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We propose a local conformal autoencoder (LOCA) for standard-
ized data coordinates. LOCA is a deep learning-based method
for obtaining standardized data coordinates from scientific mea-
surements. Data observations are modeled as samples from an
unknown, nonlinear deformation of an underlying Riemannian
manifold, which is parametrized by a few normalized, latent vari-
ables. We assume a repeated measurement sampling strategy,
common in scientific measurements, and present a method for
learning an embedding in R? that is isometric to the latent vari-
ables of the manifold. The coordinates recovered by our method
are invariant to diffeomorphisms of the manifold, making it pos-
sible to match between different instrumental observations of
the same phenomenon. Our embedding is obtained using LOCA,
which is an algorithm that learns to rectify deformations by using
a local z-scoring procedure, while preserving relevant geometric
information. We demonstrate the isometric embedding properties
of LOCA in various model settings and observe that it exhibits
promising interpolation and extrapolation capabilities, superior
to the current state of the art. Finally, we demonstrate LOCA's effi-
cacy in single-site Wi-Fi localization data and for the reconstruc-
tion of three-dimensional curved surfaces from two-dimensional
projections.

manifold learning | autoencoder | dimensionality reduction |
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1. Introduction

Reliable, standardized tools for analyzing complex measure-
ments are crucial for science in the data era. Experimental data
often consist of multivariate observations of a physical object
that can be represented as an unknown Riemannian manifold.
A key challenge in data analysis involves converting the observa-
tions into a meaningful and, hopefully, intrinsic parametrization
of this manifold. For example, in astrophysics, one is interested in
a representation that is coherent with the material composition
of stars, based on measurable, high-dimensional spectroscopic
data (1, 2). This type of challenge has typically been stud-
ied under the broader umbrella of dimensionality reduction
and manifold learning, where numerous algorithmic solutions
have been proposed (3-12). These methods rely on statistical
or geometrical assumptions and aim to reduce the dimension,
while preserving different affinities of the observed high-dimens-
ional data.

In this paper, we focus on data obtained from several observa-
tion modalities measuring a complex system. These observations
are assumed to lie on a path-connected manifold, which is
parameterized by a small number of latent variables. We assume
that the measurements are obtained via an unknown nonlinear
measurement function observing the inaccessible manifold. The
task is then to invert the unknown measurement function, so as to
find a representation that provides a standardized parametriza-
tion of the manifold. In general, this form of blind inverse
problem may not be feasible. Fortunately, in many cases, one can
exploit a localized measurement strategy, suggested in ref. 13,
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to extract an embedding into internally standardized (z-scored)
latent variables.

Toward a useful formulation of our problem, we note that
in numerous real-world scenarios, it is possible to capture data
using a localized burst sampling strategy (14-21). As motivation
for this type of burst sampling, we describe a toy experiment
(Fig. 1). Consider the task of recovering the geometry of a curved
two-dimensional (2D) homogeneous surface in three dimensions
using a laser beam which heats the surface locally at several posi-
tions. Here a burst is realized through the brief local isotropic
propagation of heat around each laser impact location (each data
point), which can be visualized as a local ellipse by a thermal
camera. Now, the task is to recover the curved geometry of the
surface in three dimensions using the collection of observed local
2D ellipses.

More generally, our strategy is realized by measuring such
brief bursts, which are modeled as local isotropic perturbations
added to each state in the inaccessible latent manifold. The
bursts provide information on the local variability in the neigh-
borhood of each data point. Thus, they can be used to estimate
the Jacobian (modulo an orthogonal transformation, as we will
discuss) of the unknown measurement function. The authors
of ref. 13 use such bursts and suggest a scheme to recover a
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Fig. 1. An example motivating LOCA: learning the stereographic shape of a
surface. We consider a laser beam used to locally heat the surface at several
positions. A thermal camera measures the brief isotropic propagation of
heat around each location. By scanning a thermal image, we can identify
the neighborhoods of each position, which we define as our “bursts.” LOCA

uses these bursts to invert the projection and recover a scaled version of the
curved surface.

representation that is invariant to the unknown transformation.
Specifically, they use a local Mahalanobis metric, combined with
eigenvectors of an anisotropic Laplacian, in order to extract a
desired embedding.

Solutions such as ref. 13 and extensions such as refs. 20 and
22-25 can be used. There remain, however, several challenges:
1) they require a dense sampling of the deformed manifold, 2)
they deform the representation due to inherent boundary effects,
and 3) they do not extend easily to unseen samples. To overcome
these limitations, we introduce the concept of a local conformal
autoencoder (LOCA), which is a deep learning-based algorithm,
specifically suited to burst measurements. LOCA is realized
using an encoder—decoder pair, where the encoder attempts
to find a mapping such that each burst is locally whitened
(z-scored). By taking into account a reconstruction loss, our
decoder ensures that crucial geometric information is preserved
in the embedding. We have found LOCA to be scalable, easy
to implement, and parallelizable using the existing deep-learning
open-source implementations. We provide empirical evidence
that the LOCA embedding is approximately isometric to the
latent manifold and extrapolates reliably to unseen samples. We
discuss a scheme to automatically tune the minimal embedding
dimension of LOCA and demonstrate its precision in two real
data problems.

The contributions in this paper are as follows: 1) We show that
the localized sampling strategy (bursts at a given scale) generates
a consistent Riemannian structure; under certain conditions, it
also allows inverting the unknown measurement function (mod-
ulo a shift and orthogonal transformation). 2) We present a two-
step optimization scheme for learning a parametric mapping,
which is approximately an isometry of the latent manifold. 3)
We observe that this optimization problem can be approximately
solved by training a deep autoencoder. 4) We present empirical
evidence that the resulting algorithm allows surprisingly accurate
interpolation and extrapolation. While most popular nonlinear
dimension-reduction algorithms cannot be feasibly applied to
large datasets, we note that the algorithm proposed here can
be used to embed large datasets using available deep-learning
infrastructure.

1.1. Reproducibility Advisory. All figures in this paper, including
those in SI Appendix, are fully reproducible using the deposited
code supplement (https://purl.stanford.edu/zt044bg9296). In the
code supplement we also offer a Python implementation of the
proposed LOCA algorithm.

2. Problem Settings

2.1. The Burst Measurement Strategy. Consider first, for simplicity,
the case where the latent domain for our system of interest is a
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path-connected domain in a Euclidean space X =R?. We call X
the latent space. Observations of the system consist of samples
captured by a measurement device given as a nonlinear function
f: X — Y, where Y is the ambient, or measurement space. Even
if f is invertible, it is generally not feasible to identify f~* without
access to X'. Here we assume that 1) f is smooth and injective and
that 2) multiple, slightly perturbed versions of the physical system
point in X give rise to multiple (slightly perturbed) measurements
in ). In this notation, by exploiting a specific type of local pertur-
bation, we develop a method to recover a standardized version X’
from ) (up to an approximately isometric transformation, which,
for Euclidean spaces, would be a rigid transformation).
Consider N data points (burst centers), denoted x1,...,xy €
R? in the latent space. Assume that all these points lie on a path-
connected, d-dimensional subdomain of X’; we will later discuss
the restriction to Riemannian manifolds with a smaller dimen-
sion than the full space. Importantly, we do not have direct access
to the latent space X. Samples in the latent space X', which
can be thought of as latent states, are pushed forward to the
ambient space ) via the unknown deformation f. Lety, = f(x;)
(for i=1,...N) so that y,,...yy € R”. We assume that the
observed burst around y, consists of perturbed versions of the
latent state x;, pushed through the unknown deformation f. For-

mally, for fixed 1 <i< N, let y£1)7 .. .yEM) be independent and
identically distributed samples of the random variable

Y, =f(X;) eR”, (1]

where X; ~ Nqy(x;,02l,) for i=1,..., N are independent ran-
dom variables. The data available to the scientist consists of N
sets of observed states, where each set, indexed by 1 <i < N,

is {ygy )}jzl,_,_, m. We assume that o < 1 or, alternatively, that
o is sufficiently small such that the differential of f practically
does not change within a ball of radius ¢ around any point.
Such sufficiently small o allows us to capture the local neigh-
borhoods of the states at this measurement scale on the latent
manifold. While we assume Gaussian perturbations, note that
other isotropic distributions that satisfy this condition could also
be used to model the perturbations.

Let us explore the implications of this localized sampling
strategy for learning a representation that is consistent with X
Specifically, our goal is to construct an embedding p: R” — R*
that maps the observations y,, so that the image of pof is iso-
metric to X when o is known. In our Euclidean setting, such an
isometric embedding should satisfy

lp0:) = POy, = llxi —xjll,, foranyi,j=1,....,N.  [2]

We note that if ¢ is not known, we will relax Eq. 2 by allowing
a global scaling of the embedding. In general, Eq. 2 means that
we are only looking for a representation that preserves the pair-
wise Euclidean distances between the latent samples, rather than
obtaining their actual values. More specifically, a p that satisfies
Eq. 2 is not unique and is defined up to an isometric transforma-
tion of the data. We refer to representations which satisfy Eq. 2
up to errors smaller than o as “isometries.”

3. Related Work

The problem of finding an isometric embedding was also studied
in ref. 26. The paper proposes an algorithm to embed a manifold
with dimension d into a space of dimension s > d. The method
in ref. 26 is based on ref. 12 and uses a discrete version of the
Laplace-Beltrami operator, as in ref. 7, to estimate the metric
of the desired embedding. To ensure that the embedding is iso-
metric to the observed samples ), the authors proposed a loss
function that measures the deviation between the push-forward
metric on the observed space ) and the restricted Euclidean
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metric induced by the embedding. The embedding then is refined
by gradient descent optimization with respect to this proposed
loss. The approach successively approximates a Nash embed-
ding with respect to the observed space, ), and requires that the
manifold is densely sampled at all scales.

In this work, we use bursts to learn an embedding that corrects
the deformation f and isometrically represents the inaccessible
manifold X. The idea of using bursts, or data neighborhoods,
to learn a standardized reparametrization of data was first sug-
gested in ref. 13. The authors assume the data are obtained via
some unknown nonlinear transformation of latent independent
variables. Locally, the distortion caused by the transformation
is corrected by inverting a Jacobian that is estimated from the
covariances of the observed bursts. This allows the authors to
define a local Mahalanobis metric (which is affine invariant).
Then, this metric is used to construct an anisotropic intrinsic
Laplacian operator. Finally, the eigenvectors of this Laplacian
provide the independent components and are used as a canoni-
cal embedding. This framework was extended in several studies
such as refs. 15, 22, 23, and 25.

The work of these authors can be improved in three directions.
First, they require inverting a covariance matrix in the ambient
space. Second, they suffer from deformation near the bound-
aries. Third, they typically do not provide an embedding function
that can be naturally extended over the entire data domain and
beyond; instead, they provide a specific mapping for the exist-
ing training samples. This last direction means that to embed
test data, methods such as refs. 14 and 27 can be employed. The
mapping approximations based on these methods are limited and
cannot extend further than a small neighborhood around each
training point. Furthermore, even though the provided embed-
ding is unique, it is not isometric to the latent variables. We
present a method that alleviates these shortcomings and empiri-
cally demonstrate that it extracts a canonical representation that
is isometric to the latent variables.

The work that is perhaps most related to this study was
recently presented by ref. 19. The authors consider using bursts
to develop a method for finding an embedding that is isomet-
ric to the latent variables. They build upon Isomap (28) and
use two neural networks to refine the Isomap-based embedding.
The first neural network is used in order to obtain a continuous
model for estimating the covariance C(Y;). The covariances are
used for calculating local Mahalanobis-based distances, which
are fed into Isomap to obtain an initial embedding. Next, they
train an additional neural network to correct the I[somap embed-
ding so that the Euclidean distances will approximate the local
Mahalanobis distances. In this paper, we take a different and,
we believe, a more systematic/general approach by presenting a
simple encoder—decoder pair (Fig. 2) that is directly applicable
to samples in the observed, high-dimensional space. Specifically,
our approach provides a parametric mapping that allows us to
extend the embedding to new unseen samples naturally. Fur-
thermore, we learn the inverse mapping, which could be used
to generate new samples by interpolating in the latent space.

4. Deriving an Alternative Isometry Objective

Without access to samples from X, the objective described in
Eq. 2 does not provide any information for extracting p. Here
we reformulate this objective by utilizing the special stochastic
sampling scheme presented in Section 2 and relate it to the dif-
ferential equation for the embedding described in Lemma 1. We
start by plugging the unknown measurement function into Eq.
2; then, we can approximate its left-hand side using a first-order
Taylor expansion

loG:) =Pyl = llpof i) — pofx))ll,
R W por (1) (x5 —xi) [ -
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Fig. 2. An illustration of the LOCA. The observation space (Y) is assumed
to model a nonlinear deformation of the inaccessible manifold (X). We
attempt to invert the unknown measurement function. Here we utilize
the bursts sampling strategy illustrated in Fig. 1. LOCA is a special type
of autoencoder, consisting of an encoder (E) parametrized by p and a
decoder (D) parametrized by ~ (see Section 5). The autoencoder receives
a set of points along with corresponding neighborhoods; each neighbor-
hood is depicted as a dark oval point cloud (at the top of the figure). At
the bottom, we zoom in onto a single anchor point y; (green) along with its
corresponding neighborhood Y; (bounded by a blue ellipsoid). The encoder
attempts to whiten each neighborhood in the embedding space, while the
decoder tries to reconstruct the input.

Hence, by neglecting higher-order terms, we can define the
following objective

Jpor () T pop(xi) =14, fori=1,..., N, 131

which allows us to evaluate the isometric property of p.

Now we want to relate the Jacobian in Eq. 3 to the measurable
properties of the observations Y1, ..., Yy, pushed forward using
the encoder, p. Specifically, we can rely on the following lemma
to approximate the derivatives of the unknown function f at each
pointxi,...,xn.Lemma I is proved in SI Appendix, section 1:

Lemma 1. Let d, s €N, where s > d. Let g: X — Z be a func-
tion, where X =R® and Z=R*. Let x€ X and o €R,. Define
a random variable X ~ N (x, 021 ;). If the function satisfies g € C*
and is injective, there exists a o € Ry such that the covariance of the
transformed random variable Z = g(X) is related to the Jacobian of
gatxvia

1
T (%) = —C(2) + 0(c”).
Moreover, )
;C(Z) Q)Jg(xZ)Jg(x)T~

By setting g = p of, Lemma 1 provides a relation between the
Jacobian of pof and the covariance in the embedding space.
Specifically, this translates to a system of differential equations
for the Jacobian of an isometric (Nash) embedding

ToogE ey 6)" = 5C (V) O(). 141

When s = d, meaning p embeds the data in R¢, we can link the
approximation of objective Eq. 2 to Eq. 4 by

1 )
;C(p(Yi)):I, foranyi=1,...,N. [51

Thus, we can evaluate the embedding function at each point
without gaining access to the latent states of the system.
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Algorithm 1: LOCA: local conformal autoencoder

Input: Observed clouds Y;,i=1,...N.

Output: 6. and 8 - the weights of the encoder p and decoder
~ neural networks.

1:fort=1,...,Tdo

2: Compute the Whitening loss

p(Y) *’d

whlte =

3: Update e :=0e — 1V, Lypite
4: Compute the reconstruction loss

= 8 2 )

5: Update B¢ :=0e — Vo, Lrecon and
04:=04 — 1V, Lrecon

5. Local Conformal Autoencoder

We now introduce the LOCA, with training Algorithm 1. Our
method is based on optimizing two loss terms: the first is defined
based on Eq. 5, using what we refer to as a whitening loss,

N
whzte E

2

; [6]

1
= N—1Ia
o? F

where p is an embedding function and C (p(Y;))is the empirical

covariance over a set of M realizations p (y(l)),l.wp ( (M)),

where yg ), ceey yE ) are realizations of the random variable Y.

As f is invertible on its domain, an embedding function p that
approximates f~* should be invertible as well. The invertibility
of p means that there exists an inverse mapping ~:R? — ),
such that y, =+(p(y,;)) for any ¢ € [N]. This additional objec-
tive helps remove undesired ambiguities (which may occur for
insufficient sampling). By imposing an invertibility property on
p, we effectively regularize the solution of p away from nonin-
vertible functions. To impose invertibility, we define our second
loss term, referred to as reconstruction loss:

bento = S 2 (o6

We suggest finding an isometric embedding based on an autoen-
coder, where p will be defined as the encoder and ~ as the
decoder. We construct solutions to Eqs. 6 and 7 with a neural
network ansatz p=h'" and v = h<dL> consisting of L layers each,
such that

B9 (y) = o (Wﬁ“”hé“”(y) +b“’”), t=1,..., L,

WO () =oa (WEORED @) 400 0), e=1,., 1

where 1" (y) = y and ") (z) = 2. Here W, b’ and W', b’; are
the weights and biases at layer ¢ of the encoder and decoder,
respectively. The functions o.,o,; are nonlinear activations
applied individually to each input coordinate. As the activation
function can have a limited image, we recommend removing the
nonlinear activation for £ = L.

We propose to find p and ~ by alternating between a stochas-
tic gradient descent on Eqs. 6 and 7. It is important to note that
the main objective that we are trying to optimize for is based on
Eq. 6; therefore, Eq. 7 can be viewed as a regularization term. A
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pseudo-code of this procedure appears in Algorithm 1. To pre-
vent overfitting, we propose an early stopping procedure (29,
30) by evaluating the loss terms on a validation set. In Section
6, we demonstrate different properties of the proposed LOCA
algorithm using various geometric example manifolds.

Note that functions that perfectly satisfy our objectives are not
unique; i.e., for any solution p we can define an equivalent solu-
tion p that will attain the same loss. Specifically, we can define it
by p(y) = Uy +c for any y € Y, where U € O(d) and ¢ € R%.

In summary, 1) we collect distorted neighborhoods of a fixed
size (o) around data points of the system of interest. 2) We
embed/encode the data in a low-dimensional Euclidean space,
so that these neighborhoods are standardized or z-scored. 3) The
embedding is decoded back to the original measurements, to reg-
ularize the encoder. In Section 6, we demonstrate that 4) the
encoder is invariant to the measurement modality [up to errors
of O(0?) and modulo an orthogonal transformation and shift].
Below, we further demonstrate that 5) the parametric form of
the embedding enables reliable interpolation and extrapolation.

6. Properties of LOCA

In this section, we evaluate the properties of the proposed
embedding p by generating various synthetic datasets. We com-
pare the extracted embedding provided by LOCA (described in
Section 4) with the embeddings of alternative methods such as
diffusion maps (DM) (7) and anisotropic diffusion maps (A-DM)
(13) denoted as v and ¢, respectively. Note that the DM algo-
rithm does not use the burst data, while the A-DM algorithm
uses it in order to construct a local Mahalanobis metric. We
present the details of the exact implementation for each of the
methods in S Appendix, section 2.

6.1. LOCA Creates an Isometric Embedding. We first evaluate the
isometric quality of the proposed embedding p with respect to
the true inaccessible structure of X'. Here we follow the setting
in ref. 13, where the intrinsic latent coordinates are independent,
specifically distributed by U[0, 1]?. Based on this distribution, we
sample N = 2,000 anchor points x; along with bursts X;. Each
burst consists of M =200 points sampled independently from
Na(xi,0I2), where o = 0.01.

We now define the nonlinear transformation, f, : R* — R? (as
in ref. 13), to the ambient space by

z[0] + z[1]3
fl(x): (_1[,[(])]3 +[11][1]>7 [8]

for any x= (z[0], z[1])T € R?. In Fig. 3, we present measure-
ments from X with the corresponding measurements of ), where
Y= f(X). To illustrate the local deformation caused by f,, we
overlay the samples with clouds around five different positions
(see green dots). Next, we apply LOCA (described in Algo-
rithm 1) to compute an embedding p that satisfies Eqs. 6 and
7. We evaluate the isometric quality of LOCA by comparing
the pairwise Euclidean distances in the embedding space p to
the Euclidean distances in the latent space X. For comparison,
we apply DM and A-DM (which also uses the bursts) to ) and
plot the pairwise Euclidean distances in the embedding vs. the
corresponding Euclidean distances in the latent space. Here we
evaluate isometry up to a scaling, as DM and A-DM use eigen-
vectors (that are typically normalized). The scaling is optimized
to minimize the stress defined by

m Z (Da (i, x7)

Stress(g) = - Dg(yi7yj))27 91

where g is some embedding function from ) and D, (y,, y;)=
lle,) —gb;)ll 5 Specifically, the stress values for LOCA and the
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Fig. 3. Evaluating the isometric quality of the embedding (the setting is detailed in A). (A) The points x;,i=1,...,N=2,000, in the latent space of the

system of interest. (B) The pushed-forward points as measurements y; =1, . ..

, N, created by applying the nonlinear transformation f; (described in Eq. 8).

We observe bursts around each sample (based on the burst model described in Section 2). To illustrate this burst sampling scheme, we overlay the points
with additional green samples generated by bursts at five different positions. (C) The calibrated embedding p (using an orthogonal transformation and
a shift) overlaid with the corresponding green bursts. Here we calibrated the embedding merely for visualization purposes. The colors in these figures
correspond to the values of x[1]. (D) Euclidean distances between pairs of points in the latent space plotted versus the corresponding Euclidean distance in
the embedding space. The corresponding distances for DM and for A-DM are also shown in color, scaled with a factor which minimizes the stress (defined

in Eq. 9).

scaled versions of DM and A-DM are 1.5- 107>, 0.03, and 0.002,
respectively. As evident from the stress values and from Fig. 3,
LOCA provides an embedding that is approximately isometric
to X (up to an orthogonal transformation and shift).

6.2. The Encoder Is Observed to Extend Reliably to Unseen Samples.
In the next experiment, we evaluate the out-of-sample exten-
sion capabilities of LOCA. The experiment is based on the same
nonlinear transformation described in Section 6.1. We sample
N =2,000 points from a partial region of the latent represen-
tation X, specifically described by [0, 1]%\[0.1,0.9]2. In Fig. 4, we
present the framed sampling regions along with the correspond-
ing observed framed regions in ) (see black and green frames
in Fig. 4 A and B). To generate the bursts, we follow the set-
tings presented in Section 6.1 and refer to them as our training
set. The test set is defined by an additional 2 - 10* samples gener-
ated as in Section 6.1 from [—.025,1.025)% in X pushed forward
by f;.

In Fig. 4C, we quantify the interpolation and extrapolation
capabilities of LOCA by presenting the extracted embedding
along with the corrected frame. To further evaluate the quality of
this embedding, we compare the pairwise distances in Fig. 4D (as
described in Section 6.1). This comparison (presented in Fig. 4D)
demonstrates the merit of using LOCA for extrapolating the
embedding to unseen samples. Interestingly, the actual stress val-
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ues of LOCA in the interpolation region, on the frame and in the
extrapolation region, are all approximately 10™*.

6.3. The Decoder Is Observed to Extend Reliably to Unseen Samples.
In this experiment we evaluate the out-of-sample capabilities
of LOCA’s decoder. While in Section 6.2 we trained LOCA
and evaluated the quality of the encoder on unseen data, here
we focus on the performance of the decoder. Specifically, we
apply the decoder to unseen samples from the embedding space.
Each unseen sample in the embedding space is created using
linear interpolation. We now provide the exact details of this
evaluation.

For this interpolation experiment, we use the same LOCA
model trained in Section 6.2 on the framed data. We further
generate N =400 points in the interior boundary of the frame,
represented by the green dots in Fig. 5. Next, we perform a
linear interpolation between horizontal and vertical pairs; see,
for example, the colored lines in Fig. 54. The data are then
pushed forward using the nonlinear transformation described
in Eq. 8, as shown in Fig. 5B. We embed the training samples
along with the green frame using LOCA; a calibrated version
of the embedding space is shown in Fig. 5C (up to a shift and
an orthogonal transformation). Then, we perform an additional
interpolation in the embedding space using the same correspond-
ing pairs as were used in the latent space (Fig. 54). Finally,
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Evaluating the out-of-sample performance of the encoder, detailed in Section 6.2. (A) The latent space of interest X. Our training region is bounded

here by the black and green frames. The interpolation region lies within the green frame, while the extrapolation regime lies outside the black frame.
(B) The observed space Y with corresponding regions of interest. (C) The calibrated embedding p (using an orthogonal transformation and a shift) with
corresponding regions of interest. The colors in these figures correspond to the values of x[1]. Here we calibrated the embedding merely for visualization

purposes. (D) The Euclidean distances between pairs of points in the latent space versus the corresponding Euclidean distance in the embedding space.

we apply the decoder to the embedding of the training sam-
ples and to the newly interpolated samples, which are presented
in Fig. 5D. As evident in this figure, the reconstructed points
faithfully capture the mushroom-shaped manifold. The mean
squared error between the pushed-forward interpolated points
and the decoded interpolated points is 2.3 - 10™*, with an SD of
2.4-107*. This experiment demonstrates that LOCA may also
be used as a generative model, by reconstructing new points
generated using interpolation in the embedding space.

6.4. LOCA on a Curved Manifold. Here we examine a more chal-
lenging configuration, generalizing our original Euclidean prob-
lem setting. The latent space is now taken to be a k—dimensional
manifold that resides in R¢, where d > k and d is the minimal
dimension required to embed the manifold in a Euclidean space
isometrically. Interestingly, we consider an observation process
such that the observation dimension, D, is smaller than d. To
clarify, this means that the measurement process can involve
projections to a lower dimension.

We consider a manifold that covers three quarters of a 2D unit
sphere in R?®, where the training points admit the following form:

sin(a) cos(S3)
x = | sin(a) sin(B)
cos(a)

Bel0,2n),a€[n/3, 7). [10]

The manifold is embedded in R but has an intrinsic dimension
of 2. This requires us to revisit our definition of bursts, discussed
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in Eq. 1. Specifically, we assume that the bursts are confined to
the manifold. Here we approximate this constraint in the form
of random variables Z;, obtained using a local isotropic Gaussian
with a 2D covariance oI, defined on the tangent plane to the
point.

We consider N = 491 states of the systemx;, i =1, .., N, which
are generated on a uniform grid using the Fibonacci sphere sam-
pling scheme (31) for points with o € [7/3,57/6]. We define
each burst X; using M =400 points sampled from our 2D
isotropic Gaussian defined by the tangent plane around x; with
0 =0.01. Now, in order to create the observed samples y , we
apply the stereographic projection to x by projecting each point
from X onto a 2D space defined by

z[1]

y="m ). [11]
1—z[3]

The transformation can be thought of as a projection onto the
plane R? x {1}; an illustration of the stereographic projection
appears in Fig. 64. The training bursts in the latent space and
the observed space appear in Fig. 6 B and C, respectively.

We apply DM, A-DM, and LOCA to embed the data in a
3D space. The difference between the pairwise Euclidean dis-
tances (see description in Section 6.1) in each embedding space
and the original Euclidean distances along with the extracted
embeddings are described in ST Appendix. The stress values for
LOCA and the scaled DM and A-DM on the training data
are 1073,0.18, and 6- 1073, respectively. In order to examine
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Evaluating the out-of-sample reconstruction capabilities of LOCA. Here we attempt to generate new points in the ambient space by performing a

linear interpolation in the embedding space. A description of the linear interpolation appears in C. (A) The inaccessible latent space. The points surrounding
the green frame are the training samples. Interpolation is performed horizontally and vertically between points on the green frame; see, for example,
the four colored lines. (B) The pushed-forward data from A based on the nonlinear function f; described in Eq. 8. (C) Recovered calibrated embedding
p. The training samples in the frame and green border are embedded using LOCA. Within the embedded green border we perform an additional linear
interpolation, using the same corresponding pairs as were used in the latent space. For example, see the four horizontal and vertical colored lines. (D) The
pushed forward data from C by the decoder (v) learned by LOCA. This experiment demonstrates that LOCA learns a decoding function that is consistent
with the unknown transformation, even in a regime that is not covered by training samples.

the interpolation capabilities of LOCA, we generate 55 points
using the Fibonacci sphere that satisfies a € (57 /6, 7]. Using the
trained model of LOCA, we embed these data and obtain that
the stress value is 10~*. Fig. 6 demonstrates that LOCA can well
approximate an isometry, even if the dimension of the observa-
tions is lower than the minimal embedding dimension needed for
the isometry, i.e., s > D.

7. Applications

7.1. Flattening a Curved Surface. Our first application is motivated
by ref. 32, in which the authors propose a method for estimating
the 3D deformation of a 2D object. They focus on the task of
autonomous robotic manipulation of deformable objects. Their
method uses a stream of images from an RGB-D camera and
aligns them to a reference shape to estimate the deformation.
We explore the merits of LOCA for the task of estimating a
deformation based on a 2D projection of an object, without using
any depth information. A black square-shaped uniform grid has
been created with N =2,500 burst centers. Around each cen-
ter, we generated a burst with M =50 samples drawn from a
Gaussian with ¢ =0.01. The collection of 2, 500 bursts has been
printed on an A-4 white page (Fig. 74). We manually deformed
the printed square and photographed the deformed page from
above. The image of the original squared object along with a

30924 | www.pnas.org/cgi/doi/10.1073/pnas.2014627117

2D snapshot of the deformed object appears in Fig. 7B. This
experiment complements the motivating example presented in
Fig. 1.

To define the anchor points y, along with corresponding
bursts, we first identify the locations of all points by applying
a simple threshold filter to the image. Then, we identify the
bursts by applying density-based spatial clustering of applica-
tions with noise (33). In Fig. 7B we present the identified groups
of points (black). Note that some bursts are lost in this pro-
cess as there is nearly no gap between them in the deformed
shape. Here the parameter o“ for the whitening loss (Eq. 6) is
estimated using the median of the first eigenvalue of the bursts
covariances. We apply LOCA and extract the embedding p. In
Fig. 7C, we present a calibrated version (scaled rigid transforma-
tion) of the embedding, p, overlaid on the latent representation.
The transformation is found by minimizing the mean squared
error between the underlying representation and the extracted
embedding of the four corners of the square. This experiment
demonstrates that LOCA corrects the unknown deformation
based on the estimated bursts.

7.2. Application to Wi-Fi Localization. Here we evaluate LOCA for

the task of geographical localization based on mobile devices.
The localization problem involves estimating the geographic
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Fig. 6. The stereographic projection experiment (see description in Section 6.4). (A) A schematic illustration of the stereographic projection generating the
data. (B) The original latent representation of the bursts employed. (C) The 2D observations of the bursts created using the stereographic projection. The
plot contains only the training data, meaning points that satisfy o € (7/3, 57/6), leaving a hole at the south pole. (D) The 3D embedding of these training
data, with the missing lower cap (« € (/3, 7]). The color represents the value of « of each point as defined in Eq. 10. The colors used in B-D correspond
to the spherical angle o defined in Eq. 10. (E) The Euclidean distances between pairs of points in the original, 3D latent space versus the corresponding
Euclidean distance in the embedding space. Here we compare distances based on the training region (frame) as well as the unseen test region, where

a € (57/6, ] (interpolation).

location of a receiver device based on signals sent from multiple
Wi-Fi transmitters. This problem has been addressed by mod-
eling the strength of the signal in time and space or based on
fingerprints of the signal learned in a supervised setting (34, 35).
We address the problem in an unsupervised fashion by applying
the proposed LOCA algorithm without employing any physical
model.

The experiment is performed by simulating the signal strength
of L =17 Wi-Fi transmitters at multiple locations across a model
of a room, where each transmitter uses a separate channel.
The room is modeled based on a simplified floor plan of the

Peterfreund et al.

fourth floor of the unusually shaped Stata Center building at
Massachusetts Institute of Technology. We refer to the 2D rep-
resentation of the room as X C R?; a schematic of the floor plan
with 600 x 1,000 pixels appears in Fig. 8 (black line). The L=17
Wi-Fi transmitters are randomly located across the floor plan; we
denote each of these locations by ¢, € R?, forany £ € {1,...,17}.
Next, we sample x;, i =1, ..., N, using N =4, 000 anchor points
distributed uniformly over X, and define the amplitude of each
measured Wi-Fi signal using a radial basis function (RBF). The
RBF decay is monotonic in the distance between the transmitter
and the measurement location, so that the amplitude at point z;
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Fig. 7. A LOCA embedding can flatten a deformed object using estimated bursts. (A) An image of the deformed printed square on an A-4 paper. (B) The
input training samples used by LOCA (black) that were extracted from A, along with the reconstructed points (red). (C) The calibrated embedding (using
an orthogonal transformation and a shift) of the deformed object using LOCA (red) and the underlying representation of points (black). As in the synthetic
examples, we use calibration only for visualization purposes. Here LOCA manages to correct the deformation of the local bursts and thus learns a function

that approximately uncovers the latent structure of the object.

of the signal of transmitter £ is y; » = exp(—[x; —t¢||5/¢?), where
€ =600 pixels. Here the bursts will be defined by a circle of M =6
receivers equally spaced at a radius of = 0.5 pixels around each
anchor point x;: these six receivers model a circular sensor array
as the measurement device.

Next, we apply LOCA and embed the observed vectors of
multichannel amplitudes into a 2D space. To demonstrate the
performance of LOCA, we calibrate the LOCA embedding to
the ground truth floor plan using a shift and scaled orthogonal
transformation, as done in Section 7.1 but using all of the training
data. In Fig. 8 we present the scaled, calibrated, 2D embedding p
with the locations of the transmitters and anchor points. The iso-
metric properties of LOCA can be evaluated based on the stress
value between distances in the calibrated LOCA embedding and
distances in the original floor plan. Here the stress value is 0.33.

8. Discussion

In this paper, we proposed a method and an algorithm for
extracting canonical data coordinates from scientific measure-
ments. Our algorithm produces a nonlinear embedding that
is approximately isometric to the unknown latent manifold
structure of the data. Our method assumes a specific, broadly
applicable stochastic sampling strategy and successfully cor-
rects for unknown measurement device deformations. The pro-
posed method constructs a representation that whitens (namely,
changes to multivariate z scores) batches of neighboring mea-
surements, which we call bursts. We impose additional con-
straints to patch together the locally whitened neighborhoods,
ensuring a smooth global structure. Finally, the method is
implemented using a neural network architecture, namely, an
encoder—decoder pair, which we name LOCA. As shown in
Lemma 1, the covariances of the bursts can be used to estimate
the Jacobian of the unknown measurement function. Alterna-
tively, we can replace this estimation with any other type of
measurement strategy informative enough to estimate the local
Jacobian of the measurement function.

The method can be summarized as follows: 1) we collect dis-
torted neighborhoods of a fixed size of data samples; 2) we
embed/encode the data in the lowest dimensional Euclidean
space so that these neighborhoods are standardized or z-
scored; and 3) the data are decoded from the embedding
space to original measurements, enabling interpolation and
extrapolation.
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We observed that LOCA is invariant to the measurement
modality (approximately to second order and modulo a rigid
transformation). Under condition of scaling consistency for sam-
ples drawn from a Riemannian manifold, the encoder approxi-
mates an isometric embedding of the manifold. From an imple-
mentation perspective, our method is simpler than existing
manifold learning methods, which typically require an eigende-
composition of an N-by-N matrix (N being the number of sam-
ples). Indeed, existing implementations of deep neural networks
enable a single developer to produce fast, reliable, GPU-based
implementations of LOCA.

We provided solid empirical evidence that if the deformation
is invertible, then LOCA extracts an embedding that is isometric
to the latent variables. Moreover, LOCA exhibits intriguing—
indeed promising—interpolation and extrapolation capabilities,
as demonstrated in two promising applications. Finally, in S/
Appendix, we demonstrate that LOCA can be used to register
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True floor plan edges

Calibrated LOCA embedding of the floor plan
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Fig.8. Application of LOCA to Wi-Fi localization. We use a floor plan model
based on the fourth floor of Massachusetts Institute of Technology’s Ray and
Maria Stata Center. The edges of the ground truth model appear in black.
We simulate L =17 Wi-Fi access points (transmitters), which are presented
as black crosses. We use N = 4,000 locations depicted as red dots with cor-
responding M = 6 burst samples around them (modeling a circular antenna
array). To demonstrate that LOCA's embedding is coherent with the latent
representation, we calibrate the embedding to the true floor plan; see blue
dots and green line.
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observations from multiple high-dimensional modalities (S/
Appendix, section 4 and Fig. S4).

Data Availability. The code and data supplement are available online at the
Stanford Digital Repository (https://purl.stanford.edu/zt044bg9296).
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