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Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important

consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is

tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known.

Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four

environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment

and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated

levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in ex-

pression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different

partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes

in noise at different growth rates as well as overall higher variability in expression for cell-cycle–regulated genes in all con-

ditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat

at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally,

we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the

existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications.

[Supplemental material is available for this article.]

Proper control of gene expression is critical in nearly all biological
processes. However, genetically identical cells exposed to the same
environment display heterogeneity in gene expression (noise),
with important phenotypic consequences (Grossman 1995; Rao
et al. 2002; Blake et al. 2003; Balaban et al. 2004; Colman-Lerner
et al. 2005; Kærn et al. 2005; Balázsi et al. 2011; Munsky et al.
2012; Lee et al. 2014). Variability in expression is anti-correlated
to population average gene expression, which in turn is tightly
coupled to growth rate (Tyson et al. 1979; Ingraham et al. 1983;
Bar-Even et al. 2006; Newman et al. 2006; Brauer et al. 2008;
Klumpp et al. 2009; Taniguchi et al. 2010; Keren et al. 2013).
However, except for isolated examples (Guido et al. 2007), the ef-
fects of growth conditions on expression noise have not been sys-
tematically investigated.

The expression noise of a gene in a clonal population is deter-
mined by intrinsic and extrinsic factors (Elowitz et al. 2002).
Intrinsic noise describes the variation at the level of a single gene
due to the stochastic nature of the transcriptional process, whereas
extrinsic noise relates to the variability in expression shared across
different genes due to population dynamics, global differences in
cellular environment, and shared upstream components (Thattai
and van Oudenaarden 2001; Elowitz et al. 2002; Blake et al.
2003; Raser and O’Shea 2004; Pedraza and van Oudenaarden
2005; Volfson et al. 2006; das Neves et al. 2010; Stewart-Ornstein
et al. 2012; Schwabe and Bruggeman 2014). Although research,
in particular at the theoretical level, has focused on stochastic, in-

trinsic noise (for review, see Raj and van Oudenaarden 2008;
Balázsi et al. 2011; Sanchez and Golding 2013), in most organisms
that have been studied, the majority of the variability in gene ex-
pression is extrinsic (Raser and O’Shea 2004; Acar et al. 2005;
Colman-Lerner et al. 2005; Newman et al. 2006; Volfson et al.
2006; Raj and van Oudenaarden 2008; Schwabe and Bruggeman
2014). Intrinsic expression noise is tightly coupled to the mean
expression of the population and generally decreases as mean
expression increases (Bar-Even et al. 2006; Newman et al. 2006;
Taniguchi et al. 2010), as depicted schematically in Figure 1A. At
high expression levels, there is no longer a dependence on the
mean, as global, extrinsic factors set a lower bound (extrinsic limit)
for the overall variability (Bar-Even et al. 2006; Newman et al.
2006; Taniguchi et al. 2010). Deviations of genes from this trend
are attributed to their specific regulatory architectures, often en-
coded by their promoter sequence, which may specifically result
in either high or low levels of noise (Blake et al. 2003; Raser and
O’Shea 2004; Carey et al. 2013; Dadiani et al. 2013; Sanchez and
Golding 2013; Jones et al. 2014).

Parameters affecting gene expression variability change
across conditions in a coordinated manner, e.g., growth rate
(Tyson et al. 1979; Ingraham et al. 1983), mean expression
(Berthoumieux et al. 2013; Gerosa et al. 2013; Keren et al. 2013),
and concentration of RNA polymerases and ribosomes (Pedersen
et al. 1978; Ingraham et al. 1983; Klumpp and Hwa 2008).
Harsher conditions, which support slower growth, also display
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lower protein abundances formost genes
and, specifically, lower abundances of
RNA polymerases and ribosomes (Pe-
dersen et al. 1978; Tyson et al. 1979;
Ingraham et al. 1983; Klumpp and Hwa
2008, 2014; Klumpp et al. 2009; Berthou-
mieux et al. 2013; Gerosa et al. 2013;
Keren et al. 2013). However, it is not clear
whether noise levels are expected to
change globally between conditions
and in what direction because many of
these changesmay have opposing effects
(Fig. 1B; Supplemental Note 1).

To examine how noise changes
across conditions, we measured the sin-
gle-cell expression distributions of ap-
proximately 900 Saccharomyces cerevisiae
promoters upstream of a fluorescent re-
porter across four environmental condi-
tions using flow cytometry. We find a
genome-wide increase in gene expres-
sion noise at lower growth rates, with
most genes displaying elevated noise
levels at slow growth. We examine the
dependence of noise in expression on
growth rate by modeling the noise that
results only from changes in the
composition of cell-cycle stages in the
population at different growth rates.
Consistent with our data, we find that
this highly simplified model predicts a
non-monotonic relationship between
growth rate and noise, as well as overall
higher variability in expression for cell-
cycle–regulated genes in all conditions.
Measurements of several strains grown
in a chemostat further support ourmodel
and suggest that differential partitioning
of the population between cell-cycle
stages in different growth rates is a major
determinant of extrinsic noise.

Our work underscores the impor-
tance of growth rate–related effects in
noise, showing that some conditions
show elevated levels of expression vari-
ability genome-wide, with potential phe-
notypic consequences. Since cell-to-cell
variability in gene expression underlies
important phenotypic phenomena such
as persistence (Balaban et al. 2004), com-
petence (Maamar et al. 2007), latency
(Dar et al. 2014), metastasis (Lee et al.
2014), responsiveness to fluctuating en-
vironments (Acar et al. 2005, 2008;
Blake et al. 2006; Kaufmann et al. 2007;
Levy et al. 2012; Vardi et al. 2013), and
triggering of meiosis (Nachman et al.
2007), our results suggest that the proba-
bility and efficiency of these processes
will be tightly coupled to environmental
conditions, with potential evolutionary
implications.
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Figure 1. Gene expression noise is higher at lower growth rates. (A) A schematic of the genome-wide
relationship betweenmean expression (x-axis) and noise (CV2, y-axis) in a single condition as determined
experimentally (Newman et al. 2006; Taniguchi et al. 2010). At low expression levels, the noise is inverse-
ly correlated with the mean expression of the gene and is dominated by intrinsic factors. At high expres-
sion levels, noise and mean are uncorrelated, presumably since intrinsic noise levels decrease, and
extrinsic factors set a lower bound (extrinsic limit) for the CV2 (Bar-Even et al. 2006; Newman et al.
2006; Taniguchi et al. 2010). The black line denotes the median of all genes. The dashed line separates
the regimes dominated by intrinsic or extrinsic variability. (B) Alternative predictions for global, genome-
wide changes in mean and noise when cells are moved to a condition that supports a lower growth rate.
The black line is as in A, whereas colored lines denote the behavior in the new condition. (1) Mean-noise
curve is unchanged in slow growth. (2) Slower growth is coupled with a global decrease in mean (Brauer
et al. 2008; Keren et al. 2013). Promoters shift left along the black curve, such that the noise of each pro-
moter is higher, but globally, the samemean expression is associatedwith similar noise levels in both con-
ditions. (3) Slow growth causes an increase in extrinsic noise, such that the same mean expression is
associated with higher noise levels. This effectively increases the extrinsic limit and shifts the boundary
between the regimes. (4) Slow growth causes an increase in both extrinsic and intrinsic noise. (5)
Slow growth causes a decrease in both intrinsic and extrinsic noise. Plausible reasons for the different pre-
dictions are discussed in Supplemental Note 1. (C ) Scatterplot of the YFP mean (x-axis) and CV2 (y-axis)
for cells grown in glucose plus amino acids. Red lines depict lower noise bound (solid), twofold (dashed),
or fivefold (dotted) above the lower bound. (D) Scatterplot of the YFP mean (x-axis) and noise (CV2, y-
axis) for all promoters in each of the four conditions with linear fits of the data: (black) glucose; (red) glu-
cose w/o AA; (blue) galactose w/o AA; (green) ethanol. The different conditions exhibit different levels of
noise for the same mean expression. (Inset) the growth rate (in doublings per hour) in each of the tested
conditions. (E–G) Scatter of the noise of all promoters in the fastest growth condition (glucose, x-axis)
and each of the other conditions (y-axis): glucose w/o AA (E); galactose w/o AA (F); and ethanol (G).
Dashed cyan line indicates y = x. In all comparisons, most of the promoters are above the line (74%,
87%, and 81%, respectively), indicating that they display lower noise values in the fast growth condition.
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Results

Measurement of promoter-driven expression distributions

across conditions

To systematically examine noise in gene expression across envi-
ronmental conditions, we utilized a previously described library
of yeast strains, in which we genomically integrated 859 different
native yeast promoters, spanning a wide variety of cellular func-
tions and processes, upstreamof a stable yellow fluorescent protein
(YFP) (Keren et al. 2013). These strains also include a second
mCherry fluorescent reporter downstream from a constant pro-
moter in all strains, allowing control of the experimental variabil-
ity of our system (Supplemental Fig. S1). We grew the strains in
four environmental conditions, differing in carbon source and
availability of amino acids, and measured single-cell expression
distributions using flow cytometry at midexponential growth.
For each promoter–reporter, we extracted both its mean and noise
(σ2/µ2, variance divided by the mean squared, known as the
squared coefficient of variation [CV2]) (Methods; Supplemental
Table S1). We performed several analyses to gauge the integrity
and accuracy of the system. We examined our experimental vari-
ability using biological replicates and obtained high reproducibil-
ity (mean R = 0.99, CV2 R = 0.91) (Supplemental Fig. S2). We also
assessed the sensitivity of our system and found that 96% of our
strains (822/857) were above the detection limit in at least one of
the tested conditions (Methods).

We find that in each condition, our measurements largely re-
capitulate previous flow cytometry measurements of protein
abundances (Bar-Even et al. 2006; Newman et al. 2006; Stewart-
Ornstein et al. 2012). At low expression levels, the noise decreases
with increasing mean expression, whereas at high expression lev-
els it remains constant (Fig. 1C; Supplemental Fig. S3). In all con-
ditions, promoters display a large span in their noise values.
Promoters encoding for similar mean expression values may dis-
play more than an order-of-magnitude difference in noise values
(Fig. 1C; Supplemental Fig. S3), similar to the range reported for
proteins (Bar-Even et al. 2006; Newman et al. 2006). Comparing
our results in rich media to flow cytometry measurements of pro-
tein abundances in richmedia (Stewart-Ornstein et al. 2012) yields
a positive correlation (mean R = 0.64, noise R = 0.5) (Supplemental
Fig. S4), indicating that variability in yeast protein levels is at least
partly encodedby their promoter sequence. Taken together, our re-
sults suggest that we can accurately capture variability in gene ex-
pression, which is encoded within the promoter region, of
approximately 900 different genes under four growth conditions.

Variability of promoter-driven expression decreases

with increasing growth rate

To examine how promoter-driven expression levels change across
conditions, we compared the mean and noise (Fig. 1E–G;
Supplemental Fig. S5) of all promoters in every pair of conditions.
In agreement with previous reports (Brauer et al. 2008; Keren et al.
2013), we found a global decrease in mean expression for most
genes in slow growth conditions. Notably, we found that for
most promoters, noise differs across conditions in a manner that
correlated with growth rate (Fig. 1D, inset). Nutrient-rich condi-
tions, which support faster growth rates, exhibit lower noise for
most promoters (74%–87% of the genes for the conditions exam-
ined). We validated that these changes in noise are not a result of
experimental artifacts (Methods; Supplemental Fig. S2). This result
implies that the cell-to-cell variability in expression levels is a func-

tion of the environment, whereby in poor growth conditions an
isogenic cell population will generally be more variable than the
same population in rich conditions.

There are alternative predictions for the global, genome-wide
elevation in noise when cells are moved to a condition that sup-
ports slower growth rate. Since slower growth is coupled with a
global decrease in mean expression (Brauer et al. 2008; Keren
et al. 2013), it could be that each gene will have a lower mean
and, consequently, higher noise due to the inverse mean–noise re-
lationship. Overall, this will result in promoters shifting left along
the existingmean–noise curve without changing the coupling of a
particular value of mean expression to a particular value of noise
(Fig. 1B, green). Alternatively, it could result from a global eleva-
tion in intrinsic or extrinsic noise, such that the same mean
expression is coupled to higher noise levels in slow-growth condi-
tions in either intrinsically dominated or extrinsically dominated
regimes or in both (Fig. 1B, orange and purple).

To examine the sources of these global changes in noise
across conditions and distinguish between the different predic-
tions in Figure 1B, we plotted the mean and CV2 of each promoter
in each condition. For each condition, we fitted the dependence of
noise onmean expression, extracted the extrinsic variability limit,
and defined the regimes of expression dominated by either intrin-
sic sources (low expression) or extrinsic sources (high expression)
as previously done (Fig. 1D; Supplemental Fig. S6; Methods; Bar-
Even et al. 2006). Interestingly, we found that slow-growth condi-
tions display a global, genome-wide elevation in noise for the en-
tire range of expression (as predicted by line 4 in Figure 1B). For
example, in ethanol, the slowest growth condition that we exam-
ined, the extrinsic noise limit is elevated ≈threefold compared to
glucose, the fastest growth condition (Fig. 1D). In slow growth
rates, themean expression of all promoters is lower, which in itself
contributes to an increase in noise. Herewe found that even for the
same value of mean expression (associated with different promot-
ers at different growth rates), there is a significant increase in noise
in slow growth. Notably, both extrinsically and intrinsically dom-
inated regimes are associated with higher noise, and the observed
changes cannot result solely from an increase in extrinsic noise
(Supplemental Fig. S7; Supplemental Note 2). These results suggest
that in slow-growth conditions, noise is generally higher such that
the same mean expression is associated with elevated noise levels.

A model of noise that reflects changes in cell-cycle–stage

distributions in the population at different growth rates

predicts global changes in noise across conditions

Extrinsic noise has been previously attributed to various factors,
primarily population dynamics and variability in shared upstream
components, such as the cellular expression machinery and tran-
scription factors (Thattai and van Oudenaarden 2001; Elowitz et
al. 2002; Blake et al. 2003; Raser and O’Shea 2004; Pedraza and
van Oudenaarden 2005; Volfson et al. 2006; das Neves et al.
2010; Stewart-Ornstein et al. 2012; Jones et al. 2014; Schwabe
and Bruggeman 2014). To study the sources for changes in extrin-
sic noise between conditions, we developed a simple model that
explores the variability in gene expression resulting only fromhav-
ing an asynchronous population with cells at different cell-cycle
stages (Methods). Our model assumes a growing, asynchronous
population of cells, in which cells can be either in G1 or G2,
with G2 cells displaying overall higher expression levels due to in-
creased gene copy number (O’Duibhir et al. 2014)—for simplicity,
we assume that the average expression of G2 cells is twice that of
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G1 cells, but this assumption can be relaxed (see Supplemental
Note 5; Supplemental Fig. S8). Following previous observations
in yeast, we next assume that changes in growth rate aremainly at-
tributed to a change in the time spent in G1, leading to different
fractions of cells in G1 at different growth rates (Tyson et al.
1979; Brauer et al. 2008). Using this simplified model in which
each cell takes on one of two possible expression states (corre-
sponding to G1 and G2), we find that the variability (CV2) is relat-
ed to the fraction of cells in G2 ( f ) by the following relationship:

CV2 = f 1− f
( )
f + 1

( )2 + C, (1)

with C representing the extrinsic noise added by all other, non-
cell-cycle–related components. This equation yields a non-monot-
onous relationship between variability and the growth rate of the
population, with a peak in variability at growth rates inwhich one-
third of the population is in G2 (Fig. 2A, solid line).

To identify what fraction of the changes observed experimen-
tally in extrinsic variability are captured by this naïve model, we

measured the fraction of cells in G1 and G2 in our growth condi-
tions. We constructed a strain in which green fluorescent protein
(GFP) was fused to the N-terminal region of the H4 histone protein
(GFP-HHF1) (Methods) and grew it together with our library to ob-
tain the fraction of cells in G1 and G2 in the different growth con-
ditions. We found that the fraction of G2 cells increases with
growth rate, ranging from ∼55% for cells grown in ethanol to
∼80% in glucose (Fig. 2B). These values are in excellent agreement
with G2 fractions previously reported in the literature for these
conditions (Supplemental Table S2; Slater et al. 1977; Johnston
et al. 1979; Tyson et al. 1979). We then compared the model pre-
dictions at these G2 fractions to the extrinsic noise limit we ex-
tracted for each growth condition (Methods; Supplemental Fig.
S9). We found that our simplified model quantitatively accounts
for >60% of the extrinsic variability for each of the examined
growth conditions and recapitulates the decrease of extrinsic vari-
ability with growth rate (Fig. 2). These results suggest that the
fact that at different growth rates the population of cells is differ-
entially partitioned between the different cell-cycle stages may

lead to a higher variability limit (higher
“noise floor”) (Volfson et al. 2006;
Taniguchi et al. 2010) on gene expression
at slow-growth conditions, affecting all
genes.

Our model predicts a non-mono-
tonic change in CV2 with growth rate
(Fig. 2A). To test this prediction, we
wished to study the noise at very low
G2 fractions, which we could not obtain
by batch growth conditions (Supplemen-
tal Note 3) nor by measurements of our
library in stationary state (Methods; Sup-
plemental Fig. S10; Guido et al. 2007). To
this end, we decided to undertake a com-
plementary approach andmeasure a sub-
set of our high-expressing strains, whose
noise is likely dominated by extrinsic fac-
tors, using a chemostat (Brauer et al.
2008).We constructed a system of amin-
istat array as previously described (Miller
et al. 2013) and grew four of our strains
under conditions of histidine limitation
(Levy et al. 2007) at a dilution rate of
0.04 h−1, corresponding to a doubling
time of ∼17.5 h (Methods; Supplemental
Fig. S11). To find the fraction of G2 cells,
we grew HHF1-GFP in the first ministat.
In the other three ministats, we grew
the promoter–reporter strains for RPL28,
HHT2, and TDH2, which had high
expression levels in all conditions in
our batch growth experiments (Supple-
mental Table S1). Upon stabilization of
the chemostats, cells were measured by
flow cytometry. We found that under
these conditions, the culture reached a
low G2 fraction of 17% (Fig. 2B).
Notably, for all three strains, noisewas re-
duced (Fig. 2C), and their average noise
value agreed well with the predictions
of the model (Fig. 2A). We further vali-
dated the non-monotonic relationship
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Equation 1, with C = 0.065 (black line). Colored points represent experimental data. The fraction of
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between growth rate and expression variability for RPL28 by grow-
ing this strain in a large histidine-limited chemostat at dilution
rates ranging from 0.3 to 0.05 h−1 (corresponding to doubling
times of 2–14 h, respectively) (Supplemental Note 6; Supplemental
Fig. S12). These results suggest that for high-expressing genes,
whose noise levels are dominated by extrinsic factors, the differen-
tial partitioning of the population between the cell-cycle stages
at different growth rates is a significant determinant of the final
noise levels. They also suggest that although the measurements
of the entire promoter library in common laboratory conditions
predominantly showed that extrinsic noise is higher at lower
growth rates, this relationship may be reversed for some genes at
very slow growth rates. This hypothesis requires further explora-
tion on a larger scale.

In addition, for all of our strains, we performed simulations
on our measured data in which we generated in silico wells with
different compositions of G1 and G2 cells (Methods; Supplemen-
tal Fig. S13).We found that ourmodel was highly successful in pre-
dicting the outcome of these simulations. Although each strain
has its own range of CV2 values (derived from its mean expression
and intrinsic properties), the overwhelmingmajority of the strains
perform as predicted by our model when subsampling different
compositions of G1/G2 cells in the population (Supplemental
Fig. S14).

Finally, in addition to a global increase in extrinsic variability
in slow-growth conditions, we found that these conditions also
exhibit a systematic increase in intrinsic variability (Fig. 1D). We
explored whether changes in cell-cycle–stage distributions across
conditions could also lead to changes in intrinsic variability by
extending our model to incorporate the variability within G1
and G2 populations (Supplemental Note 4). Our model predicts
that genes with higher values of intrinsic noise will show a steeper
increase in their noise with decreasing growth rate (Supplemental
Fig. S15A). That is, for genes with higher levels of intrinsic variabil-
ity, the decrease in CV2 with increasing G2 fraction (i.e., faster
growth rate) will be larger. Indeed, we observe experimentally
such a trend in our data (K–S P < 1 × 10−6) (Supplemental Fig.
S15B).

Taken together, these results suggest that changes in the pop-
ulation cell-cycle distribution as a function of changing growth
rate may significantly contribute to changes in both intrinsic
and extrinsic variability. We note that our models provide an un-
derestimation of the noise (C > 0) (Methods) in each condition and
other factors probably contribute to the observed coupling be-
tween environmental conditions, growth rate and noise.

Cell-cycle–dependent genes have high expression variability

The above model suggests that coupling of gene expression to the
cell cycle may result in increased expression variability (Supple-
mental Note 5; Zopf et al. 2013).We therefore examined the distri-
butions of mean expression and noise in all growth conditions for
promoters of genes that were previously shown to be either cycling
or noncycling (Spellman et al. 1998). We find that in all our
growth conditions, genes whose expression is coupled to the cell
cycle exhibit significantly higher levels of variability (13%–37%,
K–S P < 10−5) (Fig. 3; Supplemental Fig. S16). Importantly, this el-
evation in variability does not result from different mean ex-
pression levels between cycling and noncycling genes (0.14 < P <
0.64 for paired K–S test) (Supplemental Fig. S16) and appears to
be dominated by an increase in extrinsic noise, as predicted by
our model.

To test whether this property of cell-cycle–regulated genes is
also maintained at the protein level, we analyzed two published
data sets of genome-wide protein distributions in two conditions
measured by flow cytometry of yeast proteins fused to GFP
(Newman et al. 2006; Stewart-Ornstein et al. 2012). We find that
in both data sets, cell-cycle–regulated proteins exhibit significantly
higher levels of variability (P < 3 × 10−5 for paired K–S test)
(Supplemental Fig. S17). As expected, most of the change is attrib-
uted to the extrinsic component (Supplemental Fig. S17E–J).
Taken together, these results suggest that in all conditions exam-
ined, the coupling of gene expression to cell cycle results in higher
expression variability.

Sequence determinants of high promoter variability change

between conditions

Next, we examined how different promoter features relate to ex-
pression variability across conditions. Previous studies, conducted
in fast growth conditions, identified that “housekeeping” genes,
which are not differentially regulated across conditions, are gener-
ally associated with low levels of noise, whereas “plastic,” “condi-
tion-specific” genes are often associated with high levels of noise
(Bar-Even et al. 2006; Newman et al. 2006). This high variability
of the condition-specific genes coincides with their promoter ar-
chitectures, which are generally highly occupied by nucleosomes,
remodeled by the SAGA complex, and contain strong TATA ele-
ments (Fig. 4A; Newman et al. 2006; Field et al. 2008; Tirosh and
Barkai 2008; Zenklusen et al. 2008; Hornung et al. 2012). As these
features are encodedmainly by the promoter sequence, we verified
that these features are also strongly correlated with expression var-
iability in our library in fast growth conditions (Supplemental Fig.
S18). We also found that nucleosome occupancy, regulation by
SAGA or TFIID, and TATA strength are highly correlated with var-
iability in all examined conditions (Fig. 4B,C; Supplemental Fig.
S19A). However, in slow-growth conditions, the effect of these fea-
tures is reduced (e.g., differences in variability between TATA and
TATA-less promoters are less significant) (Fig. 4D,E; Supplemental
Fig. S19B), primarily due to the global increase in noise (Fig. 4B,D)
together with the activation of some of the condition-specific
genes, which is coupled to a reduction in noise (Fig. 4C,D).
Notably, this result implies that care should be taken when classi-
fying a certain promoter architecture as “noisy,” because this clas-
sification depends on the environmental conditions.
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Next, we examined how specific regulation across conditions
affects expression variability. To this end, we compared the mean
and noise across conditions of coregulated groups of genes known
to be differentially regulated under our experimental conditions
(Keren et al. 2013), e.g., amino acid biosynthesis genes, which
are repressed in rich media and activated in minimal media. We
found that all examined groups display high levels of noise
when repressed, even higher than expected from their low expres-
sion mean. However, these different groups behaved differently
when activated. For example, the amino acid biosynthesis genes
(e.g., MET2, LEU4, ADE13, ARO3, and LYS20) had higher CV2

values than expected from their mean. In contrast, aerobic respira-
tion genes (e.g., ATP1, ATP5, COX4, COX6, QCR7, and QCR9) and
galactose assimilation genes (e.g., GAL1, GAL7, GAL10, and
GAL80) had noise values comparable to those expected from their
mean in media containing either ethanol or galactose as a carbon
source, respectively. These unique behaviors may be attributed to
variability propagated from shared upstream regulators of these
groups (e.g., GCN4 for the amino-acid biosynthesis group; HAP4,
CAT8, and ADR1 for the aerobic respiration group; and GAL4 for

the galactose assimilation group), which
tend to show similar noise levels as their
regulated genes (Supplemental Fig. S20).
These distinct levels of pathway-specific
noise of the different regulators also
matches their strength of activation and
nucleosome eviction, which is known
to be strong for GAL4 (Bryant et al.
2008), but weak for GCN4 (Raveh-Sadka
et al. 2012). Taken together, we found
that different genes deviate from the
mean-noise trend at different conditions.
These deviations may be attributed to
their specific regulatory architectures, as
encoded by their promoter sequence,
and to noise propagated from shared up-
stream regulators.

Discussion

Here, we investigated how cell-to-cell
variability in gene expression changes
across different growth conditions. By
measuring approximately 900 yeast fluo-
rescent reporters in four growth condi-
tions, we found that noise is coupled to
the environment and is intimately con-
nected with growth rate. This result
adds to previous observations, which
have connected population-average ex-
pression levels to growth rate (Pedersen
et al. 1978; Tyson et al. 1979; Ingraham
et al. 1983; Klumpp and Hwa 2008,
2014; Klumpp et al. 2009; Berthoumieux
et al. 2013; Gerosa et al. 2013; Keren et al.
2013) and suggests that environmental
conditions have a prominent role in
cell-to-cell expression variability. An iso-
genic population of cells will be more
variable in their expression pattern in
one growth condition than in another.

Increased variability in expression
may be both detrimental and beneficial for growth in harsh envi-
ronments. Cells growing in harsh environments may experience
increased difficulty in maintaining the fidelity of gene expression
levels. However, increased variability in harsh environments may
also have an evolutionary advantage, as bet-hedging may be the
preferred strategy in such cases (Acar et al. 2008). Whether advan-
tageous or detrimental, global changes in noise in different envi-
ronments probably have an important effect on the outcome of
processes dependent on noise, such as the probability to sporulate
(Grossman 1995; Maamar et al. 2007) or become competent
(Balaban et al. 2004).

Global changes in noise with growth rate may be a general
phenomenon, not restricted to microorganisms. Although there
are currently no data sets that allow proper examination of this
question, a preliminary analysis that we performed on a published
data set of cancer cells treated by a drug (Cohen et al. 2008;
Supplemental Fig. S21) hints in this direction. While drugs reduce
growth rate, cell-to-cell variability in protein abundance increases
for most genes, regardless of specific activation or repression, with
potential consequences for survival after treatment. Following a
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Figure 4. Features associated with high noise decrease in significance with decreasing growth rate.
(A) A schematic depiction of two stereotypical promoter architectures in yeast, characteristic of either
globally changing genes or condition-specific genes and associated with low or high levels of noise,
respectively, in fast growth conditions (Field et al. 2008; Tirosh and Barkai 2008). (B–E) Promoters
were classified according to activation in stress (Gasch et al. 2000), regulation by TFIID or SAGA
(Huisinga and Pugh 2004), TATA or TATA-less (Basehoar et al. 2004), and high (OPN) or low (DPN)
nucleosome occupancy (Tirosh and Barkai 2008). Conditions are colored as in Figure 1. (B) The median
noise in each condition of the non-stress, TFIID-regulated, TATA-less, and DPN groups. Median noise of
these groups increases in slow-growth conditions. (C) The median noise in each condition of the stress,
SAGA-regulated, TATA, and OPN groups. In all growth conditions, these groups exhibit higher noise
levels than their counterpart plotted in B. (D) Scatterplot of the YFP mean (x-axis) and CV2 (y-axis)
for all promoters in each of the four conditions. Stress genes are colored red. In glucose (fast growth),
global noise levels are low. Stress genes are repressed and associated with high levels of noise, higher
than expected by their low mean. In ethanol (slow growth), global noise levels are high. Stress genes
are up-regulated, and their noise levels decrease. (E) For each condition, the median noise of each
group was divided by the median noise of its counterpart (e.g., median noise of promoters with
TATA divided by the median noise of TATA-less promoters). Values higher than 1 indicate that the fea-
tures are associated with high and low noise, respectively. For all features examined, values are above 1
but decrease with decreasing growth rate, indicating that their contribution to noise decreases in slow
growth conditions. Significance was determined by K–S test and corrected using FDR (Supplemental
Fig. S18).
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promising example inHIV treatment with drugs thatmodulate ex-
pression noise (Dar et al. 2014), our results suggest that similar ap-
proaches may be meaningful in cancer.

The observed change in expression variability across condi-
tions is not fully determined by changes in mean expression, as
we find higher levels of variability in slow-growth conditions for
similar mean expression values. Global changes in expression
when changing growth conditions are for a significant part deter-
mined by changes in population cell-cycle composition (Volfson
et al. 2006; Levy et al. 2012; Zopf et al. 2013; Jones et al. 2014;
O’Duibhir et al. 2014). Recently, such changes in cell-cycle compo-
sition have been suggested to explain expression noise in E. coli
grown in a single growth condition (Jones et al. 2014). Here, we
propose that differential partitioning of the population across
cell-cycle stages may contribute to a global elevation in noise in
slow-growth conditions and provide evidence suggesting that it
is a major contributor to extrinsic noise. Our understanding of
the mechanisms underlying global changes of intrinsic noise
with growth rate is still very poor.

However, differential cell-cycle–stage distributions do not en-
tirely account for the higher expression variability in slow growth
conditions, even for extrinsic noise, and other factors likely affect
our results. One prominent feature that changes with growth rate
is the cell size because yeast are smaller at slower growth rates
(Tyson et al. 1979). However, at least from amathematical investi-
gation, we find no support for smaller cells displaying higher
extrinsic noise (Supplemental Note 7). Other factors may contrib-
ute to the elevation in noise in slow-growth conditions. For exam-
ple, in slow growth, RNApolymerases are expressed at lower levels,
with increased noise. This increase in variability in the expression
of the transcriptional machinery is expected to propagate down-
stream to all genes, globally increasing their noise. It will be inter-
esting to further explore these different mechanisms and quantify
how much they contribute to expression variability in different
environmental conditions.

In our analysis, we also found gene- and function-specific de-
terminants of noise. Promoter features highly correlated with ex-
pression variability in fast growth conditions such as TATA boxes
and high nucleosome occupancy exhibit weaker correlations
with expression variability in slow-growth conditions. We suggest
that this reductionmay be the result of the combination of several
factors: The rise of extrinsic noise in slow-growth conditions en-
tails that under these conditions the variability of more genes is
dominated by extrinsic factors, thus reducing the contribution
of intrinsic sequence determinants; many of these features were
determined experimentally in fast-growth conditions and thus
may be inadequate for slow growth conditions; and changes in
trans between the conditions, such as the concentration of TBP
(Basehoar et al. 2004), may render that promoter configurations
that have high expression variability in one condition will have
low variability in another. Taken together, our results suggest
that the classification of promoters as “noisy” depends on the en-
vironmental conditions.

Previous reports have linked global changes in gene expres-
sion to changes in the environment, in synchrony with changes
in growth rates and population composition (Regenberg et al.
2006; Brauer et al. 2008; Berthoumieux et al. 2013; Gerosa et al.
2013; Keren et al. 2013; O’Duibhir et al. 2014). Here, we show
that variability in expression of all genes is also strongly affected
by the environment, as has been shown for a synthetic construct
in E.coli (Guido et al. 2007). This effect of the environment on ex-
pression may have phenotypic consequences, which may be sub-

ject to evolutionary selection. For example, since cell-to-cell
variability in gene expression underlies important phenotypic
phenomena such as persistence (Balaban et al. 2004), competence
(Maamar et al. 2007), latency (Dar et al. 2014), responsiveness to
fluctuating environments (Acar et al. 2005, 2008; Blake et al.
2006; Kaufmann et al. 2007; Levy et al. 2012; Vardi et al. 2013),
and triggering ofmeiosis (Nachman et al. 2007), our results suggest
that the probability and efficiency of these processes will be tightly
coupled to environmental conditions. Demonstrating the rele-
vance of this hypothesis in natural environments remains an on-
going challenge.

Methods

Strains and media

All promoter–reporter strains are haploid MAT-α derivatives of
Y8205 and were described previously (Keren et al. 2013). Media
were prepared as follows: glucose/ethanol: synthetic complete me-
dia (6.7 g/L yeast nitrogen base [YNB], 1.6 g/L amino acids) with
2% glucose or ethanol, respectively; glucose/galactose without
AA: YNB 6.7 g/L supplemented with histidine, with 2% glucose/
galactose, respectively.

Measurements of promoter noise across conditions

Cells were inoculated from frozen stocks into one of four defined
media (150 μL, 96-well plate) and grown for 48 h at 30°C, reaching
complete saturation. Cells were then diluted 1:3000–1:9000 in
fresh medium to a total volume of 150 μL and were grown at
30°C for at least 8 generations of exponential growth before mea-
surement by flow cytometry. Formeasurements in early stationary
state, cells were grown in glucose and were assayed 2 h after reach-
ing stationary OD. Flow cytometry experiments were conducted
using the Becton Dickinson LSRII machine and standard proto-
cols. Four channels were acquired: forward-scatter, side-scatter,
YFP (excitation 488 nm BP 525/50), and mCherry (excitation
561 nm BP 610/20).

Flow cytometry analysis

An automatic data analysis pipeline was applied for gating and fil-
tering the data. In eachwell, cells were discarded from further anal-
ysis if they were collected in the first 0.5 sec or over periods that
show flow instability (bubbles, etc.), or if they had negative or sat-
urated values in one of the parameters.We gated the data based on
the forward scatter (FSC) and the side scatter (SSC) of the cells by
using a stringent gate that removed the cells that had the extreme
60%values in either FSC or SSC, leaving atmost 40% of the center-
most cells for further analysis, as previously done (Bar-Even et al.
2006; Newman et al. 2006). Wells in which this process resulted
in less than 500 cells were discarded from further analysis. For
each well, we calculated themean and noise (σ2/µ2, variance divid-
ed by themean squared) for both YFP andmCherry. For wells with
replicate measurements, the replicate with the lowest noise in YFP
was taken for further analysis under the assumption that technical
noise may elevate observed noise levels, but not decrease them.

Detection level and technical noise

The detection level of the system was assessed by examining the
distribution of promoter activity levels for a strain containing a
mCherry gene but no YFP gene. For each condition, more than
30 biological replicates of the strain were measured and fitted to
a normal distribution. The 95th percentile of the distribution
was taken to be the detection level. The technical error of
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measurements was estimated by replicate measurements. Techni-
cal error did not change between conditions in a systematic man-
ner, as we obtained similar correlations for replicates measured in
either fast growth (glucose) or slow growth (ethanol) (Supplemen-
tal Fig. S2).

CV2 as a function of mean

We applied two strategies to find how CV2 levels change with
mean expression for each condition. In the first strategy, for
each condition, we partitioned the data into 20 equally log-spaced
bins, computed themedianCV2 value for each bin, and performed
a linear interpolation of the CV2 of each bin using the CV2s of four
neighboring bins. This strategy does not make any prior assump-
tions as to how noise should depend on mean expression
(Supplemental Fig. S6). The second strategy (Fig. 1) is model driv-
en. For each condition, we fit the datawith amixturemodel of two
linear curves

f (x) = ax+ b if x , T
c if x . T

{

We used the following exponential noise model to ensure that the
lower bound of values will be identified:

p(n) = 0.95e−n if n . 0
0.05en if n , 0

{

Weenumerated over the range ofmean expression values T =
[103 104], and selected the best model by minimizing the log-loss,
with 10-fold cross validation.

Model for CV2 as a function of cell-cycle stage composition

of the population

The following assumptions were made:

1. The population of growing cells is asynchronous: At any given
time some cells are in G1 and the rest in G2 (we ignore S for
simplicity).

2. Differences in growth rate lead to different compositions of the
population at different conditions: Growth rate mainly affects
the time spent in G1, such that f, the fraction of the population
in G2, increases with increasing growth rate (Tyson et al. 1979).

3. Gene expression in G2 is higher (2× DNA content): In Figure 2,
we assume that the average expression of G2 cells is 2× that of
G1 cells. However, this assumption can be relaxed, with similar
qualitative behavior, as shown in Supplemental Figure S8.

To examine how CV2 is affected by changes in growth rate, we use
the simplest model in which the cells can take on one of two ex-
pression states (relating to G1 and G2).

We define: Eg1 is the expression in G1; Eg2 is the expression
in G2; µE is the mean population expression; and f is the fraction
of cells in G2.

Mean expression is:

mE = f · Eg2 + (1− f )Eg1

Variance is:

s2 = f (Eg2 − mE)
2 + (1− f )(Eg1 − mE)

2

Assuming:

Eg2 = 2 · Eg1

We get that:

CV2 = s2

mE
2 = f 1− f

( )
f + 1

( )2 . (2)

We note that variability in expression resulting from cell-cycle var-
iability is only dependent on f. The actual expression values disap-
pear from the equation.

Measurements of G1/G2 distributions using

HHF1-tagged strains

GFP was fused to the N terminus of endogenous HHF1 using ho-
mologous recombination. A 27-nt linker was inserted between
the GFP and HHF1 coding sequence. The construction of the
eGFP-linker-HHF1 cassettes was performed in two sequential
PCR reactions. In the first PCR, GFP was amplified from pKT128
plasmidwith a flanking sequence tomatch the upstream sequence
of HHF1 in the Fw primer and a 27-nt linker followed by a match-
ing sequence to HHF1 coding sequence in the Rv primer. The ter-
mination codon of the GFP and the start codon of HHF1 were
removed in the primers design to create a fused protein. In the sec-
ond PCR reaction, the left and right homologous arms were elon-
gated to 66 and 47 nt, respectively. BY4741 were transformedwith
the constructed cassettes using heat-shock LiAc transformation
protocol. Positive GFP strains were isolated using Fluorescence-ac-
tivated cell sorting (FACS).

Primers and linker sequences were the following: linker:
ggtcgacggatccccgggttaattaac; first PCR (Fw): 5′-aaaaacaagcaacaaa
tataatatagtaaaatatgtctaaaggtgaagaattattcactg-3′ and (Rv) 5′-tcta
ccggagtta attaacccggggatccgtcgacctttgtacaattcatccataccatg-3′; sec-
ond PCR (Fw): 5′-cattattgtactctatagtactaaagcaacaaacaaaaacaagcaa
caaatataatatag-3′ and (Rv) 5′-ttggcaccacctttacctagacctttaccaccttt
acctctaccggagttaattaacccg-3′.

GFP-HHF1 cells were inoculated from frozen stocks, grown in
one of four defined media measured by flow cytometry and ana-
lyzed as described above. For each condition, the GFP distribution
density ( f ) was estimated using standard software (ksdensity,
MATLAB), and the G1/G2 peaks were identified. We verified by
eye that the G2 peak was indeed located at twice the G1 peak.
We define three points: (A) G1 GFP peak; (B) minimum point be-
tween G1 GFP and G2GFP peaks; and (C) G2 GFP peak. The G1 ra-
tio was defined as

�B
A g(x)dx�B

A g(x)dx+
�C
B g(x)dx

and the G2 ratio as

�C
B g(x)dx�B

A g(x)dx+
�C
B g(x)dx

.

Extrinsic variability and cell-cycle model

For each condition, we found the expected CV2 according to our
model, by assigning to f (Equation 1) the G2 ratio experimentally
measured using the histone-tagged strains. Additionally, for each
condition, we extract the extrinsic CV2 limit from the linear fits
to the ungated promoter–reporter measurements as described
above (Supplemental Fig. S9).We use ungated data for this analysis
because gating artificially decreases the extrinsic noise limit and
partially masks the contribution of G1-G2 fractions to extrinsic
noise. For each condition, we compute the ratio between themod-
el predictions and the actual extrinsic limit to infer how much of
the observed extrinsic variability limit is predicted by our model.
We find that without adding any other source of extrinsic noise
(C = 0), Equation 1 quantitatively accounts for 45%–60%of the ex-
trinsic variability for each of the examined growth conditions.

The cell-cycle model serves as a lower bound for extrinsic
noise, to which other extrinsic factors may add. Therefore, we
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allow a scaling factor to be added to Equation 2, such that

CV2 = s2

m2
E
= f (1− f )

( f + 1)2 + C. (3)

Since the model represents the lower bound, by definition {C > 0}.
Fitting Equation 2 to the data results in C = 0.065.

In silico simulation of wells with different G1/G2 compositions

Flow cytometry measurements of the strain GFP-HHF1 were used
to define gates on FSC_A/FSC_W and FSC_A/SSC_A that best sep-
arate G1 from G2 cells (Supplemental Fig. S12). For each strain, in
each condition, the cells in G1 and in G2 were defined according
to this gating. Simulated wells were then generated in silico with a
predefined fraction of the population in G2, ranging from 0 to
1. The process was repeated 500 times, and themean and standard
deviation of observed CV2 values were extracted and plotted
(Supplemental Fig. S13).

Ministat array growth and measurements

Ministat arraywas constructed as previously described (Miller et al.
2013), allowing for growth of four independent samples in parallel
(Supplemental Fig. S11A). The histone–reporter strain GFP-HHF1
and the promoter–reporter strains of the highly expressed RPL28,
HHT2, and TDH2 strains were streaked to a YPD plate and then
grown for 2 d in histidine limited media. Media were prepared as
previously described (Brauer et al. 2008). To choose the limiting
concentration of histidine, a preliminary experimentwas conduct-
ed in which GFP-HHF1 and RPL28 were grown to saturation with
histidine concentrations ranging from1 to 20mg/L (Supplemental
Fig. S11B). The final working histidine concentration was 2 mg/L
as previously described (Levy et al. 2007). To obtain very low G2
fractions (Brauer et al. 2008), chemostat was set to a dilution rate
of 0.04 h−1, corresponding to a doubling time of ∼17.5 h. The
four strains were inoculated simultaneously, and after stabilization
of OD (∼24 h), they were examined under the microscope and
measured by flow cytometry as described above. Under these con-
ditions, we identified a non-negligible population (15% of the
cells) of sub-G1 cells: either enlarged or very small and deformed
cells, which did not express GFP/YFP (Supplemental Fig. S11C–
F). These cells were removed from further analysis by gating on
positive GFP/YFP levels (>103). The same gating was applied to
these strains in all conditions to ensure the fair comparison of
noise levels reported in Figure 2C.

Analysis of groups

Information regarding cell-cycle regulation (Spellman et al. 1998),
stress (Gasch et al. 2000), TATA (Basehoar et al. 2004), TFIID-SAGA
(Huisinga and Pugh 2004), OPN-DPN (Tirosh and Barkai 2008),
and differential expression (Keren et al. 2013) was obtained for
all promoters in the library.

Data access

Data from this study are available in the Supplemental Material.
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