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Colorectal cancer (CRC) is the most commonmalignancy of the gastrointestinal tract. The stroma and the tumoral mi-
croenvironment (TME) represent ecosystem-like biological networks and are new frontiers in CRC. The present study
demonstrates the use of a novel machine learning-based superpixel approach for whole slide images to unravel this bi-
ology. Findings of significance include the association of low proportionated stromal area, high immature stromal per-
centage, and high myxoid stromal ratio (MSR) with worse prognostic outcomes in CRC. Overall, stromal
computational markers outperformed all others at predicting clinical outcomes. MSRmay be able to prognosticate pa-
tients independent of pathological stage, representing an optimal way to effectively prognosticate CRC patients which
circumvents the need for more extensive molecular and/or computational profiling. The superpixel approaches to the
TME demonstrated here can be performed by a trained pathologist and recorded during synoptic cancer reportingwith
appropriate quality assurance. Future clinical trials will have the ultimate say in determining whether we can better
tailor the need for adjuvant therapy in patients with CRC.
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Introduction

Colorectal cancer (CRC) is diverse and notable for being genetically
inherited, although mostly it occurs sporadically.1 Today, paradigms in
CRC are transitioning from the tumor to the tumor microenvironment
(TME). Approaches that encompass the TME could be incorporated with
other clinical, molecular, and computational findings in order to carve out
a more precision-based patient care. The TME represents an ecosystem-
like biological network that regulates both the extracellular matrix (ECM)
and immune cell functioning.2

Challenges exist in the prognostication and management of patients
with CRC, often secondary to difficulties in applying existing guidelines
and adopting newer concepts.3 Previous work has been undertaken to
understand the role of stromal differentiation (SD)4 and tumor budding
(TB)5 in CRC. SD has been most extensively studied in CRC, although
also demonstrated in cancers of the breast,6 cervix,7 and stomach.8

While the significance and reproducibility of TB in a true clinical envi-
ronment is also a matter of concern to some.9 Overall, immature SD
and high TB are seen as poor signatures, demonstrated to be associated
with higher pathological stage and poor prognostic outcomes.10 Myxoid
and immature are synonymous descriptors for this type of stromata, as
).
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immature stroma contains by definition at least a 40× field of myxoid
change.4

The tumor–stroma-ratio (TSR) has also been examined extensively in
CRC.11 It represents the ratio of tumor to stroma and is measuredmanually
by a pathologist via conventional light microscopy (CLM). Questions re-
garding manual assessment and reproducibility are concerning, and tradi-
tionally, the TSR is performed only in the invasive front of the tumor and
does not measure tumor-associated stroma in its entirety. Despite this, the
TSR is seen as a promising prognostic tool, and tumors that harbor signifi-
cant amounts of stroma have been shown to have worse prognostic out-
comes, suggesting a role for tumor-node-metastasis classification.11

Current trends are pushing for more computation-based approaches as
we enter the digital era of pathology.Most recently, Guedj et al.12 evaluated
the prognosticating potential of digital image analysis (DIA) for quantifying
the stromal compartments of intrahepatic cholangiocarcinoma. More spe-
cifically, DIAwas used to calculate a proportionated stromal area (PSA), de-
fined by the stroma to tumor area ratio, and low values were found to be
associated with worse outcomes.

In breast cancer, DIA has found triple-negative biomarker status and
high stroma to be associated with a poor prognosis, whereas in luminal tu-
mors, high stroma was associated with favorable prognostic outcomes.13
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Fig. 1. Representative virtual slide analyzed by QuPath. Tumor and associated
stromal portions are delineated (yellow) and super-pixelated for tumor (red),
collagenous stroma (green), and myxoid stroma (blue). Only areas selected for
annotations area included into component percentages.

S.M. Hacking et al. Journal of Pathology Informatics 13 (2022) 100009
The foregoing suggests that the significance of stromamay be tumoral sub-
type dependent in cancer, justifying the importance of validating DIA
in CRC.

Previous publications did not differentiate tumor-associated stromata
based on myxoid differentiation. It may be valuable to not only look at
the stroma quantitatively, but to also look at the stroma qualitatively by
assessing the degree of immature, myxoid differentiation.

Building on PSA,12 here we propose the significance of immature stro-
mal percentage (ISP), defined as the absolute percentage of immature,
myxoid stroma; and myxoid stromal ratio (MSR), defined as the ratio of
myxoid to the collagenous stroma. Tumors with significant immature
(myxoid) differentiation may have worse survival outcomes, and if so,
then both the quality and quantity of the stroma in CRC are important.

Current paradigms are shifting away frommanual qualitative assess-
ment and towards quantitative scoring.14 Approaches demonstrated
here can calculate tumor–stroma ratios, while also quantifying the pro-
portions of different subtypes of tumor stromata. With so many open-
access digital pathology solutions, more opportunities are becoming
available for transitioning to computational methodologies. The
tumoral microenvironment harbors significant biological diversity,15

and the present study will use superpixel methods for whole slide
images (WSIs) to unravel this biology.

Materials and Methods

Institutional Review Board

This present study received approval from the Institutional Review
Board (IRB) of the Human Research Protection Program licensing commit-
tee at Northwell Health (IRB number: 18-0128). Research methods
followed all relevant guidelines and regulations, and no patient consent
was required by the review board for this study.

Study Design

This was a retrospective study of colorectal carcinoma patients diag-
nosed in our health system (2014–2017). Case selection and retrieval
took place from a larger cohort of 226 CRC patients which were published
in a previous study,16 60 ofwhichwere selected at random. Caseswere only
included if they contained completed synoptic summaries and appropri-
ately documented AJCC pathological staging information. Patients diag-
nosed as stage Tis stage were also excluded due to a lack of representative
desmoplastic stroma. Cases with insufficient clinical information, follow-
up, and tissue specimen availability were also excluded. We did not deploy
any othermethods of stratification ormatching by age or anatomical extent
of disease. For DIA, only one block was selected by a pathologist (SH) for
each case, relating to the slide containing the largest portion of tumor. Addi-
tional quality assurance steps included slide reviewal for any folded, blurred,
or obstructed morphologies. Slides were also evaluated for tumor budding,
tumor-infiltrating lymphocytes (TIL), and stromal differentiation. Histologi-
cal scoring required consensus between two observers (SH and MN). Addi-
tional clinicopathological data were retrieved from the electronic medical
records for each case and cancer-free survival (CFS) data were provided by
the cancer registry of Northwell Health. We included the following variables
for exploratory analyses: CFS, age, gender, tumor budding score, pathological
stage, TIL, lymph node stage, tumor grade, stromal differentiation, mismatch
repair (MMR) status, Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
(KRAS) and B-Raf Proto-Oncogene (BRAF).

Slide Digitalization

Histological features were assessed using virtual slides scanned at 20×
on the Leica Aperio AT2 (Leica Biosystems, Buffalo Grove, IL) whole slide
scanner. WSIs were viewed at up to×400magnification with ImageScope,
ver. 12.3.2.8013, Leica Microsystems. All digital slides were reviewed for
the quality following scanning and any out-of-focus areas required
2

rescanning. All digital slides were downloaded in TIFF image format with
variable degrees of JPEG image compression. WSI’s were deidentified and
labeled with a sticker as 1–60. All WSI data transfer and storage were still
undertaken in a Health Insurance Portability and Accountability Act of
1996 compliant manner.
Superpixel Image Segmentation

We incorporated QuPath,17 an open-source software for WSI analysis in
order to evaluate the tumoral microenvironment. This was performed on
QuPath version 0.2.1. Qupath comes built with adaptable and trainablema-
chine learning (ML) algorithms. We chose to use superpixel image segmen-
tation (SIS) in our study to quantify both stromal (myxoid and collagenous)
and tumoral components. All WSI files and were imported and orientated
appropriately. An artificial neural (DL) network was developed and trained
from annotated patches selected from the 60 patients. No definitive train-
ing, testing, and validation cohortswere used in this study. Patcheswere se-
lected to represent the tissue heterogeneity present in the data set and
efforts weremade to account for other staining and technical imperfections.
Tumor was defined as cancer epithelial cells well to poorly differentiated
and excluded benign colonic crypts. Myxoid stroma was defined as baso-
philic to gray extracellular matrix material. Collagen was defined as eosin-
ophilic mature collagen fibers, stratified into multiple fibrous bands at
tumoral front. Ignore patches covered a wide spectrum of tissue from the
WSIs. Area of fat, red blood cells, and necrosis were included into ignore
patches as well as areas of the WSI not containing tissue. Quality control
(QC) comparisons of SIS methods to the original WSI were compared man-
ually by two observers (SH and DW).

Following training, superpixels were automatically grouped based on
pixel similarities between different labeled cellular populations. In our
study, this was demonstrated as red (tumor epithelium), yellow (collage-
nous stroma), and blue (myxoid stroma). The entire area of the tumor
and associated stroma was selected for annotation from an entire WSI as
shown in Fig. 1. We classified the PSA as performed by Guedj et al.,12 de-
fined by stromal to tumor area ratio. Secondly, we developed the theoreti-
cal concepts of ISP and MSR for the purpose of this study. ISP is defined as
the absolute percentage of immature, myxoid stroma, whereas MSR is
defined as the ratio of myxoid to collagenous stroma.
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Tumor Budding

For tumor budding assessment, we assessed “hotspot” regions of tumor
with the highest grade of tumor budding. To find hotspot regions, we
scanned at least 10 individual fields at medium power (10× objective) at
the invasive front for each case. The counting of tumor buds was performed
in the hotspot region (20× objective lens) according to the 3-tier grading
system proposed by the International Tumor Budding Consensus
Conference.18 The grading was as follows: Bd1: 0–4 buds, Bd2: 5–9 buds,
and Bd3: >10 buds.

Tumor-Infiltrating Lymphocytes

TILs were defined as small bluemononuclear cells which infiltrating be-
tween tumor cells. Tumors were assessed with a 4-tier scale at the deepest
point of the invasive tumor. This was previously validated for the quantifi-
cation of inflammatory in CRC by Klintrup et al.19 A score of 0 with no in-
flammatory cells, 1 with mild patchy increase in mononuclear cells, 2 with
a moderate (bandlike), and 3 with florid (cuplike) inflammation. Scores 2
and 3 often are seen in conjunction with the destruction of cancer cell
islands. Scoring was classified as low grade (0–1) and high grade (2–3).

Stromal Differentiation

Scoring of SD was primarily based on 3-tier system proposed by Ueno
et al.20 The ECMwas analyzed at the extramural desmoplastic front initially
at low magnification (4×). Myxoid stroma was defined as an amorphous
stromal substance made of amphophilic material with a basophilic to gray
extracellular matrix. This was usually intermingledwith randomly oriented
hyalinized collagen. Stromawas regarded as immaturewhen at least a 40×
field of myxoid change was observed. Intermediate stroma was defined as
keloid-like collagen, thick, and hypocellular collagen bundles with bright
eosinophilic hyalinization and a minimum width of 20-μM.21 We catego-
rized stroma as mature when the fibrotic stroma did not contain myxoid
Fig. 2. Heatmaps and non-linear regression analyses. (a) Heatmap demonstrated the sp
regression for cancer-free survival data and PSA (b), ISP (c), andMSR (d). PSA, Proportio
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or keloid type stroma and was predominantly comprised of fine and
mature, stratified collagen fibers.

Mismatch Repair Status

Immunohistochemistry was performed in order to determine MMR sta-
tus on formalin-fixed and paraffin-embedded tumor sections cut at 4-μM
thickness and stained on a Ventana BenchMark Autostainer (VentanaMed-
ical System, Tucson, AZ). The following rabbit monoclonal pre-diluted pri-
mary antibodies were used: MLH-1(M1, Ventana), PMS2 (EPR 3947,
Ventana), MSH2(G219-1129, Ventana), and MSH6 (44, Ventana). Techni-
cal methodologies and quality assurance were undertaken by certified
histotechnologists at the immunohistochemical laboratory of Long Island
Jewish Medical Center (Northwell Health System, New Hyde Park, NY).
Cases showing loss of immunohistochemical staining (<1%) for any of
the following stains: MLH1, PMS2, MSH2, and MSH6 were considered
MMR-deficient.

Next Generation Genomic Sequencing

Genomic alterations were tested by next generation sequencing from
formalin-fixed, paraffin-embedded tissue at Genpath laboratories (Elwood
Park, NJ). Nucleic acid was extracted with a non-degraded concentration
greater than 1 ng/μL, which was subjected to PCR-based amplification.
Both coding and non-coding regions of the selected genes were enriched
and sequenced on the Illumina MiSeq instrument (San Diego, CA) with
paired ends and 175 base pair reads. The mapping of the read data was
based on reference build GRCh37/hg19. Single nucleotide variants, inser-
tions, and deletions were identified on a customizable bioinformatics plat-
form with an allele frequency greater than 5%.

Statistical Analysis

Comparative analysis was performed using the non-paired t-test to ex-
amine differences in the clinicopathological profile. The Kaplan–Meier
ectrum of tumoral, non-myxoid, and myoid stromal percentages. (b–d) Non-linear
nated Stromal Area; ISP, Immature Stromal Percentage;MSR,Myxoid Stromal Ratio.



Table 1
t-Test analysis for stromal computational signatures. PSA, Proportionated Stromal
Area; ISP, Immature Stromal Percentage; Myxoid Stromal Ratio; TIL, Tumor In-
filtrating Lymphocytes; MMR, Mismatch repair; KRAS, Ki-ras2 Kirsten rat sarcoma
viral oncogene homolog; BRAF, B-Raf Proto-Oncogene. Significant features
(p≤0.05) are shown in bold.

Ratio/Percentage PSA p value ISP p value MSR p value

Variable Mean Mean Mean

Age 0.081 0.070 0.077
<=65 1.009 11.99 0.265
>65 0.831 7.103 0.151
Gender 0.887 0.377 0.648
Male 0.905 7.947 0.201
Female 0.890 10.32 0.197
Tumor budding 0.008 0.086 0.055
TBD1 1.052 6.160 0.120
TBD2 or TBD3 0.793 10.72 0.242
Pathological stage 0.010 0.129 0.092
≤ PT2 1.121 5.236 0.097
PT3–PT4 0.828 10.01 0.222
TIL 0.829 0.262 0.227
Low 0.887 7.668 0.189
High 0.912 10.83 0.201
Lymph node sStage 0.397 0.363 0.398
N0 0.935 10.01 0.218
N1–2 0.852 7.61 0.165
Tumor grade 0.635 0.246 0.192
G1–2 0.911 7.977 0.168
G3 0.858 11.42 0.261
Stromal differentiation 0.576 <0.001 <0.001
Immature/intermediate 0.871 15.91 0.347
Mature 0.927 0.322 0.004
MMR 0.013 0.005 0.022
Intact 0.962 7.183 0.154
Deficient 0.679 17.01 0.321
KRAS 0.712 0.951 0.983
Wild type 0.858 7.738 0.173
Mutation 0.779 7.350 0.170
BRAF 0.662 0.238 0.297
Wild type 0.958 9.075 0.187
Mutation 0.750 0.000 0.000
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method was used to evaluate CFS rate as a function of time. The log-rank
method was used to compare differences between groups. These statistical
analysis was performed using Prism Graphpad version 8.4.2. Heatmaps,
non-linear regression, and univariate and multivariate analyses of CFS
using cox proportional-hazard regressionwere performed on SPSS statistics
version 23.0.0.3. A p-value <0.05 was considered statistically significant.

Results

Clinicopathological and Patient Characteristics

This study comprised data from 60 patients with colorectal adenocarci-
noma who underwent surgical resection at our health system. Surgeries in-
clude block resection (1), right hemicolectomy (20), left hemicolectomy
(27), transverse colectomy (5), and recto-sigmoidectomy (7). The mean
age for our patient cohort was 67.4. There was a slight male predominance:
60% male (36), 40% female (24) to 51%. Tumor budding grades were as
follows: absent or low (24), intermediate or high (36). Tumoral stage was
as follows: pT1–2 (13), pT3–pT4 (47). For TIL, scoring was as follows:
low (40) and high (20). Lymph node status was as follows: N0 (32), N1–2
(28). Tumor differentiation was as follows: well-differentiated (44), moder-
ately to poorly differentiated (16). Stromal differentiation was as follows:
27 (45%)mature stroma, and 33 (55%) patients with immature/intermedi-
ate. Out of 60 patients, 46 (77%) had intact MMR, whereas 14 (23%) pa-
tients were MMR-deficient. Molecular testing was performed on a subset
of patients: 9 (15%) had BRAF testing and 12 (20%) had KRAS mutation
status.

Superpixel Image Segmentation

We found a spectrum of tumoral, non-myxoid, andmyxoid stromal com-
ponents by SIS. Heatmaps for percentages can be viewed in Fig. 2a, whereas
non-linear regression curves can be seen in Fig. 2 for PSA (b), ISP (c), and
MSR (d), respectively. Based on manual analysis, non-linear regression
curves for CFS, cut-off vales were designated as 0.9 (PSA), 10% (ISP), and
0.19 (MSR).

Means were calculated for PSA, ISP, and MSR in order to perform t-test
analysis for the clinicopathological profile. Firstly, high tumor budding was
found to be associated with a lower PSA (0.008). Pathological stage was
found the be associated with a lower PSA (0.010). Stromal differentiation
was found to be associated with high ISP (<0.001) and high MSR
(<0.001). MMR deficiency was found to correlate with PSA (0.013), ISP
(0.005), and MMR (0.022). The remaining variables were not significant.
The results for t-test analyses for stromal computational signatures can be
viewed in Table 1.

Cancer-Free Survival

CFS data were collected for all the 60 patients with a mean follow-up
time of 1415 days. After setting the positivity cutoff to 0.9 for PSA, 10%
for ISP and 0.19 for MSR, we found that low PSA (HR: 10.25 (CI: 3.26–
32.12), p= < 0.0001), ISP (HR: 6.156 (CI: 2.07–18.29), p=0.006) and
MSR (HR: 13.01 (CI: 4.29–41.43), p=0.001), SD (HR: 3.66 (CI: 1.25–
10.84), p=0.02) and tumoral stage (HR: 3.70 (CI: 1.01–13.53), p=0.04)
to be associated with poor CFS on Kaplan–Meier survival analysis, tumor
grade was not significant (HR: 2.30 (CI: 0.68–7.79), p=0.09) (Fig. 3).

Based upon cox-regression of CFS, pathological stage was found to be a
poor prognostic factor on univariate analysis (HR: 3.705 (CI: 1.015–13.53),
p=0.03); but not on multivariate analysis (HR: 0.405 (CI: 0.140–1.160),
p=0.095). High TILs were found to have prognostic significant and be pro-
tective only on multivariate analysis (HR: 0.120 (CI: 0.018–0.809), p=
0.029). Low PSA was found to be associated with worse prognostic out-
comes on univariate (HR: 21.970 (CI: 2.829–170.7), p=0.003) and multi-
variate analyses (HR: 7.69 (CI: 2.217–100.00), p=0.018). High ISP was
found to be associated with poor prognostic outcomes on univariate (HR:
1.189 (CI: 1.106–1.278), p= < 0.001) and multivariate analysis (HR:
4

1.253 (CI: 1.078–1.458), p < 0.003). High MSR was found to be associated
with poor outcomes on univariate (HR: 5.613 (CI: 1.947–16.19), p=0.028)
andmultivariate (HR: 7.194 (CI: 1.197–43.70), p=0.030) analysis. Stromal
differentiation was found to have prognostic significance on univariate
(HR: 3.715 (CI: 1.829–16.64), p=0.048) and multivariate analysis (HR:
1.230 (CI: 1.03–-1.462), p=0.019). The remaining clinicopathological var-
iables were not significant (p>0.05) on cox proportional hazard regression
analysis (Table 2).

Discussion

The advent of open-access image analysis software has been paramount
to the success of digital pathology. Qupath17 works to meet the need for a
friendly, understandable digital pathology solution. It offers a comprehen-
sive panel for image analysis and here, we demonstrate the utility of
superpixels for quantifying different stromal parameters computationally:
PSA, ISP, and MSR.

Importantly, PSA is not the same as the TSR.11 The PSA technique in-
cludes the entire tumor area and is computational. Traditionally, the TSR
is calculated only at the invasive tumoral border and is performedmanually
by a pathologist on glass slides, allowing for observer bias. In colon cancer,
high stroma ratios resulting in a low TSR at the invasive tumor front are as-
sociated with poor outcomes.11

However, we found the opposite effect for PSA, with low stroma ratios
having worse prognostic outcomes. This may be secondary to the fact that
PSA encompasses the entire tumor, not just the invasive front, and evaluat-
ing the invasive front in isolation may overestimate the stroma to tumor
ratio. Low PSA could correlate with more tumor, which could also mean



Fig. 3.Kaplan–Meier Survival Analysis. (a) Cancer-free survival between PSA low and high groups. (b) Cancer-free survival between ISP low and high groups. (c) Cancer-free
survival between MSR low and high groups. (d) Cancer-free survival between mature and immature stroma groups. (e) Cancer-free survival between low (G1–2) and high
grade (G3) groups. (f) Cancer-free survival between low (T1/2) and high (T3/4) tumoral stage. HR, Hazzard Ratio; CI, Confidence Interval; G, Grade; T, Stage.

Table 2
Univariate and multivariate analyses of cancer-free survival using the cox proportional-hazard regression. CI, Confidence Interval; HR, Hazard Ratio; TIL, Tumor Infiltrating
Lymphocytes; PSA, Proportionated Stromal Area; ISP, Immature Stromal Percentage; Myxoid Stromal Ratio; MMR,Mis-match repair; KRAS, Ki-ras2 Kirsten rat sarcoma viral
oncogene homolog; BRAF, B-Raf Proto-Oncogene. Significant features (p≤0.05) are shown in bold.

Variable Frequency Univariate HR CI p value Multivariate HR CI p value

Age 0.987 0.943–1.032 0.560 1.051 0.982–1.125 0.151
<=65 22 (36.67%)
>65 38 (63.33%)
Gender 1.247 0.429–3.624 0.685 1.489 0.476–4.652 0.494
Male 36 (60%)
Female 24 (40%)
Tumor budding 2.815 0.784–10.10 0.112 1.011 0.01–7.83 0.173
TBD1 24 (40%)
TBD2 or TBD3 36 (60%)
Pathological stage 3.705 1.015–13.53 0.047 0.405 0.140–1.170 0.095
≤PT2 13 (21.67%)
PT3–PT4 47 (78.33%)
TIL 0.404 0.111–1.467 0.168 0.120 0.018–0.809 0.029
Low 40 (66.67%)
High 20 (33.33%)
Lymph node stage 0.577 0.180–1.848 0.355 0.909 0.205–4.033 0.900
N0 32 (53.33%)
N1–N2 28 (46.67%)
PSA 21.739 2.829–170.7 0.003 7.69 2.217–100.0 0.018
>=0.9 25 (41.67%)
<0.9 35 (58.33%)
ISP 1.189 1.106–1.278 <0.001 1.253 1.078–1.458 0.003
<10 37 (61.67%)
>=10 23 (38.33%)
MSR 5.613 1.947–16.19 0.028 7.194 1.197–43.70 0.030
<0.19 39 (65%)
>0.19 21 (35%)
Tumor grade 2.815 0.784–10.10 0.112 1.454 0.300–7.043 0.642
G1 44 (73.33%)
G2–G3 16 (26.67%)
Stromal differentiation 3.715 1.829–16.64 0.048 1.230 1.035–1.462 0.019
Mature 27 (45%)
Immature/intermediate 33 (55%)
MMR 2.607 0.903–7.526 0.076 0.456 0.0533–3.958 0.477
Intact 46 (76.67%)
Loss 14 (23.33%)
KRAS 2.828 0.17–47.146 0.469
Wild type 8 (66.67%)
Mutation 4 (33.33%)
BRAF 1.31 0.11–3.52 0.97
Wild type 8 (88.89%)
Mutation 1 (11.11%)
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more tumor budding. Whereas for TSR, which is performed at the tumor in-
vasive front, more stroma and less tumor could mean more desmoplastic,
myxoid stroma, possibly accounting for the prognostic outcomes.22

Regarding DIA, our findings are also consistent with what was found in
luminal tumors of the breast13 and in intrahepatic cholangiocarcinoma,12

where higher proportions of tumor (low PSA) were found to be associated
with worse overall survival outcomes. A key point to consider is the
variation in DIAmethods between the two mentioned studies and this pub-
lication. In the breast publication,13 a single region of interest was identi-
fied from a WSI and tissue microarrays were created from tumor hotpots.
In this publication, DIAwas performed on the entire tumor from a complete
WSI, also seen in study on intrahepatic cholangiocarcinoma.12Using the en-
tire WSI may be the better solution, especially considering the significant
tumor heterogeneity present in CRC. We felt the most pragmatic approach
was to use the slide with the largest section of tumor that most accurately
represented the tumoral microenvironment.

Superpixel methods23 are gaining traction in the field of medicine and
recent attempts have beenmade to combine superpixels with DL. In derma-
tology, superpixel models based on DL have been found to outperform
other comparable methodologies.24 The advantages for SIS is that it can
represent the structure of an image in adaptive sizes and shapes, with the
ability to improve classification performance, especially for noisy classifica-
tion and boundary misclassification.25 While DL is a methodology which
applies non-linear transformations and high-level model abstractions in
large databases.26 Future studies could continue to combine applications
inDLwith superpixels to further our understanding of the tumoralmicroen-
vironment, such is demonstrated here.

Recent advances for DL in CRC were made by Skrede et al.,27 who ap-
plied convolutional neural networks to WSIs, and developed an assay
(DoMore-v.1) which differentiated prognostic groups independent of
tumor stage in large patient cohorts. The authors suggest the assays superi-
ority compared to other genomic and pathological prognostic markers, as
the assay predicted cancer-specific survival in stage II (HR: 2.71, 95% CI:
1.25–5.86, p=0.011) and stage III patients (HR: 4.09, 95% CI: 2.77–6.03,
p < 0.0001).27

More practically, the differentiation of the ECM leads to characteristic
immature, myxoid stroma seen on routine histological evaluation. Preclini-
cal studies of tumors growing inmice have suggested collagen to govern che-
motherapeutic delivery,28 whereas ECM degradation has also been found to
improve drug uptake and response.2 Deciphering the ECM in CRC could
facilitate novel therapeutic approaches.2 Most likely, myxoid degeneration
decreases the physical barrier, leading to improved therapeutic delivery.

In our study, we were able to more accurately characterize SD through
DIA by calculating the ISP andMSR, which predicted patient outcomes and
clinical profiles better than the manual analysis of SD. Manual analysis is
more prone to interobserver variability, whereas the advent of DIA can
allow for improved reproducibility.29 DIA techniques could be used to tai-
lor the need for adjuvant chemotherapy, although clinical studies will be
needed to determine this.

One significant pitfall in our study was that we were unable to validate
our findings in separate validation and testing cohorts. Although the pres-
ent work can serve as a pilot study, it will be important for future studies
to validate model performance in different patient cohorts. Overfitting is
a fundamental issue in applied machine inteligence,30 it will be important
to test model fitting in diverse patient populations before implementing
and adopting computational approaches for patient care.

Interestingly, MSRwas not found to be associated with pathological stage,
suggesting that it may be able to predict clinical outcomes independent of an-
atomical extent of disease. This may be the key to unraveling the clinical het-
erogeneity present in CRC. Today, the use of adjuvant treatment in stage II
colon cancer has garnered much controversy,31 and treatment recommenda-
tions range from observation, to single agent chemotherapy or combination
regimens. There is a need to better tailor the role of adjuvant therapy in CRC
and an assessment of tumoral differentiation and anatomical extent of disease
may be insufficient in truly addressing the questions which need answers.
6

High-risk stromal computational features (PSA <0.9, ISP >10%, MSR
>0.19) could represent the CRC mesenchymal phenotype, associated with
an increased migratory capacity, tumor cell invasion, and enhanced modu-
lation of a diverse ecosystem of ECM components. We also found this com-
putational mesenchymal phenotype to corelate with MMR deficiency.
Regarding the molecular classification of CRC major intrinsic subtypes,
C-type has been found to be the smallest and most distinct molecular
subtype, upregulated in markers related to the EMT and MMR
deficiency.32 Patients with C-type tumors are commonly referred to as
the mesenchymal subtype, have a poor baseline prognosis, and show
no benefit from adjuvant 5FU chemotherapy.32 Regarding the most re-
cent consensus molecular subtypes of CRC,33 13% of tumors have
been found to have a mixed molecular phenotype between CMS1
(microsatellite instability) and CMS4 (mesenchymal). More work exam-
ining the relationship between stromal features on WSIs and its rela-
tionship to the molecular profile in CRC is needed.

In summary, we developed a novel superpixelmethod to assess the TME
in CRC which outperformed traditional metrics for prognostication cur-
rently used in clinical practice. This study supports the tumoral microenvi-
ronment as a prime candidate for future applications in digital pathology,
and the techniques described in this body of work can be performed by a
surgical pathologist with appropriate quality assurance.

Data Availability

Pathology data and the statistical analyses for the current study are
available from the corresponding author upon reasonable request.

Funding

No funding was provided to produce this manuscript.

Author Contributions

MN, DW, and SH developed the theoretical formalism. SH, DW, and CA
contributed to the acquisition of data and whole slide images. DW
performed the analytic calculations and performed the numerical
simulations. SH, DW, CA, and MN contributed to the final version of the
manuscript.

Disclosure

The authors report no conflicts of interest in this work.

Acknowledgments

We thankAlexander Perry and KathyQuinn for their role as research co-
ordinators. Figures were constructed at Biorender.com.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jpi.2022.100009.

References

1. Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer.
Gastroenterology 2010;138:2044–2058.

2. Henke E, Nandigama R, Ergün S. Extracellular matrix in the tumor microenvironment
and its impact on cancer therapy. Front Mol Biosci 2020;6.

3. Dawson H, Kirsch R, Messenger D, Driman D. A review of current challenges in colorectal
cancer reporting. Arch Pathol Lab Med 2019;143:869–882.

4. Hacking SM, Chakraborty B, Nasim R, Vitkovski T, Thomas R. A holistic appraisal of stro-
mal differentiation in colorectal cancer: biology, histopathology, computation, and geno-
mics. Pathol Res Pract 2021;220, 153378.

5. Koelzer VH, Zlobec I, Lugli A. Tumor budding in colorectal cancer–ready for diagnostic
practice? Hum Pathol 2016;47:4-19.

https://doi.org/10.1016/j.jpi.2022.100009
https://doi.org/10.1016/j.jpi.2022.100009
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0005
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0005
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0010
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0010
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0015
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0015
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0020
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0020
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0020
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0025
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0025


S.M. Hacking et al. Journal of Pathology Informatics 13 (2022) 100009
6. Zhai Q, Fan J, Lin Q, et al. Tumor stromal type is associated with stromal PD-L1 expres-
sion and predicts outcomes in breast cancer. PLoS One 2019;14, e0223325.

7. Cao L, Sun P-L, He Y, Yao M, Gao H. Desmoplastic reaction and tumor budding in cervi-
cal squamous cell carcinoma are prognostic factors for distant metastasis: a retrospective
study. Cancer Manag Res 2020;12:137–144.

8. Kemi NA, Eskuri M, Pohjanen V-M, Karttunen TJ, Kauppila JH. Histological assessment
of stromal maturity as a prognostic factor in surgically treated gastric adenocarcinoma.
Histopathology 2019;75:882–889.

9. Hacking SM. Tumor budding or tumor baloney? Virchows Arch 2021;479:435–436.
10. Ueno H, Ishiguro M, Nakatani E, et al. Prognostic value of desmoplastic reaction charac-

terisation in stage II colon cancer: prospective validation in a Phase 3 study (SACURA
Trial). Br J Cancer 2021;124(6):1088–1097.

11. van Pelt GW, Sandberg TP, Morreau H, et al. The tumour-stroma ratio in colon cancer:
the biological role and its prognostic impact. Histopathology 2018;73:197–206.

12. Guedj N, Blaise L, Cauchy F, Albuquerque M, Soubrane O, Paradis V. Prognostic value of
desmoplastic stroma in intrahepatic cholangiocarcinoma. Modern Pathol 2021;34:408–
416.

13. Millar EK, Browne LH, Beretov J, et al. Tumour stroma ratio assessment using digital
image analysis predicts survival in triple negative and luminal breast cancer. Cancers
(Basel) 2020;12.

14. Lara H, Li Z, Abels E, et al. Quantitative image analysis for tissue biomarker use: a white
paper from the digital pathology association. Appl Immunohistochem Mol Morphol
2021;29(7):479–493.

15. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis.
Nat Med 2013;19:1423–1437.

16. WuD, Hacking S, Vitkovski T, NasimM. Superpixel image segmentation of VISTA expres-
sion in colorectal cancer and its relationship to the tumoral microenvironment. Scient
Rep 2021;11:17426.

17. Bankhead P, Loughrey MB, Fernández JA, et al. QuPath: open source software for digital
pathology image analysis. Scient Rep 2017;7:16878.

18. Lugli A, Kirsch R, Ajioka Y, et al. Recommendations for reporting tumor budding in colo-
rectal cancer based on the International Tumor Budding Consensus Conference (ITBCC)
2016. Mod Pathol 2017;30:1299–1311.
7

19. Klintrup K, Mäkinen JM, Kauppila S, et al. Inflammation and prognosis in colorectal can-
cer. Eur J Cancer 2005;41:2645–2654.

20. Ueno H, Jones AM, Wilkinson KH, Jass JR, Talbot IC. Histological categorisation of
fibrotic cancer stroma in advanced rectal cancer. Gut 2004;53:581–586.

21. Ueno H, Kajiwara Y, Ajioka Y, et al. Histopathological atlas of desmoplastic reaction char-
acterization in colorectal cancer. Jpn J Clin Oncol 2021;51:1004–1012.

22. Gao J, Shen Z, Deng Z, Mei L. Impact of tumor–stroma ratio on the prognosis of colorectal
cancer: a systematic review. Front Oncol 2021;11.

23. Wang M, Liu X, Gao Y, Ma X, Soomro NQ. Superpixel segmentation: a benchmark. Signal
Process Image Commun 2017;56:28–39.

24. Blanco G, Traina AJM, Traina Jr C, et al. A superpixel-driven deep learning approach for
the analysis of dermatological wounds. Comput Methods Programs Biomed 2020;183,
105079.

25. Shi C, Pun C-M. Superpixel-based 3D deep neural networks for hyperspectral image clas-
sification. Pattern Recog 2018;74:600–616.

26. Vargas R, Mosavi A, Ruiz R. Deep learning: a review. Adv Intel Syst Comput 2017;5.
27. Skrede OJ, De Raedt S, Kleppe A, et al. Deep learning for prediction of colorectal cancer

outcome: a discovery and validation study. Lancet 2020;395:350–360.
28. Brown E, McKee T, diTomaso E, et al. Dynamic imaging of collagen and its modulation in

tumors in vivo using second-harmonic generation. Nat Med 2003;9:796–800.
29. Riber-Hansen R, Vainer B, Steiniche T. Digital image analysis: a review of reproducibility,

stability and basic requirements for optimal results. Apmis 2012;120:276–289.
30. Ying X. An overview of overfitting and its solutions. J Phys Conf Ser 2019;1168, 022022.
31. Varghese A. Chemotherapy for stage II colon cancer. Clin Colon Rectal Surg 2015;28:

256–261.
32. Roepman P, Schlicker A, Tabernero J, et al. Colorectal cancer intrinsic subtypes predict

chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transi-
tion. Int J Cancer 2014;134:552–562.

33. Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal
cancer. Nat Med 2015;21:1350–1356.

http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0030
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0030
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0035
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0035
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0035
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0040
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0040
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0040
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0045
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0050
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0050
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0050
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0055
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0055
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0060
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0060
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0060
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0065
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0065
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0065
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0070
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0070
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0070
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0075
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0075
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0080
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0080
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0080
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0085
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0085
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0090
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0090
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0090
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0095
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0095
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0100
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0100
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0105
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0105
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0110
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0110
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0115
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0115
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0120
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0120
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0120
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0125
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0125
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0130
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0135
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0135
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0140
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0140
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0145
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0145
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0150
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0155
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0155
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0160
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0160
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0160
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0165
http://refhub.elsevier.com/S2153-3539(22)00009-8/rf0165

	A Novel Superpixel Approach to the Tumoral Microenvironment in Colorectal Cancer
	Introduction
	Materials and Methods
	Institutional Review Board
	Study Design
	Slide Digitalization
	Superpixel Image Segmentation
	Tumor Budding
	Tumor-Infiltrating Lymphocytes
	Stromal Differentiation
	Mismatch Repair Status
	Next Generation Genomic Sequencing
	Statistical Analysis

	Results
	Clinicopathological and Patient Characteristics
	Superpixel Image Segmentation
	Cancer-Free Survival

	Discussion
	Data Availability
	Funding
	Author Contributions
	Disclosure
	Acknowledgments
	Appendix A. Supplementary data
	References




