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Objectives. Obstructive sleep apnea (OSA) is a common disorder influenced by genetic and environmental factors. Mutations of
AT-hook DNA-binding motif containing 1 (AHDC1) gene have been implicated which could cause rare syndromes presenting
OSA.1is study aims to investigate some rare mutations of AHDC1 in Chinese Han individuals with OSA. Patients and Methods.
1ree hundred and seventy-five patients with OSA and one hundred and nine control individuals underwent polysomnography.
A targeted sequencing experiment was taken in 100 patients with moderate-to-severe OSA, and genotyping was taken in 157
moderate-to-severe OSA and 100 control individuals. 1e effect of mutations was validated by the luciferase reporter assay.
Results. One rare missense mutation (AHDC1: p.G1484D) and two mutations (c.-88C>T; c.-781C>G) in 5′-untranslated region
(UTR) of AHDC1 were identified. 1e rare mutation (c.-781C>G) in 5′-UTR that was identified in several patients presenting
more severe clinical manifestations affects expression of AHDC1. Conclusions. Our results revealed three rare mutations of
AHDC1 in patients with OSA in Chinese Hanindividuals.

1. Introduction

Obstructive sleep apnea (OSA, OMIM 107650) is an in-
creasingly common disorder, and it is characterized by
repeated upper airway collapse during sleep that results in
chronic intermittent hypoxia, hypercapnia, and sleep frag-
mentation [1, 2]. Affected individuals are at increased risks
of cardiovascular disease, stroke, and other disorders [1].
However, the pathogenesis of OSA is unclear, so better
understanding of the etiology of OSA is needed.

OSA is caused by multiple factors, most commonly
obesity, muscle dysfunction, craniofacial abnormalities,
and genetic predisposition [3–6]. Some Mendelian dis-
eases also present OSA clinical features, such as auriculo-

condylar syndrome [7], Costello syndrome [8], Xia–Gibbs
syndrome [9], and Marfan syndrome [10]. OSA aggregates
within families, having a first-degree relative with OSA
increases risk of OSA by more than 1.5-fold [3]. Fur-
thermore, approximately 35% to 40% of apnea-hypopnea
index (AHI) which is the most common disease-defining
metric for OSA may be explained by genetic factors
[4, 11–14]. Simultaneously, from the pathological view-
point, sympathetic nervous system activity, fat distribu-
tion, upper airway dilator muscle dysfunction,
craniofacial development, heightened chemosensitivity,
and a low arousal threshold may cause OSA [15, 16],
whereas these pathological processes are also regulated by
genes [17].
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AT-hook DNA-binding motif containing 1 (AHDC1)
gene is located on chromosome 1p36.11 and encodes 1603
amino acid protein AT-hook DNA-binding motif-con-
taining protein 1. And AHDC1 is nearby AT-rich in-
teraction domain 1A (ARID1A) gene, mutations in which
cause autosomal-dominant Coffin-Siris syndrome, and its
symptoms are maxillary hypoplasia, tongue cleft, poor
alignment of teeth, etc. OSA could coexist with spino-
cerebellar ataxia type 1, which is a hereditary disease of the
nervous system regulated by AHDC1. Abnormalities of
AHDC1 probably cause pharyngeal dilator muscle in-
coordination, thereby leading to airway collapse [9, 18, 19].
Moreover, mutations in AHDC1 have been implicated to
most likely cause Xia-Gibbs syndrome. And Xia-Gibbs
syndrome presented OSA, language delay, and hypotonia.
[9]. Two missense mutations in AHDC1 were found to be
associated with schizophrenia and oral developmental
disorders that might lead to upper airway dysfunction and
perhaps OSA [20, 21]. Nevertheless, if there were any rare
mutations in AHDC1 associated with OSA in Chinese Han
is not clear.

1e purpose of this study is to investigate rare mutations
of AHDC1 in Chinese Han individuals with OSA. In this
study, we used targeted sequencing which is a cost-efficient
tool [22] to discover rare mutations of AHDC1 in unrelated
Chinese Han individuals with OSA.

2. Patients and Methods

2.1. Patients. Subjects for sequencing came frompatients at the
Otolaryngological Department of Beijing An Zhen Hos-
pital from February 2017 to December 2017. All partici-
pants were subjects of self-reported snoring symptoms;
each subject completed OSA screening and was scheduled
for an overnight sleep study.1e sleep study was conducted
using a level II portable diagnostic device (SOMNOscreen;
SOMNOmedics GmbH, Randersacker, Germany) ap-
proved by the US Food and Drug Administration. In total,
484 unrelated Chinese Han adults aged ≥18 years were
recruited, including 375 patients with OSA and 109 control
individuals. After excluding participants with incomplete
clinical data and mild OSA, a targeted sequencing exper-
iment was taken in 100 patients with moderate-to-severe
OSA. To identify additional mutation carriers, we geno-
typed an expanded cohort of 157 moderate-to-severe OSA
and 100 control individuals. 1e study flow chart is shown
in Figure 1. Patients with OSA and control individuals were
unrelated individuals diagnosed using the American
Academy of Sleep Medicine guidelines [23]. All partici-
pants underwent a complete examination, and their
medical history and basic clinical and biochemical variables
were collected. No participants had lung, kidney, liver, or
nervous system disease.

All participants completed an informed consent before
enrollment. 1e study was approved by the Medical Ethics
Committee of Beijing An Zhen Hospital (2017005), adhered
to the Declaration of Helsinki, and was registered in the
Chinese Clinical Trial Register (ChiCTR-ROC-17011027).

2.2. Phenotype Definitions. 1e diagnostic standard of OSA
is defined as AHI more than 5 times per hour, and this
standard is further subdivided into mild (5<AHI≤ 15
events/hour), moderate (15<AHI≤ 30 events/hour), and
severe (AHI> 30 events/hour) [24]. 1e quantitative phe-
notypic outcomes were the AHI (defined by events asso-
ciated with ≥3% desaturation), the lowest oxygen saturation
(LSaO2) and mean oxygen saturation (MSaO2) across the
sleep period. 1ese quantitative phenotypic outcomes ex-
cluded intermittent waking episodes [25].

Covariates were obtained by questionnaires and direct
measurement. Body mass index (BMI) was calculated using
the standard BMI formula: bodymass (in kilograms) divided
by square of height (in meters). Hypertension is defined as
having higher blood pressure than normal three times
without antihypertensive drugs, i.e., systolic blood pressure
≥140mmHg and/or diastolic blood pressure ≥90mmHg. All
blood samples were collected after participants had fasted
overnight. Venous blood sample was obtained before 9 am.
Clinical variables included total cholesterol (TC), tri-
glyceride (TG), high-density lipoprotein cholesterol (HDL-
C), low-density lipoprotein cholesterol (LDL-C), and fasting
blood glucose (GLU). Serum TC, TG, HDL-C, LDL-C, GLU,
and other routine serum biochemical parameters were
measured using a biochemical analyzer (Hitachi-7600;
Hitachi, Tokyo, Japan). Blood samples were stored in a
freezer at − 80°C. All measurements were obtained using
blinded quality control specimens at the Department of the
Biochemical Laboratory at Beijing An Zhen Hospital. All
results were interpreted by a specialist.

2.3. Exome Sequencing Analysis. 1e genomic DNA was
extracted from whole blood (details are described in the
Methods section in the appendix). A custom-designed gene
panel containing AHDC1 (Supplementary Table 1) was
ordered from Life Technologies (Carlsbad, CA, USA) for
targeted sequencing. 1e coverage of panel is 99.52%
(Supplementary Table 2). Details regarding primers and
resequencing procedures are given in Supplementary Table 3
and the Methods section in the appendix.

1e read alignments were filtered by the software into
mapped BAM-files using the reference genomic sequence
(hg19) of the target genes. Annotation of variants was
performed using Ion Reporter Software (Version 4.4; Life
Technologies, Darmstadt, Germany) for the variant call
format files. 1e annotation included genomic and
complementary DNA positions, genetic reference se-
quences, amino acid changes, and related information
available from public databases, such as the 1000 Ge-
nomes Project; National Heart, Lung, and Blood Institute
Grand Opportunity Exome Sequencing Project
(ESP6500) (https://esp.gs.washington.edu/drupal/); Sin-
gle Nucleotide Polymorphism Database (dbSNP147)
(National Center for Biotechnology Information, http://
www.ncbi.nlm.nih.gov/SNP/); Exome Aggregation
Consortium (ExAC03) (http://exac.broadinstitute.org);
ClinVar; Online Mendelian Inheritance in Man (OMIM);
and Human Gene Mutation Database (HGMD). Sorting
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Intolerant From Tolerant (SIFT) (http://sift.jcvi.org/),
PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/), Muta-
tionTaster (http://www.mutationtaster.org/), and Protein
Variation Effect Analyzer (PROVEAN) (http://provean.jcvi.
org/index.php) were used to indicate changes in protein
structure and function. PathCards (http://pathcards.
genecards.org/) was used to analyze the pathway. CLUS-
TALW (http://www.genome.jp/tools/clustalw/) was used to
analyze the consistency of the amino acid sequences. Can-
didate pathogenic variants were confirmed using Sanger
sequencing.

2.4. Functional Analysis. Bioinformatics analysis suggests
that mutation (c.-781C>G) of AHDC1 is located at 5′UTR of
AHDC1. Two 1000-bp fragments containing humanAHDC1
5′UTR-781C and -781G, respectively, were cloned into a
pGL4.10[luc2] vector upstream of luciferase reporter
(Promega Benelux BV, Leiden, 1e Netherlands), and the
resultant plasmids (pGL4-C and pGL4-G) were transformed
into 293T cells, respectively, to determine effects of the
mutation by detecting fluorescence intensity according to
the manufacturer’s instructions.

2.5. Statistical Analysis. Continuous variables are expressed
as mean± standard deviation and categorical variables as
numeral (percentage). Independent Student’s t-tests for
normal distributions and Wilcoxon rank sum tests for
asymmetric distributions were used to analyze the differ-
ences in continuous variables. Chi-squared tests were used
to analyze categorical variables between OSA and control
group. Subsequently, independent Student’s t-tests and
Wilcoxon rank sum tests were used to analyze the differ-
ences in continuous variables, and Fisher’s exact tests were

used to analyze categorical variables between mutation and
nonmutation groups. All probability values were two-sided,
and P< 0.05 was considered significant. Statistical analyses
were performed using SPSS 20.0 (IBM Corp., Armonk, NY,
USA).

3. Results

3.1. Baseline Characteristics of Participants. 1e present
study included 257 patients with OSA and 100 control in-
dividuals. Basal characteristics of these individuals are
presented in Table 1. No significant differences were ob-
served in age (P � 0.055), TC level (P � 0.569), or LDL-C
level (P � 0.400) between OSA and the control group.
Compared with the control group, the patients had a higher
BMI (27.04± 3.36 vs. 23.71± 3.09 kg/m2, <0.001), TG level
(1.56± 1.04 vs. 1.24± 0.36mmol/L, P � 0.002), GLU level
(3.46± 0.95 vs. 3.44± 0.62mmol/L, P � 0.002), HDL-C level
(1.07± 0.23 vs. 1.00± 0.18mmol/L, P � 0.018), male pro-
portion (84.82% vs. 70.00%, P � 0.002), and prevalence of
hypertension (22.96% vs. 13.00%, P � 0.035). 1e OSA
group exhibited severe degrees of AHI (32.17± 18.06 vs.
3.33± 1.14, P< 0.001), significantly lower MSaO2
(93.48± 2.28 vs. 95.00± 1.37) and LSaO2 (82.14± 9.89 vs.
90.00± 2.73, P< 0.001) in comparison with the control
group.

3.2. Identification of RareMutations. In order to identify the
mutation of AHDC1 in Chinese OSA patients, we sequenced
each of 100 moderate-to-severe OSA subjects’ DNA samples
using targeted sequencing technology. Among the 100
moderate-to-severe OSA patients, in total 57 variants were
met the quality filtering criteria, 11 were common poly-
morphisms (i.e., minor allele frequency of ≥1%), whereas the

Exclude: participants with incomplete
clinical data and mid OSA

484 participants

PSG

100 patients with 
moderate-to-severe OSA

157 patients with 
moderate-to-severe OSA

100 control 
samples

Targeted sequencing: 
identification of rare mutations

Genotyping: recurrent 
AHDC1 mutations

Figure 1: Study flow chart. PSG: polysomnography; OSA: obstructive sleep apnea.
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remaining 46 were rare mutations (minor allele frequency of
<1%). To prioritize potential deleterious variants, we focused
on the identification of rare mutations (based on the 1000
Genomes, ESP6500, and ExAc databases). Four algorithms
(SIFT, PolyPhen-2, MutationTaster, and PROVEAN) were
used to predict whether the rare mutations in coding regions
would change the protein structure and function. One
heterozygous missense mutation (AHDC1: c.G4451A,
p.G1484D) (Table 2) was identified in a 58-year-old male
with AHI of 23.1, LSaO2 of 85%, and MSaO2 of 92%. We
then analyzed mutations in noncoding regions; a mutation
(AHDC1: c.-88C>T) in 5′-UTR ofAHDC1was found in a 61-
year-old male with AHI of 28.2, LSaO2 of 83%, and
MSaO2 of 90%. Another rare variant in 5′-UTR of AHDC1
(c.-781C>G) was identified in a 50-year-old male with AHI
of 34.6, LSaO2 of 88%, and MSaO2 of 93% (Table 2).

To identify additional mutation carriers, genotyping was
performed in a cohort of 157 moderate-to-severe OSA and
100 control individuals. Among 157 additional patients with
OSA, the rare mutation in 5′-UTR of AHDC1 (c.-781C>G)
was found in a 61-year-old female with AHI of 68, LSaO2 of
69%, and MSaO2 of 88% (Table 3). In the control group,
none of these three mutations was found. In summary, we
found three rare mutations in two cohorts (AHDC1:
c.G4451A, c.-88C>T, c.-781C>G) (Table 2), and the mutation
in 5′-UTR ofAHDC1 (c.-781C>G) was found in two patients
with OSA (Table 3). All left mutations were confirmed by
Sanger sequencing (Supplementary Figure 1). 1e evolu-
tionary conservation of the encoded amino acid residues
(AHDC1: c.G4451A) was analyzed in nine different verte-
brate species (Supplementary Figure 3). 1e residue that was
mutated (AHDC1: c.G4451A) was found to be highly
conserved.

3.3. Clinical Analysis in Patients with or without AHDC1
Mutations. To find whether OSA patients with AHDC1

mutations had different clinical manifestations from the
patients without mutations, we analyzed their clinical
characteristics. No difference was found between these two
groups in age (P � 0.628), sex (P � 0.578), and BMI
(P � 0.503) (Supplementary Table 4). So distribution of
mutations in AHDC1 is not influenced by age, sex, or BMI in
the present study.

Clinical manifestations of OSA patients with AHDC1
mutations are shown in Table 3. Because HDL-C is less
affected by drugs, we compared only HDL-C levels for
biochemical indicators in patients with mutations. 1e
patient with missense mutation (AHDC1: c.G4451A) was a
moderate OSA patient (AHI� 23.1) with lower BMI
(BMI� 17.3 kg/m2) and lower HDL-C (0.83mmol/L), while
he was a diabetic and coronary heart disease (CHD) patient.
1e mutation (c.-88C>T) was found in a fatter male
(BMI� 25.3 kg/m2) who was a moderate OSA patient
(AHI� 28.2) with normal HDL-C, TG, and fasting blood
sugar level. Another mutation in 5′-UTR (c.-781C>G)
was found in two severe OSA patients: the first severe
OSA patient (AHI� 23.6) was a medium height male
(BMI� 23.6 kg/m2) who was younger (50 years) than an-
other three patients, and he was a hypertensive and
CHD patient with lower HDL-C (0.84mmol/L). 1e other
severe OSA patient (AHI� 68,) was a fatter female
(BMI� 34 kg/m2) with lower HDL-C (0.83mmol/L), while
she was a diabetic, hypertensive, and CHD patient; this
female patient presented lower oxygen saturation
(LSaO2� 69%, MSaO2� 88%).

3.4. Functional Analysis. Previous reports have shown that
5′UTRmay influence expression of genes. In this study, two
patients with mutation in 5′UTR (c.-781C>G) presented
higher AHI and lower oxygen saturation. So, the effect of
mutation (c.-781C>G) in 5′UTR of AHDC1 on its expres-
sion level was tested. 1e 293T cells were used for trans-
fection of AHDC1 5′UTR-based reporter constructs
(pGL4.10-C, with the C allele or pGL4.10-G, with the G
allele). As shown in Figure 2, compared with a negative
control, luciferase activity was found to be increased with
cotransfection of pGL4.10-G in 293T cells (P< 0.01).

4. Discussion

In this study, we identified one rare missense mutation
(AHDC1: p.G1484D) and two rare mutations (c.-88C>T and
c.-781C>G) in 5′-UTR of AHDC1 in OSA patients. Func-
tional analysis and luciferase reporter assay suggested that
the mutation (c.-781C>G) in 5′-UTR played an important
role in AHDC1.

Previous studies have found that the carriers of AHDC1
mutation presented pharyngeal dilator muscle in-
coordination and oral developmental disorders [26]. In the
present study, MalaCards database suggests an important
gene associated with sleep apnea is AHDC1, and among its
related pathways/superpathways are signaling by GPCR and
respiratory electron transport, ATP synthesis by chemios-
motic coupling, and heat production by uncoupling

Table 1: Baseline characteristics of participants.

Measure OSA group Control group P

Number of subjects 257 100 —
Age (years) 58.97± 9.41 58.11± 10.92 0.055
Sex (% male) 84.82 70.00 0.002∗
BMI (kg/m2) 27.04± 3.36# 23.71± 3.09 <0.001∗
TC (mmol/L) 4.13± 1.00 3.99± 1.02 0.569
TG (mmol/L) 1.56± 1.04# 1.24± 0.36 0.002∗
HDL-C (mmol/L) 1.07± 0.23 1.00± 0.18 0.018∗
LDL-C (mmol/L) 2.47± 0.87# 2.43± 0.83 0.400
GLU (mmol/L) 3.46± 0.95# 3.44± 0.62 0.002∗
Hypertension (%) 22.96 13.00 0.035∗
AHI 32.17± 18.06# 3.33± 1.14 <0.001∗
MSaO2 (%) 93.48± 2.28# 95.00± 1.37 # 0.002∗
LSaO2 (%) 82.14± 9.89# 90.00± 2.73 <0.001∗

Data are expressed as mean± standard deviation or n (%). Differences
between groups were analyzed by the independent Student’s t-test, chi-
squared test, or Wilcoxon test. #Data were asymmetrically distributed.
∗P< 0.05. BMI: body mass index; TC: total cholesterol; TG: triglyceride;
HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipo-
protein cholesterol; GLU: fasting blood glucose; AHI: apnea-hypopnea
index; MSaO2: mean oxygen saturation; LSaO2: lowest oxygen saturation.
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proteins. AHDC1 is also associated with Mesodermal
Commitment Pathway (Figure 3) that may influence de-
velopment of respiratory-related muscles and bones leading
to OSA. 1ese evidences suggest that AHDC1might play an
important role in OSA.

1e missense mutation (AHDC1: c.G4451A) was found in
a thinner moderate OSA patient. 1is suggests that OSA may
occur in the subject with AHDC1mutations, even if his or her
BMI is small.1emutation in 5′UTR (c.-88C>T) was found in
a moderate OSA patient with normal biochemical variables,
and he did not take any drugs. 1is suggests one interesting
fact that not all OSA patients might suffer from other di-
agnosed diseases; every patient has his or her own charac-
teristics, so individualized diagnosis and treatment are
necessary. On the other hand, this mutation (c.-88C>T) may
not cause changes in pathways related to other diseases, so we
have not performed further functional analysis of this mu-
tation. Moreover, another interesting rare mutation in 5′UTR
(c.-781C>G)was found in two patients with higher AHI, lower
oxygen saturation, and lower HDL-C. Analysis of potential
transcriptional binding sites in the proximate promoter

region (1-kb of upstream region of the start site of AHDC1)
revealed that the c.-781C>G-containing sequence is the
binding consensus motif of the transcription factor SREBP-2
(Supplementary Figure 2). Mutations of SREBP-2 were found
to be related to hypercholesterolemia and perhaps OSA [27].
And luciferase reporter assay suggests the mutation (c.-
781C>G) in 5′-UTR of AHDC1 affects expression of gene. All
above suggest that AHDC1 may be related to the occurrence
of OSA and 5′UTR plays a significant role in AHDC1.

Notably, a recent whole-exome sequencing analysis
revealed three different de novo truncating mutations in
AHDC1 in four patients with OSA, language delay, and
hypotonia [9]. Two missense mutations in AHDC1 were
found to be associated with schizophrenia and oral de-
velopmental disorders that may lead to upper airway
dysfunction and perhaps OSA [20, 21]. Previous founded
variants are not only in the coding exon [9] but also in 5′
untranslated region [21]. A de novo balanced translocation
with a breakpoint in AHDC1 intron 1 that disrupted the
5′UTR of AHDC1 has been identified in a 5-year-old male
patient with developmental delay and intellectual dis-
ability [21]. 1e disruption lead to AHDC1 expression
reduced to 50% of wild-type level in lymphoblastoid cells
[21]. In the present study, rare mutation (c.-781C>G) in
5′UTR of AHDC1 was found in severe OSA patients, and
this rare mutation could affect expression of AHDC1.
1erefore, we assumed that the mutations in AHDC1 may
affect the expression of AHDC1 and lead to sleep apnea.
1e exact mechanism of this phenomenon needs to be
investigated.

1is study has some limitations. 1e participants may
not be entirely representative of the general Han Chinese
population. Potential false-positive results may still be
possible. Prospective cohort studies are needed to confirm
the variants in our study. We sequenced limited genes and
limited sequencing regions that were most likely to harbor
functional variation. Some of the patients and controls with
CHD were taking drugs. 1e results of TC, LDL-C, and TG
comparison between two groupsmay be different from those

Table 2: Probably damaging rare mutations.

Locus Gene Base change AA change SIFT PPT2 MutationTaster PRO VEAN
Chr1：27874176 AHDC1 c.G4451A p.G1484D D D D N
Chr1：27879416 AHDC1 c.-88C>T UTR5 — — — —
Chr1：27879407 AHDC1 c.-781C>G UTR5 — — — —
AA: amino acid; SIFT (D: deleterious, T: tolerated); PolyPhen-2 (i.e., PPT2) (D: probably damaging, P: possibly damaging, B: benign); MutationTaster and
PROVEAN (D: disease-causing, N: polymorphism).

Table 3: Clinical features of patients with rare mutations.

ID Age
(yr) Variation Sex BMI

(kg/m2) AHI LSaO2
(%)

MSaO2
(%)

TC
(mmol/L)

TG
(mmol/L)

HDL-C
(mmol/L)

LDL-C
(mmol/L)

GLU
(mmol/L) Hypertension CHD

1 58 p.G1484D Male 17.3 23.1 85.0 92.0 3.20 2.63 0.83 1.74 17.56 No Yes
2 61 c.-88C>T Male 25.3 28.2 83.0 90.0 4.02 1.11 1.17 2.58 2.94 No No
3 50 c.-781C>G Male 23.6 34.6 88.0 93.0 3.95 0.86 0.84 2.76 4.45 No Yes
4 61 c.-781C>G Female 34.0 68.0 69.0 88.0 2.23 2.72 0.83 0.79 12.96 Yes Yes
yr: years; BMI: body mass index; AHI: apnea-hypopnea index; LSaO2: lowest oxygen saturation; TC: total cholesterol; TG: triglyceride; HDL-C: high-density
lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; GLU: fasting blood glucose; CHD: coronary heart disease.
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Figure 2: Luciferase activity. Compared with a negative control,
luciferase activity increased with cotransfection of pGL4.10-G in
both 293T cells.
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of other studies. Finally, the exact mechanism of these
variants is not fully understood and requires further func-
tional studies.

5. Conclusions

In summary, we identified multiple novel variants of
AHDC1 in patients with OSA. Our findings increase the
mutation spectrum of associated genes for OSA, a quite
complex disease. Gene analysis is helpful for in-
dividualized typing of patients with OSA and might
contribute to personalized diagnosis and treatment in the
future.
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species of missense mutation identified in AHDC1. (Sup-
plementary Materials)
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