >90% of the entire coding
sequence had lengths ranging from about 17 bp to over 2,112 bp, with the median length
around 105 bp. 36% (194 of 533) of the problematic exons were in either the first or last
exon of the gene, much higher than expected by chance alone, given that only 17% of the
67,759 exons are either first or last exons (Supplementary Table 7). The GC content also
contributed to a large number of the reduced coverage loci, with 29% of the reduced
coverage regions with a GC content >80%, as compared to 0.15% of the bases in GeneTests
overall. (Figure 3C).

Potential Clinical Implications of Reduced Coverage Regions

One goal of identifying the reduced coverage regions in clinical sequencing data was to
understand the clinical implications of incomplete sequencing of potentially relevant genes.
Several reduced coverage regions were identified that could affect the molecular diagnosis of
patients for a variety of phenotypes (Table 2; Supplementary Table 4). Many of these
appeared to be due to issues with high similarity with other parts of the genome leading to
an inability of reads to be uniquely aligned. For instance, the STRC gene has recently been
revealed to be a major contributor to congenital sensorineural hearing loss; however, single
nucleotide variants and small indels cannot be reliably detected via NGS due to STRC
having 99.6% identity with the coding region of a nearby pseudogenel8-20, Similarly,
current ES and GS approaches have a difficult time detecting pathogenic variants for adult
onset polycystic kidney disease, a disease with a prevalence of 1/400 — 1/1000 and for which
85% of pathogenic variants identified are in PKD1?1. PKD1 is part of a genomic region that
has been duplicated six times on chromosome 16, leading to an inability to accurately map
reads over a large portion of the gene22-24. For both STRC and PKD1, specific targeted
sequencing strategies can be deployed to improve the coverage of these genes to address the
presence of reduced coverage bases resulting from ES or GS.

Other clinically relevant genes that have reduced coverage likely have simpler solutions to
accurately detect variation. SHOX; a gene associated with short stature, is part of the
pseudo-autosomal regions (PAR) that occurs at the ends of both the X and Y chromosome.
Since ES and GS typically align against the default human reference, this region is indicated
as occurring on two different chromosomes (X and Y), thus mimicking a region with high
similarity. Defining this region as its own chromosome (XY) would mitigate the mapability
issues associated with this region.
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DISCUSSION

Massively parallel sequencing data are increasingly being used for clinical decision-making.
In these clinical contexts, it is critical to understand parameters that affect sequencing
quality and to establish methods for measuring and reporting clinical sequencing results. In
addition to knowing that data are accurate, clinicians and patients using clinical sequencing
data need reassurance that the lack of clinically relevant findings are true negatives, and not
due to inconclusive sequencing results. Moreover, it is important for everyone to understand
that no test is 100% sensitive and that clinical decisions need to be made in light of a valid
metric of sensitivity. Coverage metrics are a crucial component of the overall sensitivity of
NGS.

In this report, we have proposed a definition for reduced coverage regions and have
established a set of standards for variant calling in clinical sequencing applications. To
enable sequencing centers to assess the regions of poor sequencing quality in their own data,
we optimized a tool, ExC/D (now publically available for use), which provides a list of
reduced coverage loci within genes or regions of particular interest. To demonstrate an
approach for examining reduced coverage regions in clinical sequencing data, we used these
tools on clinical data generated in ten projects from different sequencing centers. This
approach identified reduced coverage regions in clinically relevant genes, including known
clinically relevant loci that were uniquely missed at individual centers, in multiple centers,
or in all centers.

Comparing the reduced coverage regions across the various centers allowed categorization
of the problematic regions and suggests possible solutions to improve standards. Reduced
coverage regions that were unique to an individual center conducting ES were likely due to
specific methodology at that center (Table 1). Choices about capture method, mean target
coverage, or analysis pipeline may account for differences between centers. Since these
parameters can be changed, regions that have reduced coverage only at a particular center
can likely be salvaged by modifying the sequencing approach. For example, deeper
sequencing is likely to reduce the number of reduced coverage regions that are unique to any
single center (Supplementary Figure 3).

In contrast, loci that had reduced coverage in all or most of the ES centers but not by GS
were likely due to difficulty with hybridization capture of the region. This might include
difficulty generating appropriate baits for the relevant regions or difficulty with capture
itself. Alternative bait design or orthogonal methods for sequencing these regions might help
salvage these specific regions. Finally, there were certain regions in the genome that had
reduced coverage at all ten centers, regardless of sequencing strategy. Although the total
number of regions in this category were few, they did contain some potentially clinically
relevant sites (Table 2). While it may be difficult to develop additional methods to salvage
these regions, it is important for clinical sequencing centers to note the inability to provide
conclusive sequencing information about these regions, especially those that may have
clinical implications.
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Centers conducting clinical sequencing can use the tools and approach described in this
study to analyze their own clinical sequencing data, which may be particularly important for
clinical laboratories conducting test validation. Once a list of genes or regions of interest
have been identified, these can be converted to a list of coordinates (see Methods). Using
these coordinates and a collection of representative sequencing data, centers can run ExC/D
on this data to identify those regions that have reduced coverage in 90% of the samples. By
comparing these reduced coverage regions to the data presented in this study, centers may be
able to better understand the reasons for poor coverage in their own data and develop
potential salvage approaches, as detailed above.

While this study provides a generalized approach for analyzing clinical sequencing data for
reduced coverage regions, there are a number of caveats. First, the data from each center
represented specific cohorts from each project. These were intended to be exemplars to
demonstrate the approach to analyzing data at an individual center and between multiple
centers; they do not represent a comprehensive survey of human sequencing data. Second,
although eight centers using ES data were represented, only two of our centers used GS data.
Therefore, conclusions regarding the differences between GS and ES must be considered
with that limitation in mind. Third, this analysis assumes that centers are performing
germline sequencing to find heterozygous SNPs. For labs seeking to identify variants with a
lower allelic fraction (for example, cases of germline mosaicism or somatic mutations),
additional considerations will be relevant and standards proposed here are unlikely to be
sufficient. Finally, all ten centers used Illumina-based sequencing approaches. At present,
there are several other platforms available for clinical sequencing, which may provide
different results. Moreover, the rapid evolution of platforms suggests that the specific data
here may not be exactly reproduced using the most current technologies. Indeed, the
technology used at most of the centers in this study has already evolved since the generation
of data for this study. Nevertheless, though the data on reduced coverage regions at ten
centers may not be representative of the breadth of technologies used today, the approach to
analyzing reduced coverage regions remains platform agnostic, and can be applied to any
clinical sequencing data.

When communicating results to clinicians and patients, sequencing centers need to be able
to recognize and address reduced coverage regions. The tools and framework defined in this
study can provide information about regions that have systematically reduced coverage at
the center, and regions that have reduced coverage in any individual sample, which may also
include additional regions that have sporadically reduced coverage. Both are important for
quality control and communication of clinical sequencing data test results. It is important for
centers to understand systematic reduced coverage regions to understand limitations of their
clinical sequencing testing, and, when appropriate, to modify approaches to improve
sequencing quality. At the individual level, regions that have reduced coverage in any
particular sample may have direct clinical implications. Therefore, it is important that these
regions be accurately communicated to the clinicians using the reports, so that they can
correctly factor this into their decision-making. Communicating clinical sequencing data to
clinicians and patients remains challenging, and including issues of sequencing standards
adds further complexity to this—but is important. Further research into specific approaches
to documenting and communicating these standards will be required.
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Figure 1. Reduced coverageregionsin the GeneTests List.
(A) Comparison of reduced coverage bases among all centers. (B) Comparison of GeneTests

exons affected by the reduced coverage bases among all centers. (C) Comparison of
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GeneTests exons affected by the reduced coverage bases among all centers. (D) Pairwise

comparisons of reduced coverage regions between any two centers. Absolute values

represent the reduced coverage bases common to two centers. Percentages represent the
overlap in reduced coverage bases between two centers as compared to the union of reduced
coverage bases at the two centers. High correlation existed between the two GS centers (I
and J) and among the ES centers using same capture design. (E) Disease-associated ClinVar
variants overlapping the reduced coverage bases in each center.
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Figure 2. Reduced coverage basesin GeneTests.

(A) Comparison of reduced coverage regions among eight ES centers. (B) The percent of
total bases, total whole exons, and total whole genes amongst the 4,656 GeneTests list
successfully covered at one or more centers. To be included, every base in an exon or gene
must have been a usable base (coverage =20X, mapping quality =20, base quality =20).
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Figure 3. Analysis of Reduced Coverage Regions common to all Centers
(A) Overall, there were 735 missing intervals totaling 66.4 Kbp in the intersection of exome

and genome centers. Forty-two percent of all missing intervals had lengths that were 5 bp or
shorter. The remainder of missing intervals lengths ranged widely and occured with less

frequency, but they accounted for 65.7 Kbp or 97.7% of the total length of all missing

Page 18

intervals combined. (B) Of the >67K exons accounting for 4,656 genes in GeneTests, 533
had reduced coverage regions. These regions fell into two distinct groups—either a small
part (<20%, with the vast majority less than 10%) of the entire exon had reduced coverage,
or most of an exon (>90%) had reduced coverage. (C) Comparison of GC% distribution

between the GeneTests baseline and the reduced coverage regions in all centers.
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Table 2

Genes containing reduced coverage bases found in all ten centers or all eight ES centers that overlap with
known disease-associated variants in ClinVar or HGMD.

Geneswith  Geneswith
at least one  at least one Clinvar or
reduced reduced HGMD
coverage coverage variant .
Genes base base overlapping Present in OMIM OMIM phenotype
commonto  common to with reduced
all ten all eight ES  coverage bases
centers centers
ACAN v v v v Spondyloepiphyseal dysplasia, Kimberley type,
608361 (3); Spondyloepimetaphyseal dysplasia,
aggrecan type, 612813 (3); Osteochondritis
dissecans, short stature, and early-onset
osteoarthritis, 165800 (3)
ARX v v v v Epileptic encephalopathy, early infantile, 1, 308350
(3); Lissencephaly, X-linked 2, 300215 (3); Mental
retardation, X-linked 29 and others, 300419 (3);
Proud syndrome, 300004 (3); Partington syndrome,
309510 (3); Hydranencephaly with abnormal
genitalia, 300215 (3)
B3GALT6 v v v v Spondyloepimetaphyseal dysplasia with joint laxity,
type 1, with or without fractures, 271640 (3); Ehlers-
Danlos syndrome, progeroid type, 2, 615349 (3)
CFC1 v v v v Heterotaxy, visceral, 2, autosomal, 605376 (3);
Double-outlet right ventricle, 217095 (3);
Transposition of the great arteries, dextro-looped 2,
613853 (3)
COL5A1 v No Reported Phenotype
CR1 v v v CR1 deficiency (1); {?SLE susceptibility} (1);
[Blood group, Knops system], 607486 (3); {Malaria,
severe, resistance to}, 611162 (3)
CTF1 No Reported Phenotype
EVC v Ellis-van Creveld syndrome, 225500 (3); Weyers
acrodental dysostosis, 193530 (3)
GALNT12 v v {Colorectal cancer, susceptibility to, 1}, 608812 (3)
HBA2 v Thalassemia, alpha-, 604131 (3); Heinz body anemia,
140700 (3); Erythrocytosis (3); Hypochromic
microcytic anemia (3); Hemoglobin H disease,
nondeletional, 613978 (3)
HSD11B2 v No Reported Phenotype
IKBKG v v v Incontinentia pigmenti, 308300 (3); Ectodermal
dysplasia, hypohidrotic, with immune deficiency,
300291 (3); Ectodermal, dysplasia, anhidrotic,
lymphedema and immunodeficiency, 300301 (3);
Immunodeficiency, isolated, 300584 (3);
Immunodeficiency 33, 300636 (3); Invasive
pneumococcal disease, recurrent isolated, 2, 300640
KCNQ1 v No Reported Phenotype
LRP5 v v v v Osteoporosis-pseudoglioma syndrome, 259770 (3);

[Bone mineral density variability 1], 601884 (3);
Hyperostosis, endosteal, 144750 (3); van Buchem
disease, type 2, 607636 (3); Osteosclerosis, 144750
(3); {Osteoporosis}, 166710 (3); Exudative
vitreoretinopathy 4, 601813 (3); Osteopetrosis,
autosomal dominant 1, 607634 (3)
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Geneswith  Geneswith
at least one  at least one Clinvar or

reduced reduced HGMD

coverage coverage variant .

Genes base base overlapping Present in OMIM OMIM phenotype
commonto  common to with reduced
all ten all eight ES  coverage bases

centers centers

MNX1 v v v Currarino syndrome, 176450 (3)

NAGLU v No Reported Phenotype

OPN1LW v v v Colorblindness, protan, 303900 (3); Blue cone
monochromacy, 303700 (3)

OPNIMW v v v v Colorblindness, deutan, 303800 (3); Blue cone
monochromacy, 303700 (3)

OPNIMW2 v v v No Reported Phenotype

PKD1 v v v Polycystic kidney disease, adult type 1, 173900 (3)

RPS17 v v v Diamond-Blackfan anemia 4, 612527 (3)

SEPN1 v v v Muscular dystrophy, rigid spine, 1, 602771 (3);
Myopathy, congenital, with fiber-type disproportion,
255310 (3)

SGCB No Reported Phenotype

SHOX v v Short stature, idiopathic familial, 300582 (3); Leri-
Weill dyschondrosteosis, 127300 (3); Langer
mesomelic dysplasia, 249700 (3)

SMN1 v v v v Spinal muscular atrophy-1, 253300 (3); Spinal
muscular atrophy-2, 253550 (3); Spinal muscular
atrophy-3, 253400 (3); Spinal muscular atrophy-4,
271150 (3)

SMN2 v v v v {Spinal muscular atrophy, type 111, modifier of},
253400 (3)

STRC v v Deafness, autosomal recessive 16, 603720 (3)

TNFRSF11A No Reported Phenotype
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