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Abstract: This study used 16S rRNA sequencing to evaluate the effects of dry cow antimicrobial
therapy on the udder milk microbiota by comparing the microbial populations in milk at dry-off (DRY)
(~60 days before calving) and post-partum (FRESH) (4–11 days after calving) from cows receiving
an intramammary antibiotic infusion prior to dry-off (IMT) and cows that did not receive treatment
(CTL). Milk was collected from 23 cows from the IMT group and 27 cows from the CTL group. IMT
and DRY samples had a greater correlation with the genera Brevibacterium and Amaricoccus, and the
family Micrococcaceae, when compared to IMT and FRESH samples. CTL group samples collected at
DRY had a greater correlation with the genera Akkermansia and Syntrophus, when compared to FRESH
samples; no bacterial taxa were observed to have a significant correlation with FRESH samples in
the CTL group. DRY samples collected from the CTL group had a greater correlation with the genus
Mogibacterium when compared to IMT and CTL samples. For DRY samples collected from the IMT
group, a greater correlation with the genus Alkalibacterium when compared to DRY and CTL samples,
was observed. The lack of a correlation for FRESH samples between the CTL and IMT treatment
groups indicated that intramammary antimicrobial dry cow therapy had no significant effect on the
udder milk microbiota post-partum.

Keywords: milk; mastitis; antibiotics; dry-off

1. Introduction

Mastitis, characterized by abnormal milk, is inflammation of the mammary gland,
which is responsible for significant economic loses. The great majority of mastitis cases
are of bacterial origin, being one of the most prevalent infections in dairy cows, which
results in the use of antimicrobial drugs [1,2]. Aside from its effects on the mammary
gland, mastitis has a detrimental effect on the welfare, reproduction, and productivity of
dairy cows [3,4]. A common practice at dairy farms for treating existing or chronic cases
of mastitis, or preventing new mastitis cases during the dry period is the wide use of
intramammary antibiotics at the time of dry-off. In 2014, 93% of all U.S. dairy cows received
intramammary antimicrobials at dry-off, with 80.3% of all dairy operations choosing to use
intramammary antimicrobials non-selectively on all cows at dry-off [5]. This non-selective
administration of intramammary antimicrobials at dry-off, also known as blanket therapy,
blanket dry cow therapy, or total dry cow therapy, is thought to account for a sizeable
portion of the 15,645 kg of medically important antibiotics administered intramammary
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annually [6]. The antimicrobial drugs most commonly used during the dry-off period
in the U.S. are the first-generation cephalosporin cephapirin (58% of all operations and
32% of all cows) and the third-generation cephalosporin ceftiofur (28% of all operations
and 22% of all cows) [5]. Cephalosporin drugs, especially third generation, have been
listed on the World Health Organization’s list of critically important antimicrobials for
human medicine due to their role in treating important infections caused by Gram negative
bacteria [7]. Therefore, identifying alternatives to reduce the need for the therapeutic use
of third-generation cephalosporin drugs, especially for the prevention of infection, has
become an important area for efforts in livestock medicine.

For decades, the National Mastitis Council has recommended that all quarters of all
cows be treated with intramammary antimicrobials at dry-off [8]. The rationale being that
blanket therapy is more effective in preventing new infections and does not require any
type of screening procedure, as compared to selective therapy. Researchers have contin-
ued to debate the effectiveness of blanket treatment, and the introduction and use of a
commercial non-antibiotic internal teat sealant has only added to this discussion [9–12].
However, decreased cost is a reason some producers consider the use of selective antibiotic
treatment over blanket treatment at the time of dry-off. A mathematical model from a
2007 study suggested the choice between blanket or selective treatment is highly farm
specific, while a more recent model concluded that selective treatment was more economi-
cally beneficial [13,14]. Furthermore, one study has proposed the use of an algorithm to
selectively treat only those cows at high risk of developing new cases of mastitis, and by
using this approach, they estimated a reduction in dry cow antibiotic use by approximately
60% without any adverse effects on animal health [15].

A concern with intramammary antimicrobial dry cow therapy is the potential for
disruption of the endogenous microbiota present in the bovine mammary gland. Addi-
tionally, there is a risk of the inadvertent introduction of environmental organisms into
the udder due to contamination during the administration process of the intramammary
antimicrobials. Advances in culture-independent methods of microbial analysis of the
mammary gland, often via milk samples, has challenged the idea that this environment
is sterile [16,17]. A recent longitudinal cohort study noted that, while both Chao richness
and Shannon diversity were greater in healthy compared to inflamed mammary glands,
a low sequencing success rate suggests that the milk microbiota may not be especially
abundant [18,19]. Nevertheless, it is broadly accepted that a healthy microbiome con-
tributes positively to host health, and conversely, any disruption of the microbiota may
detrimentally impact the host [20]. Therefore, treatment with intramammary antimicrobial
dry cow therapy could potentially decrease colonization resistance against pathogens of
the mammary gland [21,22]. This has led researchers to debate whether mastitis, tradition-
ally viewed as a host–pathogen interaction, may actually be a result of dysbiosis of the
mammary microbiota [23].

Given the high prevalence and cost of mastitis in the dairy industry and the controversy
of blanket intramammary antimicrobial dry cow therapy, more research is needed to fully
understand the impacts and benefits of this practice to the microbiota. To address this
aim, a subset of a repository of milk samples and its respective data from a state-wide
dry cow therapy trial were employed [24]. We proposed to evaluate the effect of dry
cow antimicrobial therapy on the udder milk microbiota by comparing the microbial
populations in milk at dry-off (~60 days before calving) and post-partum from cows
receiving an intramammary antibiotic infusion and cows that did not receive therapy.

DNA was extracted using a standardized approach [25]. Due to the small quantities
of DNA present in each sample, an additional step was required to amplify DNA to
a necessary concentration for 16s sequencing [26–28]. Taxonomy was assigned using
Greengenes version 13.8 at a 99% match [29,30].
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2. Results
2.1. Descriptive Data and Microbial Diversity Data

A descriptive analysis of the 16s data revealed the top five most abundant phyla.
In order, these include: Firmicutes, Proteobacteria, Bacteroidetes, Actineobacteria, and
Tenericutes (Figure 1). For DRY samples, the mean values for the phyla were as follows:
Firmicutes (56.6%), Proteobacteria (25.3%), Bacteroidetes (6.4%), Actineobacteria (6.6%),
and Tenericutes (0.7%). For FRESH samples, the mean values for the phyla were as follows:
Firmicutes (50.7%), Proteobacteria (32.5%), Bacteroidetes (7.1%), Actineobacteria (5.1%),
and Tenericutes (1.9%).
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IMT. A total of 132 ASVs were shared among all four treatment and time point combina-
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Figure 1. Mean percentage distribution for the top five most prevalent phyla for each sampling point
by treatment group. IMT: treatment group representing cows receiving intramammary antimicrobial
drug treatment at dry-off; DRY: samples collected at the time of dry-off; FRESH samples: samples
collected from post-partum cows between 4 and 11 days in milk; CTL: control group representing
cows not receiving intramammary antimicrobial drug treatment at dry-off.

A Venn Diagram of ASVs from treatment groups for each time point displaying ASVs
shared between groups is presented in Figure 2. A total of 106 ASVs were shared between
DRY and CTL, and DRY and IMT, while only one ASV was shared between FRESH and CTL,
and FRESH and IMT. A total of 17 ASVs were shared between DRY and CTL, and FRESH
and CTL, while three ASVs were shared between DRY and IMT, and FRESH and IMT. A
total of 132 ASVs were shared among all four treatment and time point combinations.
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Figure 2. Venn diagram of the amplicon sequence variants found in milk samples from cows receiving
intramammary antimicrobial treatment at dry-off (DRY and IMT), cows not receiving IMT at dry-
off (DRY and CTL), and the follow up samples for these cows when fresh (FRESH and IMT, and
FRESH and CTL, respectively). IMT: treatment group representing cows receiving intramammary
antimicrobial drug treatment at dry-off; DRY: samples collected at the time of dry-off; FRESH: samples
collected from post-partum cows between 4 and 11 days in milk; CTL: control group representing
cows not receiving intramammary antimicrobial drug treatment at dry-off.

No significant differences were found in the mean relative abundance for the six
genera commonly associated with mastitis (Staphylococcus sp., Bacillus sp., Streptococcus sp.,
Mycoplasma sp., Escherichia sp., and Trueperella sp.) for IMT and CTL, at DRY and FRESH
(Supplemental Figure S1).

Relative mean abundances for the top 20 taxa ranging from the order to genus level
were tabulated to identify differences in relative abundance among the four experimental
groups (Table 1). The genus Staphylococcus was the most abundant taxa for DRY and CTL,
and FRESH and IMT. The genus Delftia was the most abundant taxa for DRY and IMT, and
FRESH and CTL.

Table 1. Relative abundances for the top 20 taxa observed by treatment group and sampling point.

TAXON 3

Treatment/Time, % (SE)

CTL 1 IMT 2

DRY 4 FRESH 5 DRY 4 FRESH

g__Staphylococcus 21.3 (4.7) 19.2 (5.6) 13.7 (3.7) 15.7 (3.9)
g__Delftia 11.4 (3.8) 19.7 (5.2) 19.9 (6.3) 20 (5)
f__Peptostreptococcaceae 7.6 (1.7) 5.1 (1.2) 6.2 (0.9) 3.0 (1.0)
f__Ruminococcaceae 4.8 (1.2) 5.3 (1.2) 5.7 (1.8) 4.7 (1.3)
g__Corynebacterium 3.9 (1.3) 2.2 (0.9) 3.1 (1.2) 2.5 (0.5)
g__Turicibacter 3.3 (0.8) 1.9 (0.6) 2.8 (0.6) 3.3 (1.2)
o__Clostridiales 2.7 (0.6) 1.2 (0.3) 3.1 (0.9) 1.8 (0.6)
f__Lachnospiraceae 2.6 (0.6) 1.4 (0.4) 1.7 (0.6) 2.1 (0.7)
g__Serratia 0.7 (0.7) 2.5 (2.5) 1.6 (1.6) 1.5 (1.5)
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Table 1. Cont.

TAXON 3

Treatment/Time, % (SE)

CTL 1 IMT 2

DRY 4 FRESH 5 DRY 4 FRESH

o__Bacteroidales 1.1 (0.4) 1.2 (0.5) 1.2 (0.5) 2.3 (1.4)
g__Epulopiscium 0.6 (3.4) 4 (3.6) 0.1 (0) 0.1 (0.1)
g__Streptococcus 1 (0.4) 1.2 (0.9) 0.7 (0.3) 2.2 (2.1)
g__Acinetobacter 1.3 (1.0) 0.8 (0.5) 1.1 (0.4) 1.7 (0.6)
f__Clostridiaceae 1.5 (0.4) 0.9 (0.3) 1 (0.3) 1.3 (0.6)
g__5-7N15 1.3 (0.5) 1.1 (0.4) 1.2 (0.5) 1.0 (3.7)
g__Salinicoccus 1.1 (0.6) 0.4 (0.2) 1.4 (0.6) 1.7 (1.2)
g__Herbaspirillum 0.7 (0.6) 0.4 (0.2) 0 (0) 3.5 (2.4)
f__Neisseriaceae 0.9 (0.5) 1.0 (0.7) 1.1 (7.6) 0.8 (0.7)
g__Bacillus 0.8 (0.3) 0.7 (0.3) 1.2 (0.4) 0.8 (0.5)
f__Aerococcaceae 0.5 (0.2) 0.5 (0.2) 1.2 (0.4) 1.2 (0.7)

1 CTL: control group representing cows not receiving intramammary antimicrobial drug treatment at dry-off;
2 IMT: treatment group representing cows receiving intramammary antimicrobial drug treatment at dry-off;
3 Taxon: refers to the various levels of classification used to describe sequence data (g—genus, f—family, and
o—order); 4 DRY: samples collected at the time of dry-off; 5 FRESH samples: samples collected from post-partum
cows between 4 and 11 days in milk.

Quantile box plots were generated to illustrate changes in Shannon diversity between
DRY and FRESH time points for the IMT and CTL groups (Figure 3). A Wilcoxon sum rank
test was performed to assess the significance of differences between experimental groups.
The only Shannon diversity values deemed significantly different (p value < 0.05) were
those from DRY and CTL, and FRESH and IMT cows.
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Figure 3. Shannon diversity quantile box plots for each treatment group for each sampling time
point. Data were not normally distributed (Shapiro–Wilk p value = 0.044). Different letters (a and b)
indicated treatment groups that had significantly different values based on Wilcoxon Sum Rank Test
(p value < 0.05). Fresh: samples collected from post-partum cows between 4 and 11 days in milk; CTL:
control group representing cows not receiving intramammary antimicrobial drug treatment at dry-off;
IMT: treatment group representing cows receiving intramammary antimicrobial drug treatment at
dry-off; DRY: samples collected at the time of dry-off.

2.2. Canonical Coefficients and Linear Regression

A canonical cut-off loading value of ±0.3 was used to identify taxa for different treatment
groups and time points within those groups, as previously reported [31–33]. For the canonical
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analysis comparing time points by treatment, we observed that IMT group samples collected
at dry-off had a greater correlation with the genera Brevibacterium and Amaricoccus, and the
family Micrococcaceae, when compared to FRESH samples; no samples were indicated to have
a greater correlation with FRESH samples (Figure 4A). We observed that the CTL group samples
collected at DRY had a greater correlation with the genera Akkermansia and Syntrophus, when
compared to FRESH samples. No samples were observed to have a significant correlation with
FRESH samples in the CTL treatment group (Figure 4B).
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Figure 4. Canonical structure coefficients comparing sampling microbiota for milk collection sam-
pling points (DRY and FRESH) by treatment group, namely cows either receiving intramammary
antimicrobial treatment (IMT) at dry-off and cows not receiving IMT at dry-off (CTL). (A) Corre-
lation between microbial taxa and the discriminant function for DRY vs. FRESH sampling points
of IMT cows. Bacterial taxa with canonical structure coefficients ≤−0.3 or ≥0.3 (blue line) are con-
sidered important when distinguishing sampling times (DRY vs. FRESH) from IMT and CTL cows.
(B) Correlation between microbial taxa and the discriminant function for DRY vs. FRESH sampling
points of CTL cows. 1 IMT: treatment group representing cows receiving intramammary antimicrobial
drug treatment at dry-off; 2 DRY: samples collected at the time of dry-off; 3 FRESH: samples collected
from post-partum cows between 4 and 11 days in milk; 4 CTL: control group representing cows not
receiving intramammary antimicrobial drug treatment at dry-off.
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For the canonical analysis comparing treatment by time points, we observed that DRY
samples collected from CTL group had a greater correlation with the genus Mogibacterium
when compared to IMT samples. For DRY samples collected from the IMT group, a greater
correlation with the genus Alkalibacterium when compared to CTL samples, was observed
(Figure 5A). No correlations were observed for FRESH samples comparing the CTL and
IMT treatment groups (Figure 5B).
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tramammary antimicrobial treatment (IMT) at dry−off and cows not receiving intramammary
antimicrobial treatment (CTL) at dry-off. (A) Correlation between microbial taxa and the discriminant
function for DRY, comparing CTL versus IMT samples. (B) Correlation between microbial taxa and
the discriminant function for FRESH, comparing CTL versus IMT samples. Bacterial taxa with canon-
ical structure coefficients ≤−0.3 or ≥0.3 (blue lines) are considered important when distinguishing
between CTL and IMT samples. 1 IMT: treatment group representing cows receiving intramammary
antimicrobial drug treatment at dry-off. 2 DRY: samples collected at the time of dry-off. 3 FRESH:
samples collected from post-partum cows between 4 and 11 days in milk. 4 CTL: control group
representing cows not receiving intramammary antimicrobial drug treatment at dry-off.

No significant difference in the relative abundance of bacteria was observed between
treatment by time points or between time points for different treatment groups, for taxon
identified as having a significant effect on the microbial composition (canonical ± 0.3),
except for Brevibacterium (Supplemental Table S1). Bacteria taxa evaluated included
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f_Micrococcaceae, g_Amaricoccus, g_Brevibacterium, g_Akkermansia, g_Syntrophus,
g_Alkalibacterium, and g_Mogibacterium. Further analysis using the Tukey pairwise
analysis for the genus Brevibacterium revealed no significant difference between the differ-
ent treatment groups by time points (Supplemental Table S2).

Linear discriminant analysis of milk samples for each treatment group by time points
is displayed in Figure 6. This analysis was stratified by the antimicrobial drug used for the
IMT infusion (cephapirin vs. cloxacillin) and is also displayed (Figure 6B,C, respectively).
Samples from FRESH, regardless of whether collected from the IMT or CTL cows, were
highly similar, despite stratifying by the individual drug used for IMT. Analysis stratified by
cephapirin only (Figure 6B) more closely resembled that of the combination of cephapirin
and cloxacillin (Figure 6A). Analysis stratified by cloxacillin only (Figure 6C) revealed
similarities of the DRY and CTL samples with FRESH cows, independent of treatment. This
similarity may have been driven by the aforementioned greater diversity in DRY sample
time points in conjunction with a limited sample size, that may not had been sufficiently
large to appropriately represent the abundance of the individual taxa. Together, these
factors could have resulted in the lack of differentiation that we observed.
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Figure 6. Discriminant analyses of milk sample microbiomes for each treatment group by sam-
pling point for IMT cows treated with either: (A) cephapirin and cloxacillin (B) cephapirin only
(C) cloxacillin only. Bacterial relative abundance was used as covariates, and treatment group as the
categorical variable (NR = red dots, DR = blue dots). An ellipse indicates the 95% confidence region
to contain the true mean of the group, and a plus symbol indicates the center (centroid) of each group.
IMT: treatment group representing cows receiving intramammary antimicrobial drug treatment at
dry−off; DRY: samples collected at the time of dry−off; FRESH samples: samples collected from
post-partum cows between 4 and 11 days in milk; CTL: control group representing cows not receiving
intramammary antimicrobial drug treatment at dry-off.
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3. Discussion
3.1. Lack of Microbiota Differentiation of FRESH Samples from CTL and IMT Cows

No genera were deemed significant in differentiating FRESH samples from either
CTL or IMT cows, indicating intramammary antimicrobial dry cow therapy had no
significant effect on the udder milk microbiota post-partum (Figure 5B). A study by
Derakhshani et al. (2018) [34] qualitatively evaluated the microbiota of the teat canal and
mammary secretions of healthy udder quarters subjected to dry cow therapy using a
long-acting antimicrobial product containing penicillin G and novobiocin, in combination
with an internal teat sealant. Although shifts in the bacterial genera and phyla abun-
dance were observed in their study, further analysis indicated a commonality between
pre-IMT and postpartum microbiota of both teat canal and mammary secretions, indicat-
ing a limited effect of IMT on the microbiota. Another study by Ganda et al. (2016) [35]
evaluated the impact of intramammary antimicrobial treatment on the milk microbiome of
healthy cows and from cows presenting with clinical mastitis. Treatment with the third-
generation cephalosporin ceftiofur had no significant effect on clinical cure, bacteriological
cure, pathogen clearance, or bacterial load. Although this study focused on clinical cases
of mastitis, they also observed similar results where antimicrobial drugs had little to no
effect on milk microbiome and bacterial load. Our study did not include a third-generation
cephalosporin treatment in the IMT group so our results are not directly comparable to this
particular finding.

3.2. Microbiological Differentiation of DRY Samples from IMT and CTL Cows Compared to
FRESH Samples

We observed that DRY cows, independent of treatment, had a greater microbial diver-
sity when compared to milk from cows at FRESH (Figure 3). Similar findings for a greater
diversity of milk microbiota at dry-off was also observed by Derakhshani et al. (2018). For
both analyses evaluating microbial differences driving differentiation between time points
by treatment, we only observed differentiated microbes in the DRY cow samples, inde-
pendent of treatment (Figure 4). A possible explanation for this is that the cows in FRESH
maintained a similar core microbiota as the DRY cows, but with a less diverse composition,
leading to the observed difference in individual microbes in DRY samples.

The genera Brevibacterium and Amaricoccus, and the family Micrococcaceae were ob-
served to have a significant canonical score for the discriminant analysis between the DRY
samples from IMT cows (Figure 4A). Bacteria in the genus Brevibacterium are Gram positive,
non-endospore forming, nonmotile, obligate aerobes, halotolerant, proteolytic, peptidolytic,
esterolytic, and lipolytic in nature [36]. They have been isolated from human skin, marine,
and terrestrial environments [37]. Brevibacterium is also found in the microbial communities
present in raw milk and cheese [38]. A study on the microbial composition of Dutch “Danbo”,
a surface ripened semi-hard cheese, revealed that, during ripening, Brevibacterium was the
third most abundant genera on the cheese surface [39]. Research on udder cleft dermatitis
found Brevibacterium was present in samples taken from three mild and one severe case, with
49.2% of classified reads belonging to Brevibacterium in the severe sample [40].

Although not reaching the ±0.3 canonical cut-off loading value, Brevibacterium was
also observed for IMT discriminant analysis comparing CTL within DRY cows (Figure 5A).
An explanation as to why Brevibacterium seems to be of greater relevance in the microbial
composition of milk in DRY cows has yet to be determined.

The genus Amaricoccus was discovered in 1997 in activated sludge biomass from
wastewater treatment plants around the world [41]. Bacteria in this genus are Gram
negative aerobic cocci that can form tetrads, a grouping of four cells. Amaricoccus species
are able to store polyhydroxyalkanoates (PHA), a biologically produced polymer similar
to the plastics polyethylene and polypropylene [42]. Bacteria belonging to the genus may
be able to degrade the antibacterial tricoslan [43]. Amaricoccus has also been detected in
the microbiome of colostrum from human mothers who delivered via C-section [44]. It is
uncertain why Amaricoccus was observed in great abundance in IMT cows.
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The family Micrococcaceae includes Gram positive cocci bacteria found in dairy
products and cured meats. Micrococcaceae includes the genus Micrococcus which, along
with other members in the family, may reduce ripening times in cheese [45]. Micrococcaceae
seem to be especially abundant in raw sheep milk cheeses, including the Spanish semi-soft
“Casar de Cáceres” and soft “Tetilla” [46,47]. Micrococcaceae were more abundant on the
surface of Tetilla cheese than the interior and may contribute to ripening [46]. Aside from
dairy, Micrococcaceae are found in starter cultures for fermented meats and may prevent
colonization of pathogenic bacteria by lowering the pH [48]. Micrococcaceae may also play
a role in aroma development in the Spanish, fermented sausage “chorizo” [49]. It has also
been detected in human breast milk of mothers living in mainland China and Taiwan, and
in porcine breast milk samples collected from sows at various stages of pregnancy [50,51].
Given the locations where bacteria in the family Micrococcaceae have been found, it seems
likely these bacteria are commensal milk bacteria.

3.3. Differentiated Bacteria from DRY and FRESH Samples Collected from CTL Cows

The genera Akkermansia and Syntrophus were observed to have a significant canonical
score for the discriminant analysis between DRY and FRESH samples from CTL cows
(Figure 4B). Bacteria in the genus Akkermansia are Gram-negative, obligate anaerobic,
non-motile, and non-sporulating [52]. Akkermansia muciniphila plays an important role in
the human gut microbiome as it is able to breakdown mucin in mucus as a carbon and
nitrogen source [53]. Accounting for 1–4% of the bacteria in the adult intestine, Akkermansia
muciniphila is inversely associated with diabetes, obesity, and other metabolic issues [54].
This health benefit suggests that Akkermansia muciniphila has potential as a future probiotic.
Analysis of mice intestinal microbiota has also shown that Akkermansia growth can be
affected by the consumption of cow and goat’s milk, as goat milk consumption had a
positive effect on growth [55]. Although typically found in the intestine, the unique mucin-
degrading ability of Akkermansia muciniphila may allow it to create a specific niche among
the mammary gland microbiota. While the presence of Akkermansia in cow milk has not
been previously reported, recent studies have detected the genus in human milk samples
from subjects in Ghana and in the feces of lactating dairy cows [56,57].

Bacteria in the genus Syntrophus are Gram negative and strictly anaerobic. These
bacteria get their energy from breaking down chemicals that might kill other bacteria such
as phenol, benzoate, and fatty acids [58,59]. Bacteria in this genus are generally syntrophic,
meaning they rely on partner organisms for key metabolites. Syntrophus has been identified
in a study in which a 16s analysis of anaerobic digesters fed manure from cows was
conducted [60]. The lack of data on Syntrophus in studies evaluating the microbiota of milk
limit interpretation of the relevance of this bacterium.

3.4. Differentiated Bacteria from DRY Samples Collected from IMT and CTL Cows

An unexpected finding of our study was that the milk microbiota of cows at DRY,
sampled before the administration of treatment, differed in their microbial composition
between the two treatment groups. As previously mentioned, a greater diversity of milk
microbiota was observed for cows at DRY, and a greater individual milk microbiota di-
versity could have resulted in the observed findings. Nevertheless, only two genera were
observed to significantly discriminate between DRY sampling points when comparing
CTL and IMT, namely the genus Alkalibacterium for DRY samples from IMT cows, and the
genus Mogibacterium for DRY samples from CTL cows (Figure 5A). Bacteria in the genus
Alkalibacterium are Gram positive, non-sporulating, and found in various basic environ-
ments [61]. In addition to the previously mentioned Brevibacterium, Alkalibacterium can
also be found on the surface of Dutch “Danbo” cheese—accounting for about 1.3% of total
ASVs [39]. It was hypothesized that Alkalibacterium was introduced to the cheese via the sea
salt used in brining. However, given the presence of Alkalibacterium in our milk samples,
it is possible the bacteria were instead selected for by the saline brine used in the cheese
making process. It was also found on the rind of a blue-veined, raw milk cheese from the
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UK made in the style of blue stilton cheese [62]. In this case, it is believed that the alkaline
pH found in the mature rind could have selected for Alkalibacterium. Aside from cheese,
Alkalibacterium has also been found in the fermentation of Spanish-style green table olives
and indigo dye [63,64]. It has also been discovered to have the potential to recover up to
52% of the copper present in waste produced by the burning of solid waste via a process
called bioleaching [65]. Lastly, the species Alkalibacterium kapii has been found to inhibit the
growth of Listeria when present on the surface of cheese [66].

Bacteria in the genus Mogibacterium are Gram positive, non-spore forming, obligate
anaerobes. Interestingly, research has shown that Mogibacterium are significantly more
abundant in the rumen of high-methane producing cattle [67]. Mogibacterium has also been
shown to decrease in abundance in dairy cows fed a high-grain diet designed to induce
subacute ruminal acidosis [68]. The authors concluded that use of a high-grain diet may
increase the risk of mastitis.

4. Material and Methods
4.1. Sampling
Milk Samples

A random subset of 100 milk samples from 50 cows on 3 of the 8 study herds in
the original trial described below were selected [24]. Choice of the 3 herds was based
on the geographic representation of herds from California’s San Joaquin Valley and to
minimize the number of freeze–thaw cycles. Specifically, the three herds were in Stanislaus
(1600 milking Holsteins; bulk tank somatic cell count (BTSCC) 200,000 cells/mL), San
Joaquin (1800 milking Holsteins; BTSCC 145,000 cells/mL), and Tulare counties
(1100 milking Jerseys; BTSCC 250,000 cells/mL). At dry-off, no cows with clinical signs of
mastitis, health events, body condition score <2.5, lameness, or non-functional quarters
were enrolled. Cows were randomized to one of four groups at dry-off and received either
intramammary infusion (IMT), internal teat sealant, or both. For the current study, the
50 cows were randomly selected from cows that either did not receive any treatment at dry-
off or received only intramammary antibiotic infusion. The decision to utilize the dry-off
(DRY) and post calving (FRESH) milk samples from each of the 50 randomly selected cows,
which yielded 100 milk samples, was based on budgetary reasons.

The decision to use cephapirin or cloxacillin was at the farm level, with 2 farms
enrolled in the study using cephapirin and one farm using cloxacillin. Of the 50 cows, 12
from the San Joaquin herd and 4 from the Tulare herd received intramammary infusion
(IMT) with cephapirin benzathine (ToMORROW®, Boehringer Ingelheim Animal Health
USA Inc., Duluth, GA, USA) and 7 from the Stanislaus herd received cloxacillin benzathine
(Dry-Clox®, Boehringer Ingelheim Animal Health USA Inc., Duluth, GA, USA) at the time
of dry-off following the manufacturer’s label instructions. The remaining 27 cows from San
Joaquin (n = 13), Tulare (n = 8) and Stanislaus (n = 6) received no intramammary infusion
(CTL) at the time of dry-off.

4.2. DNA Extraction

DNA was extracted using a standardized approach [25]. A total of 6 mL of thawed
milk from each sample was centrifuged at 8500 rpm for 5 min in a sterile 15 mL conical
centrifuge tube to pellet bacteria. Whey and fat were then discarded. A total of 500 µL of
PowerTube buffer was added to conical tube and then vortexed briefly to loosen the pellet.
A 10-min incubation at 65 ◦C of the sample then followed to increase DNA output. DNA
extraction then continued as recommended by the DNeasy PowerSoil Kit (Qiagen N.V.,
Carlsbad, CA, USA). A total of 100 µL of DNA was eluted for each sample into a sterile
2 mL micro centrifuge tube. DNA samples were stored at −80 ◦C until further processing.

4.3. PCR Amplification of 16S rRNA and DNA Sequencing

Due to the small quantities of DNA present in each sample, an additional step was
required to amplify DNA to a necessary concentration for 16s sequencing [26]. In this
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additional step, primers 27F-YM+4 and 1492R were used to amplify the nearly full length
16s rRNA. The 27F-YM+4 primer mix is an eightfold-degenerate primer containing four
parts 27F-YM (AGAGTTTGATYMTGGCTCAG), plus one part each of primers specific
for the amplification of Atopobium (AGAGTTCGATCCTGGCTCAG), Bifidobacteriaceae
(AGGGTTCGATTCTGGCTCAG), Borrelia (AGAGTTTGATCCTGGCTTAG), and Chlamydi-
ales (AGAATTTGATCTTGGTTCAG). Each 25 µL PCR reaction contained 1 Unit Kapa2G
Robust Hot Start Polymerase (Kapa Biosystems, Inc., Wilmington, MA, USA), 1.5 mM
MgCl2, 0.2 mM final concentration dNTP mix, 0.2 µM final concentration of each primer,
and 2 µL of DNA for each sample. PCR conditions were: an initial incubation at 95 ◦C for
3 min, followed by 25 cycles of 95 ◦C for 45 s, 50 ◦C for 30 s, 72 ◦C for 30 s, and a final
extension of 72 ◦C for 3 min.

Following amplification of the full length 16s rRNA, primers 319F and 806R were
used to specifically amplify the V3-V4 domain of the 16S rRNA. Each 25 µL PCR reaction
contained 1 Unit Kapa2G Robust Hot Start Polymerase (Kapa Biosystems, Inc., Wilmington,
MA, USA), 1.5 mM MgCl2, 0.2 mM final concentration dNTP mix, 0.2 µM final concentration
of each primer, and 1 µL of DNA for each sample. An initial incubation at 95 ◦C for 3 min,
followed by 25 cycles of 95 ◦C for 45 s, 50 ◦C for 30 s, 72 ◦C for 30 s, and a final extension of
72 ◦C for 3 min comprised the PCR conditions.

In the final PCR run, each sample was barcoded with a unique forward and reverse
barcode combination. The PCR reaction in step three contained 1 Unit Kapa2G Robust Hot
Start Polymerase (Kapa Biosystems, Inc., Wilmington, MA, USA), 1.5 mM MgCl2, 0.2 mM
final concentration dNTP mix, 0.2 µM final concentration of each uniquely barcoded primer,
and 1 ul of the product from the PCR reaction in step two. PCR conditions were: an initial
incubation at 95 ◦C for 3 min, followed by 8 cycles of 95 ◦C for 30 s, 58 ◦C for 30 s, 72 ◦C for
30 s, and a final extension of 72 ◦C for 3 min. The product of this final PCR reaction was
quantified on the Qubit instrument using the Qubit Broad Range DNA kit (Invitrogen/Life
Technologies Inc., Carlsbad, CA, USA).

Individual amplicons were pooled in equal concentrations and the pooled library was
cleaned utilizing Ampure XP beads (Beckman Coulter Life Sciences, Indianapolis, IN, USA).
The library was quantified via qPCR followed by 300-bp paired-end sequencing using an
Illumina MiSeq platform. Forward and reverse reads were trimmed to 260 bp and 200 bp,
respectively, before proceeding with the DADA2 portion of the QIIME2 analysis pipeline.

4.4. Bioinformatics

The 16S rRNA sequencing data was demultiplexed with dbcAmplicons (Matt Settles,
UC Davis Bioinformatics Core Facility, Davis, CA, USA) and processed through the Quan-
titative Insights into Microbial Ecology 2 (QIIME2) version 2018.6 utilizing the DADA2
pipeline [27,28]. Taxonomy was assigned using Greengenes version 13.8 at a 99% match [29].
All sample libraries were rarefied at an equal depth of 16,000 reads using QIIME2 prior to
generating Shannon diversity indices.

4.5. Statistical Analysis

Descriptive data was analyzed using JMP Pro 14.0. Distribution of amplicon sequence
variants (ASVs) in milk samples from cows by treatment group and time point were visualized
using a Venn diagram. Shannon diversity was displayed using a quantile-box plot.

Relative abundances of different bacterial taxa in each sample were used as covariates
in the stepwise discriminant analysis models built in JMP Pro 14.0. Each variable was
removed in a stepwise manner until only variables with a p value < 0.05 were retained
in the final model. Groups used in the analysis were the treatment group and sampling
time point combinations. Analyses were conducted, both independent of the specific
antimicrobial treatment being used, as well as by stratifying the dataset according to
the antibiotic treatment and the interactions between treatment and time points. Two
separate models were built to evaluate bacterial taxa. The first model did not consider
the type of antimicrobial used at dry-off. In the second model, data were stratified by
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antimicrobial treatment (cephapirin and cloxacillin). For models not differentiating between
the antibiotics used for IMT, canonical values for these analyses were used to create a
graphical display of the taxonomical results. A canonical cut-off value of ±0.3 was used.

For taxa identified as having a significant effect on the microbial composition for
each treatment group and time interaction, a linear regression was used to evaluate the
potential significant differences in relative abundance for the taxa of interest. Multilinear
regression models were generated, where the relative abundance for each taxon with a
canonical value of ±0.3 was used as the dependent variable, and the treatment groups,
time points, and interaction were included as explanatory variables. For each model, the
animal individual identifier was nested within the farm where the cow was located, and
inserted in the model as a random effect. If the time and treatment interaction between
the sampling time points and treatment groups were significant, a pairwise comparison
analysis was conducted using Tukey’s Honest Significant Difference (HSD) [30]. Differences
were considered significant when a p value < 0.05 was observed.

Relative mean abundances for six genera associated with mastitis (Staphylococcus,
Bacillus, Streptococcus, Mycoplasma, Escherichia, and Trueperella) were compared at DRY and
FRESH time points for both IMT and CTL (Supplementary Figure S1). For this analysis a
linear regression was used, where the dependent variable was the bacteria genus relative
abundance, and the independent variable was the time point and treatment group variable,
as well as its interaction. The individual identifier of the cow was nested by the farm and it
was sampled and entered in the model as a random effect.

5. Conclusions

IMT group samples collected at dry-off had a greater correlation with the genera
Brevibacterium and Amaricoccus, and the family Micrococcaceae, when compared to CTL
for the FRESH samples. Furthermore, CTL group samples collected at DRY had a greater
correlation with the genera Akkermansia and Syntrophus, when compared to FRESH sam-
ples. For DRY samples collected from the IMT group, a greater correlation for the genus
Alkalibacterium was observed when compared to CTL samples. Future research to evaluate
the impacts of the findings related to the prevalence of different taxa on individual animal
health and production are needed. No correlations between taxa were observed for FRESH
samples, comparing CTL and IMT treatment groups. Taken together, the lack of genera
deemed significant in differentiating FRESH samples from either CTL or IMT cows, indi-
cated intramammary antimicrobial dry cow therapy based on the drugs used in our study
had no significant effect on the udder milk microbiota post-partum.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11070963/s1, Figure S1: Relative mean abundance
of the genus Staphylococcus sp., Bacillus sp., Streptococcus sp., Mycoplasma sp., Escherichia sp., and
Trueperella sp. by treatment group (CTL and IMT) for both DRY and FRESH time points. Error bars
correspond to a 95% confidence interval; Table S1: Results from multivariate models for each taxon
with a canonical value of ±0.3 for analysis in Figures 2 and 3. Results are only displayed for the
interaction variable between sampling time points and the treatment group; Table S2: Results from
Tukey pairwise analysis for the genus Brevibacterium comparing all treatment groups and sampling
time point interactions.
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