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The increasing availability of complete genome data is facilitating the acquisition of phylogenomic data sets, but the process

of obtaining orthologous sequences from other genomes and assembling multiple sequence alignments remains piecemeal

and arduous. We designed software that performs these tasks and outputs anonymous loci (AL) or anchored enrichment/

ultraconserved element loci (AE/UCE) data sets in ready-to-analyze formats. We demonstrate our program by applying it

to the hominoids. Starting with human, chimpanzee, gorilla, and orangutan genomes, our software generated an exhaustive

data set of 292ALs (∼1 kb each) in∼3 h. Not only did analyses of ourAL data set validate the program by yielding a portrait

of hominoid evolution in agreement with previous studies, but the accuracy and precision of our estimated ancestral effec-

tive population sizes and speciation times represent improvements. We also used our program with a published set of 512

vertebrate-wide AE “probe” sequences to generate data sets consisting of 171 and 242 independent loci (∼1 kb each) in 11 and

13 min, respectively. The former data set consisted of flanking sequences 500 bp from adjacent AEs, while the latter con-

tained sequences bordering AEs. Although our AE data sets produced the expected hominoid species tree, coalescent-based

estimates of ancestral population sizes and speciation times based on these data were considerably lower than estimates from

our AL data set and previous studies. Accordingly, we suggest that loci subjected to direct or indirect selection may not be

appropriate for coalescent-based methods. Complete in silico approaches, combined with the burgeoning genome databas-

es, will accelerate the pace of phylogenomics.

[Supplemental material is available for this article.]

The era of using genome-scale data to reconstruct the evolutionary
history of organismal groups has recently begun (Alföldi et al.
2011; Faircloth et al. 2012; Lemmon and Lemmon 2012;
Lemmon et al. 2012; McCormack et al. 2012; Jarvis et al. 2014;
Prum et al. 2015). Due to the increasing numbers of whole-ge-
nome data sets that are publicly available, it is now straightforward
to use in silico methods to discover and design hundreds or thou-
sands of new loci such as “anonymous loci” (ALs) (Karl and Avise
1993; Peng et al. 2009; Wenzel and Piertney 2015), exon-primed
intron-crossing or “EPIC” loci (Palumbi and Baker 1994; Li et al.
2010), conserved nuclear exon loci (Li et al. 2007), anchored en-
richment “AE” loci (Lemmon et al. 2012; Lemmon and Lemmon
2013), and ultraconserved element “UCE” loci (Faircloth et al.
2012; McCormack et al. 2012) for use in phylogenomic studies.
Once loci are designed, NGS target-capturemethods are employed
to obtain orthologous sequences from many different individuals
or species (e.g., Faircloth et al. 2012; Lemmon et al. 2012), which
results in data sets with orders of magnitude more loci than in pre-
vious years.

Which locus class is best for a given phylogenomic study will
largely depend on the type of study because the evolutionary
properties of the aforementioned loci vary (Thomson et al.
2010). In studies of recently diverged populations or species, the
researcher should use more variable markers such as ALs (Chen
and Li 2001; Yang 2002; Rannala and Yang 2003; Jennings and
Edwards 2005; Lee and Edwards 2008; Thomson et al. 2010;

Bertozzi et al. 2012; Lemmon and Lemmon 2012) or introns (Li
et al. 2010; Thomson et al. 2010). Because the flanking sequences
of AE and UCE loci tend to exhibit much variation, these loci may
also performwell in studies involving recent divergences (Faircloth
et al. 2012; Lemmon et al. 2012; Smith et al. 2013). However, for
studies involving deep divergences spanning tens or hundreds of
millions of years, the researcher must resort to highly conserved
loci such as conserved exons (Li et al. 2007; Thomson et al.
2010), AE loci (Lemmon et al. 2012), or UCE loci (Faircloth et al.
2012).

In phylogenomic studies involving populations or species
that diverged recently or rapidly, coalescent theory predicts that
neutral genomic loci will often have retained ancestral polymor-
phisms, which can lead to gene tree-species tree conflicts
(Hudson 1983; Tajima 1983; Maddison 1997; Rosenberg 2002;
Felsenstein 2004; Wakeley 2009). Contrary to posing a problem,
these ancestral polymorphisms provide important information
about the evolutionary history of populations or species, which
can be exploited by the use of multilocus coalescent-based statisti-
cal analyses. Indeed, many studies have used this approach to ob-
tain robust estimates of species trees and historical demographic
parameters (e.g., Yang 2002; Rannala and Yang 2003; Jennings
and Edwards 2005; Lee and Edwards 2008; Brito and Edwards
2009; Edwards 2009; Reilly et al. 2012). Of the aforementioned
loci classes, ALs are optimal for inferring species trees and diver-
gence times at shallow phylogenetic scales, as well as for
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estimating historical demographic parameters in phylogeography
studies (Jennings and Edwards 2005; Thomson et al. 2010;
Lemmon and Lemmon2012). One of themain advantages ALs en-
joy over other types of loci is that they are thought to satisfy the
assumption of selective neutrality required in studies using
neutral-coalescent methods of analysis. The reasons for this are
twofold. First, because ALs are harvested from random genomic lo-
cations (Karl andAvise 1993), it is likely that theywill be composed
of nonfunctional DNA (Meader et al. 2010; Lindblad-Toh et al.
2011; Ponting and Hardison 2011), which is presumably not un-
der selective pressure (Graur et al. 2013). Second, because function-
al elements occupy only a small portion of vertebrate genomes
(e.g., 5% in humans) (Lindblad-Toh et al. 2011), chances are
good that ALs will be far from sites that are maintained by
selection. This is important because sites linked to functional
elements experience indirect selection via genetic hitch-hiking
(Maynard Smith and Haigh 1974; Kaplan et al. 1989) or back-
ground selection (Felsenstein 1974; Charlesworth et al. 1993).
Althoughmost intron sites or fourfold degenerate third codon po-
sitions in exons may experience single-base substitutions without
consequence to the fitness of the organism (i.e., be selectively neu-
tral in a sense), their tight linkage to sites under strong selection
may keep them from fulfilling the neutrality assumption. This
same argument can be applied to the flanking regions of AE and
UCE loci because they are tightly linked to sites under severe puri-
fying selection (Katzman et al. 2007). Despite this concern,
McCormack et al. (2012) suggested that selectionmaynot adverse-
ly affect species tree inferences based on UCE loci due to increased
rates of lineage sorting, a hypothesis that has received empirical
corroboration (Faircloth et al. 2012). However, estimates of effec-
tive population sizes based on genomic regions around conserved
loci under purifying selection are expected to be reduced relative to
more distant regions where “neutral” loci may be found (McVicker
et al. 2009). The effects of selection may also adversely affect esti-
mates of other population genetic parameters such as population
divergences and gene flow.

NGS-based sequence-capture methods for acquiring large
phylogenomic locus data sets (Faircloth et al. 2012; Lemmon
et al. 2012; Lemmon and Lemmon 2013) represent the main op-
tion formost studies involvingnonmodel organisms at the present
time. Despite their advanced nature, these approaches still have
hurdles that can impede many researchers from amassing large
data sets (i.e., hundreds to thousands of loci for dozens to hun-
dreds of individuals). First, these methods demand considerable
technical expertise and access to laboratories containing special-
ized laboratory equipment for NGS-library preparation and se-
quence capture. Second, bioinformatics processing of NGS data
into ready-to-analyze data sets is a daunting challenge to many.
Fortunately, this situation will soon dramatically improve when
acquiring complete whole-genome sequences becomes a practical
option for many researchers. Indeed, a recent projection (O’Brien
et al. 2014) suggests we can expect at least 10,000 sequenced verte-
brate genomes in coming years. Thus, a demand will exist for so-
phisticated bioinformatics tools to meet the challenge of this
surge in available genomes. For example, software that can scan
a whole annotated genome sequence for the maximum number
of “ideal” ALs—i.e., loci with the properties of being single-copy,
presumably neutral, and genealogically independent from each
other—or a set of target loci such as AE/UCE loci and then extract
orthologous sequences from other nonannotated genomes will
enable researchers to obtain ready-to-analyze data sets in mere
minutes or hours instead of weeks or months. These anticipated

advances will revolutionize phylogenomics and dramatically in-
crease our knowledge of the tree of life.

We developed software that automatically constructs AL and
anchor (AE/UCE) loci data sets from complete genome sequences.
To validate the software, we used genome data for themajor extant
hominoid lineages (i.e., human, chimpanzee, gorilla, and orangu-
tan). Not only are complete genome data available for the homi-
noids, but their phylogenomic history has been well studied
(Ruvolo 1997; Chen and Li 2001; Yang 2002; Rannala and Yang
2003; Satta et al. 2004; Patterson et al. 2006; Steiper and Young
2006; Hobolth et al. 2007, 2011; Burgess and Yang 2008; Peng
et al. 2009; Faircloth et al. 2012; Schrago 2014). The hominoid
clade, therefore, represents an ideal system for evaluating the per-
formance of our software.

Results

ALFIE: software for the acquisition of AE/UCE loci data sets

ALFIE for Anonymous/Anchor Loci FIndEr is a package containing
several Python scripts that work together to find either the maxi-
mum number of single-copy, presumably neutral, and genealogi-
cally independent ALs or a set of targeted AE/UCE loci in
complete genomes. The program, which is available at https://
github.com/igorrcosta/alfie (and in the Supplemental Material),
outputs ready-to-analyze files in a variety of formats, such as
FASTA, interleavedNEXUS (Maddison et al. 1997) with commands
for the software BEST (Liu 2008) and MrBayes (Huelsenbeck and
Ronquist 2001) appended, and PHYLIP (Felsenstein 2005). These
output files enable the researcher to immediately beginmultilocus
coalescent analyses to infer species trees or estimate historical de-
mographic parameters, conduct supermatrix-based phylogenetic
analyses, and perform single-locus phylogenetic analyses among
others. The alfie.py script encapsulates all functions in an easy to
use command-line interface. Additional details about the ALFIE
package can be found in the Methods.

ALFIEmay be used to generate data sets of either AL or anchor
(AE/UCE) loci (Fig. 1). For AL data set generation (Fig. 1A), it is nec-
essary to provide the complete genome for each individual or spe-
cies in FASTA format and a general feature format (GFF) file with all
features (e.g., all known protein-coding genes, regulatory ele-
ments, RNAs, etc.) of the genome that will be used as query.
Only one annotated genome is required, and genomes from mul-
tiple individuals per species can be used. To minimize the risk of
designing ALs that violate the single-copy assumption, genome
files with all repetitive DNA masked as Ns should be used. The
AL finding module’s first step is to map the intergenic sequences
(i.e., anonymous regions) while discarding all sequences with
known functions plus their genetically linked flanking regions
(Fig. 1A). The purpose of this step is to isolate segments of DNA
whose sites are presumably neutral. Intergenic regions chosen
for AL development should be distant enough, in terms of recom-
binational distances from known functional elements so that
they are free from the indirect effects of selection (e.g., background
selection and hitchhiking). A “recombinational distance” is amea-
sure that incorporates local recombination rates, effective popula-
tion sizes, and physical distances (Kaplan et al. 1989). However,
owing to the intractability of using such local recombinational dis-
tances, a global value for the minimum physical distance (in base
pairs) between an AL and an annotated genomic element can be
determined by the user (Chen and Li 2001; Burgess and Yang
2008; Peng et al. 2009). The value input into this “distance filter”
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represents a tradeoff between the num-
ber of ALs recovered and the effective de-
coupling of anonymous DNA segments
from functional genomic elements. The
anonymous regions are then cut into
consecutive segments of user-defined
length, which we termed “candidate
anonymous loci” (Fig. 1A).

For AE/UCE loci data set generation
(Fig. 1B), the user must provide the com-
plete genome for each individual or spe-
cies in FASTA format (no annotated
genomes required). The program maps
all targeted AEs/UCEs in the query ge-
nome using a coordinate file and then re-
trieves both flanking sequences for each
AE/UCE in the query genome. The size
of the flanking sequence and the dis-
tance between each retrieved flanking se-
quence and its adjacent AE/UCE (both in
base pairs) are defined by the user. These
features allow users flexibility to obtain
loci of desired lengths and levels of con-
servation since levels of site conservation
generally decline with distance away
from AEs/UCEs (Faircloth et al. 2012;
Lemmon et al. 2012). We included in
the program a coordinate file for the
human genome that presently contains
512 vertebrate-wide AEs developed by
Lemmon et al. (2012). In principle, coor-
dinate files can contain the genomic lo-
cations for any set of target loci, and
thus, we anticipate increasing the num-
ber and types of target loci in the future.

In the final step (Fig. 1C), the soft-
ware uses candidate AL or AE/UCE loci
as query sequences to conduct a BLAST
search (Camacho et al. 2008) against all
input genomes. The program only re-
tains candidate loci present as a single
copy in each sampled genome, and saves
all sequences in FASTA files (Fig. 1C).
Next, the pipeline conducts multiple se-
quence alignments for all candidate loci
using ClustalW (Larkin et al. 2007), and
paired AE/UCE flanking sequences are
concatenated to form each individual lo-
cus. Loci found on the same chromo-
somes should be sufficiently separated
from each other in order for their gene
trees to be effectively independent of
each other (Hudson and Coyne 2002;
Jennings and Edwards 2005; Wakeley
2009; McCormack et al. 2012; Reilly
et al. 2012; O’Neill et al. 2013; Leaché
et al. 2015). Thus, the user must input a
second distance threshold (in base pairs)
separating sampled loci. Based on this
distance threshold, the program excludes
loci that may not be genealogically inde-
pendent of the nearest loci found on the

Figure 1. ALFIE software pipeline. (A) Anonymous loci (AL) finding module: User inputs complete ge-
nome sequences in a FASTA format and a general feature format (GFF) file for the query genome.
Program first applies a user-defined “distance filter,” which removes all known functional elements +
flanking sequences of user-specified lengths (purple color blocks). Remaining (presumably neutral) inter-
genic regions (orange color blocks), called candidate ALs, are retrieved and cut into consecutive seg-
ments of user-defined length and saved in FASTA files. (B) Anchor loci (AE/UCE) finding module: User
inputs genome sequences in FASTA format. Program finds locations of target AEs/UCEs in a reference hu-
man genome with a coordinate file that currently contains 512 vertebrate AEs (included in package).
Module retrieves flanking regions with user-defined length (e.g., 500 bp). User also specifies distance
(in base pairs) between flanking sequences and their AEs/UCEs. Paired flanking sequences (i.e., candidate
AE/UCE loci) are saved in FASTA files. (C) Downstream analyses: AL or AE/UCE candidate loci are used as
query sequences in BLAST searches against target genomes. Single-copy loci are retained and subse-
quently aligned. A user-specified distance filter retains loci that are likely independent fromother sampled
loci. Each pair of AE/UCE flanking sequences is concatenated to form independent loci. Lastly, ALFIE out-
puts ready-to-analyze data sets.
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same chromosomes (Fig. 1C). After this last selection step, candi-
date ALs are considered “ideal” ALs because they are single copy,
presumably neutral, independent from other sampled loci, and
free of repetitive DNA and low complexity repeats (e.g., CpG sites).
Similarly, candidate AE/UCE loci are considered to be single copy
and genealogically independent of other sampled loci. The
ALFIE pipeline finishes by outputting ready-to-analyze data sets
in the various aforementioned formats.

Software validation: in silico phylogenomics of the hominoids

Running theAnonymousLoci Findermoduleon theannotatedhu-
man genome and genomes from chimpanzee, gorilla, and orangu-
tanwith locus size set to 1 kb and both distance filters set to 200 kb
(i.e., to findneutral independent loci; seeMethods), programALFIE
required ∼3 h to generate a 292 AL data set
(hereafter “AL 292”). In contrast, the
Anchor Loci Finder module, which searched
the same genomes for a total of 512 target
vertebrate AE loci, ran much faster. With lo-
cus size set to 1 kb (i.e., 500 bp for each flank-
ing sequence), the distance to the adjacent
AE/UCE set to 0 bp, and the inter-locus dis-
tance filter set to 200kb (to find independent
loci; see Methods), program ALFIE needed
just 13 min to produce a 242 AE data set
(hereafter “AE 242”). To examine the effects
of indirect selection on sites more distant
fromAEs/UCEs, we used the software to gen-
erate a secondAEdata set consisting of flank-
ing sequences located 500 bp away fromAEs,
all other parameters being the same as the
first data set. The program only required 11
min to output a data set consisting of 171
AE loci (hereafter “AE 171”).

An analysis of the distribution of all ALs
in AL 292 by chromosome shows that these
loci are scattered across the human genome
(Supplemental Figs. S1A, S2; Supplemental
Table S1). Although we specified a mini-
mum physical distance of 200 kb separat-
ing loci found on the same chromosome,
inspection of the location coordinates for
these loci shows that in most cases the dis-
tances aremuch >200 kbwithmany loci sep-
arated by >1 Mb (Supplemental Table S1).
The numbers of loci per chromosome
were, unexpectedly, not distributed in pro-
portion to the sizes of each chromosome:
Chromosome 1 had fewer loci/bp, whereas
Chromosomes 6, 13, and 18 had a higher
concentration of loci (Supplemental Figs.
S1A, S2; Supplemental Table S1). Instead,
the heterogeneous spatial distribution of
repetitive DNA (i.e., low complexity and
interspersed repeats) across the genome bet-
ter explains the relative amounts of presum-
ably neutral DNA in each chromosome
(Supplemental Fig. S1A). When regions of
repetitive DNA are accounted for, the re-
maining amount of anonymous DNA
strongly correlates with the numbers of can-

didate ALs per chromosome (Supplemental Figs. S1B, S2;
Supplemental Tables S1, S2). The basic genomic characteristics of
the AEs used in this study have been described elsewhere
(Lemmon et al. 2012) and thus will not be discussed here.

Evaluation of 88 different DNA substitution models revealed
that the HKY model best fit the majority of loci in each data set:
71% (208/292) of loci in AL 292, 50% (120/242) in AE 242, and
47% in AE 171 (Fig. 2A–C; Supplemental Tables S3–S5). The tran-
sition/transversion (Ti/Tv) rate ratio estimates also showed some
consistency among data sets as the distribution of values for
each data set peaked over Ti/Tv = 2 (Fig. 2D–F; Supplemental
Tables S3–S5).

Separate phylogenetic analyses for each locus inAL292 gener-
ated a distribution of the three possible rooted tree topologies for
human (H), chimpanzee (C), and gorilla (G) as follows: ((H, C),

Figure 2. Mutational profiles observed in three phylogenomic data sets obtained from human,
chimpanzee, gorilla, and orangutan genomes. The data sets include 292 AL, 171 anchored enrich-
ment (AE) loci, and 242 AE loci (for descriptions of each data set, see main text). (A–C)
Distributions of nucleotide substitution models for each data set (for details about the different mod-
els, see Posada 2008). (D–F ) Distributions of transition/transversion (Ti/Tv) rate ratios for each data
set. Note, Ti/Tv values are only shown for loci that had a best-fitting nucleotide substitution model
containing this parameter (i.e., 185, 133, and 230 loci, respectively). Also, five of the 171 AE loci
and six of the 242 AE loci exhibited unusually high Ti/Tv values and thus were not included in these
analyses. Source data are in Supplemental Tables S3 through S5.
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G) = 187/292 (64.0%), ((H,G), C) = 53/292 (18.2%), and ((C,G),H)
= 52/292 (17.8%) (Supplemental Table S3). The AE 242 data set
yielded the following gene tree topologies: ((H, C), G) = 133/242
(55.0%), ((H, G), C) = 39/242 (16.1%), and ((C, G), H) = 70/242
(28.9%) (Supplemental Table S4). The AE 171 topologies were:
((H, C), G) = 102/171 (59.6%), ((H, G), C) = 21/171 (12.3%), and
((C, G), H) = 48/171 (28.1%) (Supplemental Table S5).

Estimates for the ancestral effective population sizes NHC,
NHCG, andNHCGObasedonAL292yielded estimates for these three
parameters of 42,000–59,000, 40,000, and 90,000–101,000, respec-
tively (Fig. 3A; Supplemental Tables S6, S7). For comparative pur-
poses and to assess the effects of number of loci, we also
reanalyzedapreviouslypublished53ALdata set for thehominoids;
hereafter this data set will be referred to as “AL 53” (see Methods).
Estimates of NHC, NHCG, and NHCGO based on AL 53 were 17,000–
64,000, 41,000–49,000, and 31,000–92,000, respectively (Fig. 3A;
Supplemental Tables S8, S9). Estimates of these same parameters
using AE 171 data were 14,000–19,000, 26,000–27,000, and
114,000–128,000, respectively, whereas estimates based on AE
242 yielded 14,000–19,000, 24,000–25,000, and 132,000–
145,000, respectively (Fig. 3A; Supplemental Tables S10–S13). We
also estimated these parameters using only the 208 loci in AL 292
that fit the HKY model to see if the inclusion of other loci may

have affected our results. TheHKY-only resultsmatched the results
for the entire AL 292 data set (Supplemental Tables S14, S15).

Our AL 292 data generated the following speciation time esti-
mates: τHC = 3.8–4.1 million years ago (Mya), τHC-G = 6.1 Mya, and
τHCG-O = 12.3–12.5 Mya. Our reanalysis of AL 53 generated esti-
mates of 3.8–4.9 Mya, 5.9 Mya, and 12.5–14 Mya, respectively
(Fig. 3B; Supplemental Tables S6–S9). BothAEdata sets yielded spe-
ciation time estimates roughly twofold younger than those from
the two AL data sets (Fig. 3B). Estimates based on AE 171 were
τHC = 2.4–2.6 Mya, τHC-G = 3.4 Mya, and τHCG-O = 6.0–6.1 Mya,
while AE 242 generated times of 2.1–2.2 Mya, 3.0 Mya, and 4.8
Mya, respectively (Fig. 3B; Supplemental Tables S10–S13).
Estimation of these parameters using only the 208 AL loci that
fit theHKYmodel likewise produced very similar estimates as those
generated by the full data set (Supplemental Tables S14, S15).

Discussion

Distance thresholds vs. numbers of loci

The number of anonymous or anchor loci output by ALFIE is part-
ly dependent on the input distance thresholds. For example, the
use of 200-kb distance thresholds allowed ALFIE to generate 292

Figure 3. Bayesian estimation of ancestral effective population sizes and speciation times in the hominoids based on four phylogenomic data sets. (A)
Inferred ancestral effective population sizes (Na) for the human–chimpanzee ancestor (NHC), human–chimpanzee–gorilla ancestor (NHCG), and human–
chimpanzee–gorilla–orangutan ancestor (NHCGO). (B) Inferred speciation time in millions of years ago (Mya) between: human and chimpanzee lineages
(τH-C), divergence leading to gorilla lineage (τHC-G), and divergence leading to orangutan lineage (τHCG-O). “AL 53” = 53 AL of Chen and Li (2001); “AL
292” = 292 AL; “AE 171” = 171 AE loci with each flanking sequence 500 bp from the adjacent AE; and “AE 242” = 242 AE loci with each flanking sequence
0 bp from the adjacent AE. Shown are posterior means and 95% credibility intervals for each parameter, which were estimated using five different sets of
priors: P1 (blue), P2 (red), P3 (green), P4 (yellow), and P5 (orange; see Methods). Analyses for each parameter are contained within black boxes, and ver-
tical dashed gray lines separate the results of each data set. Source data are in Supplemental Tables S6 through S13.
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ALs (Supplemental Table S16). However, if the minimum distance
to the nearest annotated genomic element is set to 500 kb, only six
to 60 loci were output depending on the specified inter-AL thresh-
old distance.When the distance to nearest gene is set to 700 kb, no
loci were found.

Selection of appropriate distance thresholds represents one of
the challenges to finding the maximum number of independent
AL or AE/UCE loci in genomes. Even if the simplifying assumption
of a single genome-wide recombination rate is made, optimal
choices for threshold values will still largely be determined by
the supposed value of Ne for the study group in question (Kaplan
et al. 1989; Hudson and Coyne 2002). Thus, for groups (clades)
with long-term Ne numbering in the hundreds of thousands or
millions, the average physical distances required for ensuring
that sampled loci are independent of each other or to sites under
selection are expected to be shorter than for groups with smaller
Ne. For example, if long-term Ne is large (>10

5), then ALFIE would
likely output hundreds or thousands of ideal AL.

Maximum number of genealogically independent loci

ALFIE generated a data set consisting of 292 AL yet our theoretical
analysis yielded an estimate of about 14,000 independent loci in
the extant hominoid genome (see Methods). Why does such a
large discrepancy exist? One obvious explanation is that the theo-
retical estimate includes all independent loci, while ALFIE uses
stringent search criteria to select ideal AL. Thus, if the fraction of
independent loci having the properties of being multicopy, being
nonneutral, and containing repeat DNAwas to be eliminated from
consideration, then the remaining desirable fraction would likely
number in the low thousands or hundreds, which is consistent
with our empirical findings.

This finding raises an interesting question: How much of a
genome is composed of neutral DNA? One of the initial steps of
the ALFIE pipeline is to locate all regions far from any annotated
element in order to find loci that are free from the direct and indi-
rect effects of natural selection. Doing this analysis using a 200-kb
distance threshold, we found that 247Mb, or 8%, of the hominoid
genome falls into this neutral DNA category (Supplemental Fig.
S1B; Supplemental Table S2). By removing all repetitive and
low-complexity repeat DNA from this fraction, we are left with
only 18 Mb, or 0.6%, of the genome (Supplemental Table S2).
Although these percentages will vary somewhat among species
or clades owing to differences in the recombination landscapes
of their genomes and long-term Ne values, these fractions are still
likely to be quite small compared with the total amount of DNA
classified as being nonfunctional. The implication of this is that
most nonfunctional genomic sites are likely not free from the ef-
fects of natural selection and therefore may not be suitable for
phylogenomic analyses that assume each locus is selectively
neutral.

A more surprising result was our theoretical finding that the
total number of independent loci in the humangenome ranges be-
tween 1000 and 1400 (see Supplemental Methods). These num-
bers are an order of magnitude lower than our estimate for the
hominoids owing to the much smaller Ne of humans than for
the presumed sizes of the hominoid ancestral populations over
the long term. Of these loci, only a fraction—perhaps numbering
in the tens or low hundreds—likely represent single-copy, selec-
tively neutral, and independent loci. This result has implications
for human population genetic studies involving statistical proce-
dures that assume each locus (or SNP) is neutral and independent.

Indeed, studies that pseudoreplicate their loci or SNP number in
statistical procedures that assume each locus or SNP is indepen-
dent may lead to spurious inferences of species trees or historical
demographic parameters. Thus, despite the vast sizes of many ge-
nomes, clearly there are limits to the numbers of genealogically in-
dependent loci that can be harvested.

DNA substitution patterns in neutral loci

Despite 88 different DNA substitution models evaluated during
the model testing procedure, the HKY model (Hasegawa et al.
1985) best explained 71% of our ALs. It is not surprising that
this model was so frequently chosen for ALs. First, the HKYmodel
assumes unequal equilibriumbase frequencies, which fits the over-
all low G +C content of 41% in the human genome (Graur et al.
2013). Second, the Ti/Tv rate ratio estimates for our presumably
neutral loci span a narrow range with an average of 2.3, which
matches previous estimates for nonfunctional human DNA with
CpG sites discounted (Graur and Li 2000; Zhang and Gerstein
2003). Our model choice results together with the unimodally dis-
tributed Ti/Tv estimates for ALs (and AE loci as well) suggest that
these loci largely evolved via a simple mechanism that gives rise
to a transition bias (Wakeley 1996). This finding is significant
because it provides evidence in support of the long-standing
“rare tautomer hypothesis” by Watson and Crick (1953), which
holds that spontaneous base substitutions, which are specifically
transitions, arise via incorporation of rare base tautomers during
DNA replication (Harris et al. 2003; Wang et al. 2011).

Hominoid species tree

In each of our ALFIE-generated data sets, the majority of rooted
gene trees displayed the expected topology of a human–chimpan-
zee sister group relationship (Ruvolo 1997; Chen and Li 2001;
Patterson et al. 2006; Hobolth et al. 2011; Faircloth et al. 2012;
Schrago 2014). This constitutes strong evidence based on the ma-
jority-rule criterion thatwe recovered the correct hominoid species
tree (Ruvolo 1997; Chen and Li 2001; Degnan and Rosenberg
2006). Moreover, our finding of equally frequent alternative topol-
ogies (∼18% each) in AL 292 alsomatches previous empirical stud-
ies (Ruvolo 1997; Patterson et al. 2006; Hobolth et al. 2011) and
expectations of coalescent theory (Degnan and Rosenberg 2009;
Wakeley 2009). However, gene tree distributions based on both
AE data sets showedmarkedly unequal frequencies between the al-
ternative topologies, which suggests that these distributions may
be biased due to the long-term effects of selection.

Ancestral population sizes

In a reanalysis of AL 53, and using a prior mean of 12,500 for the
gamma distribution, Yang (2002) estimated NHC to be 12,400.
However, when he instead used a larger and more diffuse prior
with a mean of 62,500, NHC increased to 33,000, suggesting the
prior exerted much influence over the posterior probability distri-
bution (Yang 2002, 2006). Rannala and Yang (2003) also analyzed
AL 53 using similar methods and an informative prior identical to
that used by Yang (2002), but their estimate of NHC was 24,600.
Our results based on AL 53 and AL 292 data sets also revealed
the same prior-driven pattern. However, the posteriormeans based
on the larger data set (42,000–59,000) covered a narrower range
than estimates from the smaller data set (17,000–64,000). This sug-
gests that our use of diffuse priors together with fivefold more in-
dependent loci diminished the prior’s influence on the posterior

Costa et al.

1262 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.203950.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.203950.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.203950.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.203950.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.203950.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.203950.115/-/DC1


(Yang 2006). Estimates for our AE 171 and AE 242 data sets yielded
estimates of NHC that ranged from 14,000–19,000, which are con-
siderably lower than our AL 292 estimates. Moreover, they are also
lower than other earlier estimates of NHC based on large data sets:
47,000 (Hobolth et al. 2011), 28,000–41,000 (Schrago 2014), and
99,000–122,000 (Burgess and Yang 2008; McVicker et al. 2009).
That our AE estimates are so low is not unexpected, because these
loci must be subject to some combination of direct and indirect
natural selection, which would decrease effective population
sizes. Given all discussed estimates, we conclude that our AE esti-
mates do not reflect levels of neutral genetic variation and that
our P1, P2, and P5 priors are not as realistic as our P3–P4 priors.
Accordingly, we suggest that NHC was closer to about 54,000.

Yang’s (2002) reanalysis of AL 53 using prior means of 12,500
and 62,500 yielded estimates of NHCG at 19,000 and 33,000, re-
spectively. In a comparable analysis using the same data set,
Rannala andYang (2003) estimatedNHCG to be 42,750. Our reanal-
ysis of AL 53 revealed an effect of the priors, but the range of esti-
mates (41,000–49,000) better reflects the estimate by Rannala and
Yang (2003). Increasing the NHCG prior to 274,000 (P5) had only a
minor effect on the posterior. Our AL 292 estimates for NHCG were
all about 40,000 and thus proved robust against the use of different
priors, while our AE estimates were, not unexpectedly,much lower
(24,000–27,000). Schrago’s (2014) estimate for this parameter
(32,000) based on introns is comparable to our AE estimates.
Given that intron loci likely experience some levels of direct and
indirect selection, it is not surprising that his parameter value
would be comparable to our AE results. In contrast,NHCG estimates
of 52,000 and 55,000 were obtained by McVicker et al. (2009) and
Burgess and Yang (2008), respectively, both of which better com-
pare to our AL 292 estimates (about 40,000). These independent
estimates again suggest that selection has reduced the effective
population size of this ancestral population at our AE loci. Note,
that if theNHCG estimate fromRannala and Yang (2003) is recalcu-
lated assuming a 21.2-yr-long generation time for the human–
chimpanzee–gorilla ancestor obtained from Schrago (2014), then
their estimate along with our AL 292 locus estimate suggest
NHCG to be about 40,000.

In Rannala and Yang’s (2003) reanalysis of AL 53, they esti-
mated the NHCGO to be 24,750 based on a prior mean of 12,500.
Our reanalysis of this data set produced NHCGO estimates ranging
from 31,000–92,000 and shows the same prior-induced trend ob-
served in the other population size parameters. Other estimates
for NHCGO include 84,000 (based on neutral loci) (Burgess and
Yang 2008), 84,000 (McVicker et al. 2009), 187,000 (Hobolth
et al. 2011), and 272,098 (Schrago 2014). Analysis of our AL 292
locus data set also shows some influence of the priors, but com-
pared to our AL 53 results, the range of estimates is narrower at
90,000–101,000. Despite increasing the prior mean of NHCGO to
274,000 in one analysis, we only observed a slight increase in
the posterior mean. Our two AE data sets yielded estimates of
this population size parameter ranging from 114,000–145,000,
which are higher than those based on our AL 292 data set.
However, given the substantial variation in estimates of this pa-
rameter (24,750–272,098), it is difficult to conclude which
estimate best reflects the true value. As before, we believe the
P1–P2 prior means for the ancestral population sizes are unrealisti-
cally low and P5 unrealistically high. Therefore, we favor our esti-
mates based on the AL 292 data set and P3–P4 priors, which places
NHCGO at about 100,000, because these data likely best meet the
neutrality assumption and are apparently not being driven by
poor priors.

Speciation times

Chen and Li (2001) estimated τHC to be 4.6 or 6.2 Mya depending
on whether a 12- or 16-Mya time calibration, respectively, was ap-
plied to the root node (i.e., τHCG-O). In Yang’s (2002) reanalysis of
AL 53, he estimated τHC to be 5.3 or 4.6Mya dependingonwhether
an informative or diffuse gamma prior was used, respectively.
Rannala and Yang (2003), who used the same data and similar
methods to Yang (2002), instead arrived at an estimate of 4.3
Mya. Results of our reanalysis of AL 53, which are based on 10
and 18 Mya priors for τHCG-O, estimated τHC to be 3.8–4.9 Mya.
Surprisingly, variation among these estimates was not due to the
different divergence time priors but instead is attributable to differ-
ent population size priors. Yang (2002) and Rannala and Yang
(2003) discussed the correlations between these parameters. Our
AL 292 data set yielded estimates of τHC ranging from 3.8–4.1
Mya, indicating the priors exerted little influence over the larger
data set. Our estimates of τHC based on AL 292 are comparable
with the majority of previous molecular studies: 4.9 Mya
(Hasegawa et al. 1987), 4.6 Mya (based on diffuse prior) (Yang
2002), 4.3 Mya (Rannala and Yang 2003), 4.0 Mya (Burgess and
Yang 2008), <5.4 Mya (Patterson et al. 2006), 4.1 Mya (Hobolth
et al. 2007), 4.2 Mya (Hobolth et al. 2011), and 3.6–4.1 Mya
(Schrago 2014). Interestingly, our two AE data set yielded substan-
tially more recent NHC divergence times of 2.1–2.6 Mya, which, in
light of the other estimates, must represent underestimates of the
true divergence date. Although human–chimpanzee speciation
may have been a demographically complicated and prolonged
process lasting millions of years (Pilbeam and Young 2004;
Patterson et al. 2006), our AL 292 estimates for τHC reinforce the
predominant molecular viewpoint that gene flow cessation be-
tween the lineages, and hence speciation, occurred ∼4 Mya
(Hobolth et al. 2007, 2011).

Chen and Li (2001) estimated τHC-G at 6.2 and 8.4 Mya de-
pending on the assumed orangutan lineage divergence time of
12 or 16 Mya, respectively. In Yang’s (2002) reanalysis of AL 53,
he estimated τHC-G to be 6.5 and 6.9 Mya depending on which pri-
ors were used, whereas Rannala and Yang (2003) obtained an esti-
mate of 6.0 Mya with the same data set. Our analyses of the AL 53
and AL 292 data sets generated estimates for τHC-G of 5.9 and 6.1
Mya, respectively, regardless of the priors. Our larger data set esti-
mate of a 6.1-Mya gorilla divergence time agrees with the majority
of previous molecular studies: 5.9 Mya (Hasegawa et al. 1987), 6.2
and 8.4 Mya (Chen and Li 2001), 6.5 Mya (based on diffuse prior)
(Yang2002), 6.0Mya (Rannala andYang2003), 7.2Mya (Satta et al.
2004), 8.6 Mya (Steiper and Young 2006), 6 Mya (Hobolth et al.
2007), 6.4 Mya (Burgess and Yang 2008), 9.5 Mya (McVicker
et al. 2009), and 5.8–6.0 Mya (Schrago 2014). In contrast, both of
our AE data sets suggest a far more recent gorilla divergence (3.0–
3.4 Mya). Again, our AE data evidently underestimated, rather se-
verely, a major speciation event in the hominoid species tree.

In their reanalysis of AL 53, Rannala and Yang (2003) estimat-
ed τHCG-O at 14Mya, while our analysis of these data suggested this
event occurred between 12.5–14 Mya depending on the priors.
Our AL 292 data set produced a comparable but narrower range
from 12.3–12.5 Mya, showing once again how little the priors in-
fluenced the posteriors. As with our τHC and τHC-G estimates, vari-
ation among estimates within data sets was due to a correlational
effect attributable to different population size priors. Although
two studies (Satta et al. 2004; Steiper and Young 2006) estimated
τHCG-O to be ∼18 Mya, our estimate of ∼12.5 Mya agrees well
with the majority of previous studies: 11.9 Mya (Hasegawa et al.
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1987), 14 Mya (Goodman et al. 1998), 14 Mya (Rannala and Yang
2003), 14.6 Mya (Burgess and Yang 2008), 12 Mya (McVicker et al.
2009), 9–13 Mya (Hobolth et al. 2011), and 10.9–13.8 Mya
(Schrago 2014). Estimates of the orangutan divergence based on
our AE data sets were placed at only 4.8–6.1 Mya, which are half
that of established estimates. Our preferred estimates for the ances-
tral effective population sizes and speciation times on the accepted
hominoid species tree are shown in Supplemental Figure S3.

Benefits of hundreds or more of independent neutral loci

Because independent neutral loci represent independent samples
of the coalescent process (Wakeley 2009), larger numbers of such
loci are expected to producemore accurate and powerful estimates
of species trees, ancestral population sizes, and speciation times
(Pluzhnikov and Donnelly 1996; Jennings and Edwards 2005;
Felsenstein 2006; Lee and Edwards 2008). Our empirical results
provide strong evidence in support of these assertions. First, the
posterior means based on AL 53 were markedly influenced by
the priors, whereas the posteriors based on our 292-locus data set
were less biased if affected at all. This is the same pattern observed
in previous studies (Jennings and Edwards 2005; Lee and Edwards
2008), whichhad examined the posteriormeans and variances as a
function of number of loci that had been randomly subsampled
from the same data set. As Yang (2002, 2006) and Jennings and
Edwards (2005) noted, it is of concern to know whether the poste-
rior is sensitive to the prior in Bayesian population genetic analy-
ses. In cases such as the present study in which a large amount of
data dominate the posterior, the subjectivity of prior specification
becomes less important particularly if diffuse priors are used (Yang
2002, 2006; Jennings and Edwards 2005).

Improved reliability of parameter estimates represents a sec-
ond benefit of having more independent loci. When we contrast
our parameter estimates based on AL 53 versus AL 292 loci, the
Bayesian 95% credibility intervals based on the smaller data set
are generally two- to threefold broader than the intervals associat-
ed with the larger data set (see Fig. 3). This mirrors the pattern
found in several studies that had evaluated posterior variances as
a function of the number of subsampled loci (Jennings and
Edwards 2005; Lee and Edwards 2008; Smith et al. 2013). To our
knowledge, this is the first time two independent data sets of dras-
tically different numbers of loci (fivefold difference) have been
compared to show the benefits of larger numbers of independent
loci in phylogenomic studies.

While there is no doubt about the importance of the indepen-
dent loci assumption in coalescent-based analyses, less clear are
the consequences of violating the neutrality assumption.
McVicker et al. (2009) presented evidence implicating indirect se-
lection as the agent responsible for reducing effective population
sizes of ancestral hominoids at genomic loci adjacent to conserved
elements.With only one exception, our estimates of ancestral pop-
ulation sizes and speciation times in hominoids based on our AE
data sets were not just substantially below those generated by
our presumably neutral AL but also well below the ranges of previ-
ous estimates. Based on these empirical results, we suggest that AE
loci—and by extension other loci that are subjected to direct or in-
direct natural selection such as UCE, EPIC, and exonic loci—may
not sufficiently meet the neutrality assumption of coalescent-
based methods, inducing systemic underestimation of population
genetic parameters. Given the increasing ease of acquiring large
phylogenomic data sets composed of different loci, as well as the
desire to perform coalescent-based analyses, additional empirical

and simulation studies are needed to study the effects of violating
the neutrality assumption.

Methods

Software development

Our software is called the ALFIE package and is available at https://
github.com/igorrcosta/alfie and in the Supplemental Material. It
was developed in Python 2.7 using the Biopython library (Cock
et al. 2009) and contains several Python scripts that work
together to generate ready-to-analyze phylogenomic data sets
from complete genome data. The program contains a module for
finding themaximumnumber of ideal AL in a genome and amod-
ule for finding a set of genealogically independent anchor (AE/
UCE) loci in a genome. Additionally, the package includes
scripts for phylogenetic analysis (program “PhyML,” Guindon et
al. 2010), substitution model selection (program “jModelTest”)
(Posada 2008), loci chromosomal distribution (program
“Circos”) (Krzywinski et al. 2009), and PCR primer design (pro-
gram “eprimer”) (Rice et al. 2000). A manual explaining how to
use the program is available at https://github.com/igorrcosta/
alfie/raw/master/manual.pdf (also see Supplemental Material).

Validation of the ALFIE software

We tested ALFIE by using it to generate one AL and twoAE loci data
sets from complete genome sequences of hominoids. The follow-
ing Ensembl genome versions were used in this study: Homo sapi-
ens version 38 (only for ALs), Pan troglodytes version 2.1.4, Gorilla
gorilla version 3.1, and Pongo abelii version 2.Homo sapiens genome
version hg19, which was required for finding the AEs listed in our
coordinate file, was obtained from the UCSC Genome Browser
server.

To generate an AL data set, the user must specify threshold
values for theminimumphysical distances (in base pairs) between
AL and nearest annotated genomic elements as well as between
sampled AL found on the same chromosomes. Previous hominoid
phylogenomic studies designated the former distance to be 1 kb
(Burgess and Yang 2008), 1.5 kb (Peng et al. 2009), and 5 kb
(Chen and Li 2001), whereas the latter has been set to 200 kb in
a study of the human genome (Sachidanandam et al. 2001). Our
theoretical estimate for the average physical distance between ge-
nealogically independent loci in the hominoid genome agrees
with the aforementioned 200-kb distance (see Supplemental
Methods), and thus, we specified this value for both thresholds
in our software program. It is important to realize that recombina-
tion rates vary throughout genomes such as in the human genome
(Reich et al. 2002; McVean et al. 2004), and thus, the minimum
physical distance for any given pair of genealogically independent
loci will vary accordingly (Kaplan et al. 1989; Hudson and Coyne
2002). Nonetheless, the distance values chosen for use in our soft-
ware should be adequate to ensure that the output AL largely meet
the assumptions of being neutral and independent from other
sampled loci.

We generated two test AE data sets consisting of vertebrate AE
loci developed by Lemmon et al. (2012). This set of 512 target AEs
are coding elements that are conserved across vertebrates. One of
our hominoid AE data sets, “AE 242,” was constructed by using
the software to extract 500-bp sequences that immediately flank
these AEs, regions that presumably contain many conserved sites.
Because the sites further away from these AEs are likely intronic
sites or other sites with little or no conservation (Lemmon et al.
2012), we used ALFIE to construct a second AE data set, “AE
171,” consisting of flanking sequences that were 500 bp from their
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adjacent AEs in order to assess the effects of indirect selection on
phylogenomic loci. In both AE data sets, we used the same 200-
kb distance filter described earlier to separate sampled loci.

Data analyses

Nucleotide substitution model selection

To find the optimal nucleotide substitution model for each locus,
we ran the software jModelTest (Posada 2008) using a python
script, which allowed us to conduct automated analyses of
all loci and parse the results. The script is located on GitHub
(https://github.com/igorrcosta/alfie/blob/master/al_modeltest.py).
Gene trees were inferred for all sampled loci using maximum like-
lihood implemented in the software PhyML (Guindon et al. 2010),
and in each case, the orangutan sequence was the outgroup.
Because our jModelTest analyses indicated that the vast majority
of our loci favored an HKYmodel, we used this substitutionmodel
in all phylogenetic analyses. We developed a script for running
PhyML in batch analyses and parsed the resulting hominoid topol-
ogies. It is available on GitHub (https://github.com/igorrcosta/
alfie/blob/master/al_phyml.py).

We used the software BP&P 2.2 (abacus.gene.ucl.ac.uk/
software.html) to estimate six historical demographic parameters
for the hominoids: population size parameters for the human–
chimpanzee ancestor (θHC), human–chimpanzee–gorilla ancestor
(θHCG), human–chimpanzee–gorilla–orangutan ancestor (θHCGO),
human and chimpanzee speciation time (γHC), gorilla speciation
time (γHC-G), and orangutan speciation time (γHCG-O). We convert-
ed ancestral θ to Ne using the equation θ = 4Neμ where μ is the ex-
pected number of substitutions/site/year. We converted γ into τ
(speciation time in years) using the formula γ = τμ. For presumably
neutral autosomal loci, previous hominoid studies (e.g., Yang
2002; Rannala and Yang 2003; Burgess and Yang 2008; Schrago
2014) assumed μ = 10−9 substitutions/site/year, which we adopt
here. Previous studies of hominoids, which used BP&P2.2 or sim-
ilar (Yang 2002; Rannala and Yang 2003; Burgess and Yang 2008)
computer programs, assumed a generation time of 20 yr for con-
verting θ to Ne. However, a recent study (Schrago 2014) inferred
the generation times for the various hominoid ancestors. These
are human–chimpanzee ancestor = 26.3 yr, human–chimpanzee–
gorilla ancestor = 21.2 yr, and human–chimpanzee–gorilla–orang-
utan ancestor = 15.2 yr. We used these generation times to esti-
mate the ancestral Ne parameters. BP&P2.2 uses a Bayesian
approach to estimate the six parameters, and therefore, prior prob-
ability distributions are required for some parameters. For θHC,
θHCG, and θHCGO, the user only specifies one prior probability dis-
tribution, which is applied to all three parameters. A gamma distri-
bution is used for this prior, and thus, the user must specify the α
and β hyperparameters G(α, β) for θ with mean α/β and variance
α/β2 (Rannala and Yang 2003).

A number of studies have used these Bayesian methods to es-
timate the historical parameters for hominoids, and thus, there has
been some experimentationwith different priors. Yang (2002) and
Rannala and Yang (2003) used the diffuse prior (also called
“vague” prior) G(2, 2000), which has a prior mean of 0.001. If a
20-yr generation time is assumed, then NHC, NHCG, and NHCGO

are expected to be 12,500. If the inferred ancestral generation
times (Schrago 2014) are used instead, then they are expected to
be NHC = 9,500, NHCG = 12,000, and NHCGO = 16,500. Yang (2002)
also used a more diffuse prior G(1.5, 300), which also had a larger
prior mean (0.005). If the 20-yr generation time is used, then the
expected population sizes for this prior are 62,500. If the ancestral
generation times (Schrago 2014) are used instead, then the expect-
ed prior means are NHC = 47,500, NHCG = 59,000, and NHCGO =

82,000. Burgess and Yang (2008) also used a diffuse prior for larger
expected population sizes: G(2, 500), which has a prior mean of
0.004. If the usual 20-yr generation time is used, then NHC,
NHCG, and NHCGO each have a prior mean of 50,000. If the ances-
tral generation times are used, then the prior means are NHC =
38,000, NHCG = 47,000, and NHCGO = 66,000.

Although the priors for the larger population sizes may be
more appropriate in our analyses owing to the empirical findings
fromanumber of studies suggesting that hominoid population siz-
es ranged from 33,000–272,000 (for a list of studies and estimates,
see Supplemental Methods), we used three different diffuse priors
to cover the entire range in order to evaluate the sensitivity of our
results to the priors (Yang 2002, 2006; Jennings and Edwards
2005). At the lower end, we used a prior ofG(2, 2000), which trans-
lates to prior means of: NHC = 9,500, NHCG = 12,000, and NHCGO =
16,500. The second prior was higher than the first and better re-
flects the more recent estimated population sizes for NHC G(2,
500), which has a prior mean of 0.004mutation units or, in demo-
graphic units: NHC = 38,000, NHCG = 47,000, and NHCGO = 66,000.
The third prior, which reflects the upper size extreme, G(2, 120),
has a mean of 0.01667 mutation units, or NHC = 158,500, NHCG

= 196,500, and NHCGO = 274,000.
For the three speciation time parameters (γHC, γHC-G, γHCG-O)

the user only needs to specify the gamma prior for the root node
(i.e., time of orangutan speciation). We followed the method of
Burgess and Yang (2008), who used α = 4 for a diffuse speciation
time prior. Previous studies have produced a wide array of esti-
mates for τHCG-O: 9–13 Mya (Hobolth et al. 2011), 10–13 Mya
(Schrago 2014), 12 Mya (Hasegawa et al. 1987), 14–15 Mya
(Goodman et al. 1998; Burgess and Yang 2008), and 18 Mya
(Satta et al. 2004; Steiper and Young 2006). Given this range, we
specified two priors for τHCG-O, which cover this 10- to 18-Mya
range and therefore allowed us to assess the sensitivity of our re-
sults to the priors. Thus, the priors were G(4, 400) and G(4, 222),
which have prior means of 0.010 and 0.018, respectively, or,
when converted to units of years, are equal to 10 and 18 Mya,
respectively.

Weperformed five different analyses of our data sets using the
three population size priors and two speciation time priors already
described. For a summary of these five prior combos as well as their
prior means, see Supplemental Table S17. Note that we did not in-
clude a sixth prior combo because our results showed that altering
the speciation time prior does not affect the results. We repeated
each analysis to verify stability of parameter estimates as recom-
mended (abacus.gene.ucl.ac.uk/software.html).

We reanalyzed the 53 AL data set, or “AL 53,” from Chen
and Li (2001) because wewanted to compare the ancestral popula-
tion size and speciation time estimates based on our newly ob-
tained data set with this 53-locus data set and to determine the
effects of number of loci on parameter estimates. Second, wewant-
ed to compare our estimates from AL 53 to those in earlier studies,
which had also analyzed these data using Bayesianmethods (Yang
2002; Rannala andYang2003). The softwarepackageBP&Pversion
2.2 (abacus.gene.ucl.ac.uk/software.html) contained these data in
a PHYLIP-formatted file, which is what we used in this study.

Data access

The software ALFIE described in this study together with docu-
mentation and sample data files including those used in this study
are available at https://github.com/igorrcosta/alfie. The version of
ALFIE used in this work is also available in the Supplemental
Material. All data sets generated in this study were deposited in
Dryad (doi:10.5061/dryad.jn8nt).
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