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Abstract: Foodborne disease is an important source of expense, morbidity, and mortality for 

society. Detection and control constitute significant components of the overall management 

of foodborne bacterial pathogens, and this review focuses on the use of nanosized biological 

entities and molecules to achieve these goals. There is an emphasis on the use of organisms 

called bacteriophages (phages: viruses that infect bacteria), which are increasingly being used 

in pathogen detection and biocontrol applications. Detection of pathogens in foods by con-

ventional techniques is time-consuming and expensive, although it can also be sensitive and 

accurate. Nanobiotechnology is being used to decrease detection times and cost through the 

development of biosensors, exploiting specific cell-recognition properties of antibodies and 

phage proteins. Although sensitivity per test can be excellent (eg, the detection of one cell), 

the very small volumes tested mean that sensitivity per sample is less compelling. An ideal 

detection method needs to be inexpensive, sensitive, and accurate, but no approach yet achieves 

all three. For nanobiotechnology to displace existing methods (culture-based, antibody-based 

rapid methods, or those that detect amplified nucleic acid) it will need to focus on improving 

sensitivity. Although manufactured nonbiological nanoparticles have been used to kill bacterial 

cells, nanosized organisms called phages are increasingly finding favor in food safety applica-

tions. Phages are amenable to protein and nucleic acid labeling, and can be very specific, and 

the typical large “burst size” resulting from phage amplification can be harnessed to produce 

a rapid increase in signal to facilitate detection. There are now several commercially available 

phages for pathogen control, and many reports in the literature demonstrate efficacy against a 

number of foodborne pathogens on diverse foods. As a method for control of pathogens, nano-

biotechnology is therefore flourishing.
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Introduction
The impact of foodborne disease is a significant economic and clinical issue, despite 

recent advances in food safety. In clinical terms, the number of cases per year in the US 

has been estimated at 9.4 million, with 55,961 hospitalizations and 1,351 deaths.1 The 

annual consequent cost of foodborne illness is $51 billion to $77.7 billion, depending 

on the model used. Reducing the occurrence of foodborne illness through the use of 

rapid, cost-effective detection procedures and new ways to control pathogens is the 

focus of much current research.

Nanobiotechnology can be defined as the intersection of nanotechnology and bio-

technology. This concise review article considers nanobiotechnological detection of, 

and interventions to control, bacterial foodborne pathogens. We have chosen to focus 
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on nanostructures that either incorporate biological elements 

or are entirely biological in origin, and particularly on 

applications of bacteriophages (phages).2 We have excluded 

nonbiological materials such as silver nanoparticles that are 

used to kill pathogens and have been reviewed elsewhere.3 

We also acknowledge that many examples and applications 

have been omitted from this review because of space limita-

tions, and readers are referred to the many excellent recent 

reviews that are available.

Detection of bacterial pathogens
In an ideal world it would be desirable to detect even a single 

pathogen present on/in a food sample. Current “traditional” 

culture-based methods tend to use an enrichment step in which 

low numbers of target cells are encouraged to multiply to 

detectable numbers. Enrichment also ensures that any bacteria 

detected are alive. This approach allows a theoretical detection 

limit of 0.04 cell/g (ie, one cell in 25 g, a normal analytical 

weight). However, enrichment typically adds 1–2 days to the 

total analysis time. When enrichment is not used, it is usual for 

a food sample to be diluted one in ten prior to analysis, thus also 

reducing the cell concentration available for detection tenfold 

(eg, ten cells/g of food become one cell/mL in the diluent).

It is imperative to have methods that are able to detect 

low concentrations of pathogens, as it can sometimes take 

only a few cells in a food to cause disease (Table 1). Another 

factor to be considered is the accuracy of testing methods, 

as judged by the proportion of false positive and false nega-

tive results. For a method to be adopted widely it is usual 

for it to receive official validation. An example of this is a 

“performance-tested method” by AOAC Research Institute  

(http://goo.gl/413U6y). Receiving such validation endorses 

all the performance parameters of the test.

For nanobiotechnology to offer improvements over 

traditional methods it will need to allow the detection of 

pathogens faster, less expensively, and/or more accurately 

than existing methods. Ideally, it should be sufficiently 

sensitive to eliminate the need for enrichment, though 

probably requiring enhanced sample preparation methods. 

This need has been addressed in some papers. For example, 

pathogens have been detected at 20–50 colony-forming units 

(CFU)/mL within 2 hours without enrichment10 by prior con-

centration of bacteria in food rinses using immunomagnetic 

separation (IMS).

Assessment of methods cited  
in literature
Pathogen detection methods using nanobiotechnology that 

are cited in the literature need to be examined from the 

perspective of what they bring to a crowded rapid methods 

diagnostics market. For example, one study reports the 

detection of three pathogens at 400–800 cells/mL.11 For 

the suggested application in testing milk, this assay is too 

insensitive to be used without enrichment, so the associated 

improved test speed is largely negated.

Currently, there are rapid pathogen detection kits available 

that use antibodies to capture pathogens, and many of these 

produce a qualitative visual signal (eg, lateral flow devices) 

or a colored enzymatic reaction-derived product that can be 

measured by spectrophotometry (eg, enzyme-linked immuno-

sorbent assay). In general, low-sensitivity methods are appli-

cable only to detecting pathogens in enrichments. There are 

also many methods available that are based on the detection of 

amplified segments of nucleic acid (polymerase chain reaction 

[PCR]), which can be sensitive, rapid, and specific.

Quantum dots, nanobeads,  
and nanorods
There has been considerable research into the use of nano-

sized quantum dots (QDs) to detect foodborne pathogens. 

These semiconductor nanocrystals have been used as fluoro-

phores for cellular imaging, as they possess superior proper-

ties to conventional fluorophores. QDs have been coupled 

with specific antibodies to facilitate detection of organ-

isms, including the parasites Cryptosporidium parvum and 

Giardia lamblia12 and the bacteria Mycobacterium bovis,13 

Escherichia coli O157:H7,14,15 Listeria monocytogenes,10 

Salmonella,16 and Shigella.16 Indeed, a modified cellphone 

has been used as a detection system for E. coli.17 Toxins, 

including shiga-like toxin, cholera toxin, and ricin, have been 

detected using a QD protocol.18

Table 1 Examples of low concentrations of foodborne pathogens 
in foods associated with disease outbreaks

Pathogen Food Concentration Reference

Campylobacter Raw beef liver 3.6 MPN/g 4
Escherichia coli 
O157:H7

Raw beef liver 
Frozen burger  
patties

0.04–0.18 CFU/g 
1.45 MPN/g

4 
4

Listeria  
monocytogenes

Hard cheese 

Frankfurters

Approximately  
20 CFU/g 
,0.03 MPN/g

5 

6
Salmonella Paprika-flavoured 

chips 
Flour 
Tahini products

0.04–0.45 CFU/g 

0.003–0.02 CFU/g 
,0.03–0.46 MPN/g

7 

8 
9

Note: Both MPN and CFU are loosely equivalent to the number of cells present.
Abbreviations: CFU, colony forming units; MPN, most probable number.
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The limit of detection of these QD methods is reported 

to be ∼103–104 organisms/mL,13 depending on the detection 

method used, although a limit of five to ten organisms/mL has 

also been claimed.17 If an enrichment is used, the detection 

limit can be reduced to ten organisms/mL,14 but this also 

increases the test time.

Carboxylated magnetic nanobeads (diameter 180 nm) 

coated with antibodies have been used to detect Salmonella 

typhimurium, E. coli O157:H7, and L. monocytogenes in 

foods by multiplex PCR, but the detection limit, approaching 

104 CFU/mL, means that enrichment of the food would be 

needed for practical application.19 Silicon nanorods onto 

which antibodies were attached have also been used to detect 

Salmonella,20 although fluorescence microscopy, a low 

throughput detection method, was used to detect the labeled 

cells. The limit of detection was not reported.

Antibody- and nucleic acid-based 
biosensors
Biosensors make use of antibodies or phage components (see 

Phage-based nanobiotechnological detection methods) that 

have specific recognition elements for pathogenic microbes. 

When the microbe is captured by the recognition element, 

a measurable response occurs. In these systems the antibody 

is attached to a suitable matrix in close proximity to a trans-

ducer, which can be optical, electrochemical, piezoelectric, 

or thermometric21 and which produces a measurable signal. 

Although biosensors may offer the prospect of near to real-

time detection, they currently lack the sensitivity to be used 

without an initial enrichment (see Narsaiah et al),21 although 

they could be applied to some pathogens, such as Staphy-

lococcus aureus, for which there is tolerance of moderate 

concentrations in some foods. As a specific example, a detec-

tion system for L. monocytogenes could detect a single cell,22 

but the sample volume was only 4 µL, giving a theoretical 

detection limit in the food of 500 CFU/g, given the 50:50 

sample dilution used. Although these systems can offer reuse 

of the biosensor,23 unlike lateral flow devices, the equipment 

requires significant capital outlay.

Biosensors may also use nucleic acid hybridization as a 

means of detecting bacteria. A recently described detection 

system for S. typhimurium used both carbon nanotubes and 

nanoparticles as components in an assay, detecting down to 

1.5×102 CFU/mL of the pathogen in milk.24

The use of antibodies as a recognition/capture element 

of bacteria has been quite well described, so here we focus 

on the application of phage subcomponents for the same 

purpose.

Phage-based nanobiotechnological  
detection methods
Phages are naturally occurring nanosized killers of bacteria.25 

The smallest group are icosohedra (diameter 27 nm), but 

they can be up to 2,400 nm long in other groups.26 Phages 

are environmentally common and are the most numerous 

biological entities on the planet.27 Their high specificity 

and lethal effect, and the relative ease of engineering their 

genomes and structures lend them to nanobiotechnological 

applications for food safety.

Rapid detection techniques have been developed using the 

bactericidal and specificity properties of free phage particles. 

Impedance–conductance methods have been combined 

with phages for the rapid detection of E. coli O157:H728 

and Salmonella.29 Selective enrichments are performed and 

electrical properties of the media monitored for changes 

resulting from metabolism of substrates by target bacteria. 

The added phages retard the growth of the target bacterium, 

resulting in a characteristic change in electrical profile of 

the medium, so enabling rapid identification. These methods 

may be prone to false negative results and require careful 

tuning of conditions.

In a novel alternative technique,30 the sample containing 

target bacteria was first inoculated with a low concentration 

of phages for a short time (2 hours) to enable at least one 

phage replication cycle (Figure 1). Bacterial “helper cells” 

known to be susceptible to the phage were then added to 

the sample to amplify phage numbers during another short 

1-hour to 2-hour incubation. The ratio of intact to damaged 

helper cells was measured by Live/Dead staining, enabling 

the calculation of the original number of cells present in the 

4

5

Phage
Bacterial cell

2

3

1

Figure 1 The life-cycle of a lytic phage (not to scale). 1: The phage irreversibly binds 
with the bacterial cell, 2: nucleic acid from the phage enters the cell, 3: the phage 
“hijacks” the cell and produces more copies of its own nucleic acid, 4: many progeny 
phages are produced within the intact cells, 5: phage-encoded enzymes cause the cell 
wall to break down and the cell bursts, releasing the progeny phages.
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sample. The authors were able to detect 100 CFU/mL of 

Pseudomonas aeruginosa using this method.

The detection of progeny phages following infection of 

bacteria during enrichment is also an approach for rapid bac-

terial detection. Such assays have been used in vitro for the 

detection of Pseudomonas and Salmonella, with sensitivities 

of 40 CFU/mL and 600 CFU/mL, respectively, in 4 hours.31 

A commercial assay for the detection of Mycobacterium 

avium subspecies paratuberculosis in milk is under develop-

ment using this technique and is currently able to determine 

presence/absence within 48 hours32 (which is rapid for this 

slow-growing microorganism). Amplification assays have also 

been combined with mass spectrometry where phage proteins 

are the target for bacterial identification and detection. This 

approach has been demonstrated for the detection of E. coli 

and Salmonella,33 and for S. aureus,34 though improvements in 

the sensitivity would be required for commercial use.

A number of methods have been proposed for the detec-

tion of bacteria by phages that involve modification of the 

phage DNA or capsid (head) protein. The phage genome 

is relatively amenable to genetic engineering, and this 

has allowed the insertion of a number of reporter genes, 

facilitating rapid detection of bacteria. In these systems 

(summarized in Table 2), the engineered gene is expressed 

soon after bacterial infection, which enables both specific 

and rapid detection compared with conventional techniques. 

The sensitivity of these methods is good (eg, 1 CFU/mL with 

6 hours’ enrichment),35 but a potential limitation is the need 

for phages with the correct specificity. Rather than detecting 

the expression of a gene in the target bacterium, an alternative 

is direct fluorescent DNA staining or phage capsid labeling. 

These techniques are flexible, in that the fluorescent signal 

can be detected by flow cytometry, multiwell plate readers, 

or direct microscopy. Goodridge et al45 described the use of 

IMS combined with fluorescent staining of a phage to detect 

2.2 CFU/g E. coli O157:H7 in ground beef following a 6-hour 

enrichment and 10–100 CFU/mL E. coli O157:H7 in raw 

milk after 10 hours’ enrichment. The capsid of E. coli phage 

T7 has been labeled with QDs by conjugation with biotin,46 

and the approach was able to detect as few as 20 CFU/mL  

E. coli in a water sample within 1 hour, compared with 

24 hours with conventional techniques.

Immobilized phage-based devices
The immobilization of phages onto surfaces for pathogen 

detection has several advantages over using free particles, 

particularly by allowing the possibility of incorporating 

phages into high-throughput or hand-held devices. Phages 

have been used in a magnetoelastic biosensor to detect 

Salmonella on the surfaces of watermelons,47 tomatoes,48 

and egg shells49 and in milk.50 The phages are coated onto 

the biosensor chip, and when Salmonella cells bind to the 

phages the mass of the biosensor increases. The change in 

mass and resultant decrease in resonance were measured 

when a surface-scanning coil detector was passed within 

close proximity. This technique raises the possibility of 

immobilizing sensors in food packaging that could then be 

checked for the presence of a pathogen by passing a detector 

across the product. The current limitation is the relative lack 

of sensitivity (limit of detection 150 CFU/mm2) compared 

with conventional methods.

Surface plasmon resonance (SPR) is a method that has 

been harnessed to detect pathogens using gold immobi-

lized phages. SPR is an optical technique that involves 

measuring small changes in the refractive index at the 

boundary of two media when illuminated by polarized 

light. Like magnetoelastic sensors, this technique promises 

rapid, label-free detection of pathogens, but more work is 

required to improve sensitivity. Phage-based SPR biosensors 

have been used in vitro for the detection of E. coli K12,51 

E. coli O157:H7,52 and S. aureus,52,53 with detection limits 

of ∼1,000 CFU/mL in 20 minutes.

Laube et al54 described a phage-based detection method 

for Salmonella where a phage was coated onto paramagnetic 

beads. The beads were used to capture and concentrate 

Salmonella from milk samples, with or without enrichment, 

and the bacteria were detected using peroxidase conjugated 

to Salmonella-specific antibodies. Limits of detection were 

19 CFU/mL with no enrichment (assay time 2.5 hours) and 

1.4 CFU/mL with brief enrichment (assay time 6 hours), 

which are comparable with existing methods taking 

24 hours.

Table 2 Reporter genes used in phage detection of foodborne 
pathogens

Reporter gene Target Reference

lux (luciferase) Listeria spp. 36
lux Escherichia coli O157:H7 37
lux Salmonella enterica 38
lux Staphylococcus aureus 39
lux/luxIR (quorum sensing) E. coli O157:H7 35
inaW (ice nucleation) Salmonella 40
celB (β-glycosidase) Listeria spp. 41

lacZ (β-galactosidase) E. coli O157:H7 42
gfp (green fluorescent  
protein)

E. coli 43

ccp (cytochrome c  
peroxidase)

E. coli 44
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One limitation of immobilized phage biosensors is the 

potential for false negative results arising from the failure to 

detect injured or viable but not culturable cells. Fernandes 

et al55 offer a possible solution to this with the use of a lytic 

phage bound to a magnetoresistive biochip and antibody-

coated nanoparticles for detection. Lytic phages are usually 

not favored for biosensors, as they destroy the cell before it 

can be detected, but here the authors used physiological con-

ditions enabling cells to survive long enough to be detected. 

They were able to detect injured cells using the biosensor.

One of the main challenges in the development of nano-

biosensors using intact phage particles is to immobilize them 

at a sufficiently high density. An approach to circumvent this 

is to use phage-encoded proteins that have high affinity for 

the bacterial cell wall, either receptor proteins from phage tail 

fibers or the cell-binding domains (CBDs) from endolysins 

(for Gram-positive bacteria only). The receptor-binding pro-

tein from a Campylobacter phage has been immobilized and 

used with SPR to detect as few as 100 CFU/mL.56 Technology 

based on this principle has been developed by Hyglos GmbH 

(Bernried am Starnberger See, Germany) and licensed to bio-

Mérieux (Craponne, France) for use in its VIDAS® detection 

systems for E. coli O157:H7, Salmonella, and Listeria.

Walcher et  al57 immobilized the CBD from a Listeria 

phage endolysin onto paramagnetic beads and combined this 

with real-time PCR to develop a rapid method for detecting 

Listeria. They were able to recover 10–100 CFU/mL List-

eria from raw milk spiked with each of five isolates tested. 

The same group also successfully immobilized a Listeria 

endolysin CBD on a gold screen-printed electrode for detec-

tion by electrochemical impedance spectroscopy, but sensitiv-

ity is currently ten- to 100-fold poorer.58

Control in food production  
and distribution
Phage-based control
Intuitively, it is clear that testing of food alone cannot be relied 

upon to assure food safety, and there is a need to inactivate 

(control) any pathogens that are present before distribution 

to the consumer. Phage-based pathogen control offers an 

attractive proposition for control purposes, as phages are 

naturally present in food, and there is accumulating evidence 

that they are both safe and effective.

For meat it would be optimal to intervene at the pre-

harvest stage, as bacteria are spread to carcasses via direct 

or indirect cross-contamination from feces on the hide 

in ruminant animal processing,59 from feathers during 

mechanical plucking of poultry,60 and from the digestive 

tract of seafood during processing.61 Supporting this premise, 

modeling of preslaughter intervention strategies, such as 

the use of phages to reduce shedding of E. coli O157:H7 

in cattle feces, had the largest positive impact on carcass 

contamination.62

Preharvest interventions using phage biocontrol have 

been trialed for a number of food animals, the most notable 

being applications for poultry. Bardina et al63 were able to 

reduce concentrations of Salmonella in chicken ceca by 

4.4 log
10

 CFU/g in 2 days and up to 2 log
10

 CFU/g, compared 

with controls, at 8 days (end of experiment) following oral 

administration of phages. In a similar trial, Wong et  al64 

achieved a 2.9 log
10

 CFU/mL reduction in bacterial concentra-

tions after 6 hours, with Salmonella becoming undetectable 

in the cecum at 24 hours. A novel approach taken by Waseh 

et al65 was to purify the receptor (tail-spike) protein from a 

phage and feed it to chickens, attaining a 1–2 log
10

 CFU/mL 

reduction in Salmonella concentration in chicken ceca.

Campylobacter is a significant food safety issue for the 

poultry industry,66 and there have been several promising 

recent trials using phages to control Campylobacter in 

chickens. A study performed in three commercial broiler 

houses by Kittler et al67 showed that one of three experimental 

groups exhibited a significant reduction in Campylobacter 

concentration of 3.2 log
10

 CFU/g cecal contents at 

slaughter. However, there was no difference in the other two 

groups. Carvalho et al68 achieved a 2 log
10

 CFU/g reduction 

in fecal Campylobacter concentration using oral gavage to 

deliver phages, but this was increased by 0.5 log
10

 when the 

phages were delivered in feed.

Shiga toxigenic E. coli O157:H7 is a potentially fatal 

foodborne pathogen, and its primary reservoirs are cattle and 

other ruminants.69 Phage-based preharvest interventions for 

ruminants have been studied extensively with mixed results, 

and several studies report small or insignificant effects. 

Nevertheless, a single oral administration of phages reduced 

E. coli O157:H7 in the gastrointestinal tract of sheep by up 

to 4 log
10

,70 and a multidose phage protocol reduced fecal 

shedding of E. coli O157:H7 in cattle by 1 log
10

 CFU/g for 

up to 72 days.71

OmniLytics, Inc. (Sandy, UT, USA) (http://www.

omnilytics.com) has taken a different approach and produced 

a phage-based hide wash for cattle, Finalyse™ (marketed by 

Elanco, Greenfield, IN, USA), to control E. coli O157:H7. 

It appears to be widely used in the US, although indepen-

dent verification of its efficacy is lacking. A study of the 

application of phages to cattle hides72 demonstrated that up 

to 1.5 log
10

 CFU/cm2 reduction in E. coli O157:H7 could be 
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achieved on detached hides 1 hour post-treatment. Clearly, 

there appears to be promise in the use of phages for hide 

decontamination, but techniques to control the pathogen 

within the gastrointestinal tract will require some further 

development.

For economic and public health reasons, control of 

Vibrio spp. is important in aquaculture. Phage biocontrol 

of V. vulnificus in live shucked oysters achieved up to 

5 log
10

 CFU reductions in pooled tissue using a nine-phage 

cocktail.73 Subsequently, the same cocktail was evalu-

ated in vitro for the control of V. vulnificus either alone or 

with oyster extract.74 Over 24 hours, the phage cocktail 

reduced the concentration of V. vulnificus from 6 log
10

 to 

3 CFU/mL at 4°C, and the addition of oyster extract had a 

small additive effect. Phages may therefore have potential 

as a biodepuration treatment for V. vulnificus in oysters and 

other shellfish.

The easiest and most common application of phages 

for food safety purposes is to add them directly to foods 

during processing, and some phage products are now 

available commercially. Listex™ (P100), produced and 

marketed by Micreos BV (Wageningen, the Netherlands)  

(http://www.micreos.com), targets L. monocytogenes, 

and its efficacy has been demonstrated for several foods 

(Table 3). Intralytix Inc. (Baltimore, MD, USA) (http://

www.intralytix.com) markets a range of similar phage 

products, including ListShield™, EcoShield™ (formerly 

ECP-100), and SalmoFresh™.

Beyond commercial products, phages have proven to be 

effective for pathogen biocontrol in a wide range of foods, 

including meat, dairy, fruit, and produce, and against most 

of the significant foodborne pathogens (Table 3). Other ways 

of harnessing phages to control pathogens include using 

inactivated particles, immobilizing particles on packaging, 

or immobilizing phage-encoded lytic proteins (endolysins). 

Hudson et al100 produced inactive (nonreplicating) phage par-

ticles that retained the ability to kill E. coli on meat. The use 

of inactive phage particles may have advantages for perceived 

safety or regulatory classification purposes.

Phages have been successfully immobilized onto a 

cellulose substrate101 and could control Listeria and E. coli 

O157:H7 on raw and ready-to-eat meat under different storage 

temperatures and food packaging conditions. A reduction in 

Listeria concentration of up to 4 log
10

 CFU/g and in E. coli 

O157:H7 of up to 1.2 log
10

 CFU/g was achieved. It has been 

reported that a variety of phages can be immobilized on 

silica particles102 and incorporated into electrospun fibres,103 

both of which are potential applications in food packaging. 

Solanki et al104 immobilized phage endolysins on both silica 

and starch nanoparticles, and reductions of 4.0 log
10

 CFU/g 

and 1.2 log
10

 CFU/g Listeria, respectively, were recorded 

on iceberg lettuce. These nanoparticles may also be able 

to be incorporated onto the surfaces of equipment and into 

the infrastructure of food processing premises, in order to 

minimize cross-contamination.

Table 3 Examples of phage biocontrol of foodborne pathogens

Food Phage(s) Log10 reduction 
(CFU/mL or g)

Reference

Listeria monocytogenes
 � Melon slices 

Pear slices 
Sausage 
Catfish 
Salmon 
Queso fresco  
cheese 
Cheese 
Hot dogs 
Ham 
Chicken roll

Listex P100 
Listex P100 
Listex P100 
Listex P100 
Listex P100 
Listex P100 

Listex P100 
Listex P100 
Listex P100 
FWLLm1

1.5 (per slice) 
1.0 (per slice) 
2.5 
1.4–2.3 
1.8–3.5 
3.5 (per cm2) 

3.5 (per cm2) 
3.0 
1.0 
2.5 (per cm2)

75 
75 
76 
77 
78 
79 

80 
81 
82 
83

Escherichia coli O157:H7
 � Beef (raw) 

Beef (raw) 
Beef (cooked) 
Beef (raw) 
Lettuce 
Spinach 
Lettuce 
Cantaloupe 
Lettuce 
Broccoli 
Tomatoes 
Spinach 
Beef (ground)

FAHEc1 
FAHEc1 
FAHEc1 
EcoShield™ 
EcoShield™ 
8 phages 
8 phages 
ECP-100 
ECP-100 
ECP-100 
ECP-100 
ECP-100 
ECP-100

2.6 (per 4 cm2) 
3.8 
4.6 
2.6 
1.3 
3.5 
3.8 
3.1 
1.9 
2.3 
2.1 
3.2 
1.3

84 
85 
85 
86 
86 
87 
87 
88 
88 
89 
89 
89 
89

Salmonella enterica
 � Chicken (skin) 

Pork (skin) 
Mung beans 
Chicken 
Beef (raw) 
Beef (cooked) 
Chicken (skin) 
Cheese

Wksl3 
4 phages 
6 phages 
72 phages 
P7 
P7 
P22 and 29C 
SJ2

2.5 
4.3 
3.3 
3.0 
5.9 
4.8 
2.0 
3.0

90 
91 
92 
93 
94 
94 
95 
96

Campylobacter jejuni
 � Beef (raw) 

Beef (cooked) 
Chicken (skin) 
Chicken (skin)

Cj6 
Cj6 
NCTC12673 
ϕ2

2.2 
3.7 
2.0 
1.3

94 
94 
95 
97

Bacillus cereus
  Mashed potato FWLBc1 and 2 6.0 98
Staphylococcus aureus
 � Cheese (soft) 

Cheese (hard)
IPLA35 and 88 
IPLA35 and 88

3.8 
4.6

99 
99

Note: EcoShield™ (Intralytix Inc, Baltimore, MD, USA).
Abbreviation: CFU, colony forming units.
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Nonphage-based  
nanobiotechnological controls
Nanotechnology has begun to be explored as a means of 

targeted delivery of antimicrobial agents into food or as a 

means of protecting those agents from adverse environmen-

tal conditions prior to their application.105 A wide range of 

encapsulation delivery systems exists,106 but new develop-

ments in nanotechnology promise improvements over those 

that are currently available. Targeted delivery of antibacte-

rial materials can be achieved by several means, including 

liposomes,107 archaeosomes, nanochelates, casein micelles, 

globular food proteins that can reassemble into nanofibrils 

at elevated temperatures and low pH values, and polymers, 

natural or synthetic, including nanospheres, nanocapsules,108 

polymersomes, and micelles.109

One example of a biological material used in nanotech-

nology is chitosan, which is nontoxic and biodegradable. 

It is used because of its inherent antimicrobial nature,110–112 

which increases at low pH (with increased protonation).113 

In addition, chitosan nanoparticles (CNPs) can be used to 

deliver other biologically derived antibacterial agents such 

as carvacrol, a component of some essential oils, to produce 

a synergistic antimicrobial effect. CNPs allow for a burst of 

release of the antimicrobial compound (eg, oregano essential 

oil), followed by a sustained release over time.114

The antibacterial effects of oleoyl–chitosan nanoparticles 

(OCNPs) against E. coli and S. aureus have been explored.115 

Variations in molecular weight and degree of substitution of 

the chitosan were shown to inhibit the two organisms dif-

ferently, but inhibition was optimal at pH 6. Antibacterial 

activity against the same two organisms has also been 

reported for nisin-loaded CNPs.116 In this case, peak nisin 

release occurred at day 1, but then a residual concentration 

was maintained for up to 100 days, and it was claimed that 

the combination of nisin and the inherent antibacterial effect 

of chitosan was synergistic when compared with the effect 

of either alone. However, insufficient data were provided to 

rule out the possibility that the effect was additive rather than 

synergistic. The activity of chitosan,117 OCNPs118 and nisin 

loaded CNPs116 involves the disruption of cell membranes.

Encapsulation of more than one bioactive component within 

a nonmaterial to allow simultaneous targeted and controlled 

release of both has been researched. For example, the incor-

poration of organic acid and essential oil in a chitosan matrix 

inhibited the growth of bacteria, including Enterobacteriaceae, 

on vacuum-packed cured meat products.113

Chitosan can be used as a packaging film, but it has a 

number of drawbacks, including poor water resistance, gas 

barrier, and mechanical properties. However, when used in 

combination with nanoclay to form a bionanocomposite film, 

the properties of the resulting structure are improved. The 

addition of rosemary essential oil into this film resulted in 

antimicrobial activity against L. monocytogenes and spoilage 

organisms.119

There is increasing interest in the use of biologically 

based polymers for food packaging purposes,120 with 

nanoscale fillers, including layered silicate nanoclays, 

being developed. Such nanocomposite films can contain 

inorganic material such as silver nanoparticles or biologi-

cally derived antimicrobials like essential oils, enzymes, 

and bacteriocins.

It may also be possible to induce antibody responses in 

the food animal against pathogenic bacteria. This has been 

achieved in black seabream by the oral administration of a 

DNA nanoparticle vaccine to induce an immune response 

against Vibrio parahaemolyticus.121

Conclusion
The biggest challenge for the detection of pathogens is for 

new faster, more cost-effective methods to meet the sensi-

tivity of conventional approaches. One way to achieve this 

might be to concentrate bacteria from food samples, ideally 

removing the need to use lengthy enrichment procedures. 

There may be aspects of nanobiotechnology that can help: 

eg, nanosized beads for IMS, which could be used to 

recover pathogens from complex samples prior to detection. 

Applications to detect bacteria that have some allowable 

level in foods, such as S. aureus, Bacillus spp., E. coli, and 

some clostridia, could be achieved more readily. Another 

challenge is to ensure that dead bacteria are not detected 

while injured bacteria are.

The use of advanced nanocomposite packaging films 

may help to combat foodborne disease if they can alert 

producers and consumers to the presence of pathogens or 

to deliver a sustained and targeted antimicrobial effect. 

As a control agent, phages show promise, as reflected 

in the appearance of commercially available products 

and a growing literature base. Drivers for adoption of 

bionanotechnologies for food safety include an increased 

awareness of the need for effective pathogen control by 

“green” technologies that do not negatively impact product 

quality.

Beyond food safety, applications in these technologies in 

human health may provide useful options in the future: eg, 

in the treatment of human infections caused by antibiotic-

resistant bacteria.
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