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Antibiotics alter the gut microbiome and cause dysbiosis leading to antibiotic-resistant 
organisms. Different patterns of antibiotic administration cause a difference in bacterial 
composition and resistome in the human gut. We comprehensively investigated the association 
between the distribution of antibiotic resistance genes (ARGs), bacterial composition, and 
antibiotic treatments in patients with chronic obstructive pulmonary diseases (COPD) and 
Clostridioides difficile infections (CDI) who had chronic or acute intermittent use of antibiotics 
and compared them with healthy individuals. We analyzed the gut microbiomes of 61 healthy 
individuals, 16 patients with COPD, and 26 patients with CDI. The COPD patients were 
antibiotic-free before stool collection for a median of 40 days (Q1: 9.5; Q3: 60 days), while the 
CDI patients were antibiotic-free for 0 days (Q1: 0; Q3: 0.3). The intra-group beta diversity 
measured by the median Bray-Curtis index was the lowest for the healthy individuals (0.55), 
followed by the COPD (0.69) and CDI groups (0.72). The inter-group beta diversity was the 
highest among the healthy and CDI groups (median index = 0.89). The abundance of ARGs 
measured by the number of reads per kilobase per million reads (RPKM) was 684.2; 1,215.2; 
and 2,025.1 for the healthy, COPD, and CDI groups. It was negatively correlated with the 
alpha diversity of bacterial composition. For the prevalent ARG classes, healthy individuals 
had the lowest diversity and abundance of aminoglycoside, β-lactam, and macrolide-
lincosamide-streptogramin (MLS) resistance genes, followed by the COPD and CDI groups. 
The abundances of Enterococcus and Escherichia species were positively correlated with 
ARG abundance and the days of antibiotic treatment, while Bifidobacterium and Ruminococcus 
showed negative correlations for the same. In addition, we analyzed the mobilome patterns 
of aminoglycoside and β-lactam resistance gene carriers using metagenomic sequencing 
data. In conclusion, the ARGs were significantly enhanced in the CDI and COPD groups than 
in healthy individuals. In particular, aminoglycoside and β-lactam resistance genes were more 
abundant in the CDI and COPD groups, but the dominant mobile genetic elements that 
enable the transfer of such genes showed similar prevalence patterns among the groups.
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INTRODUCTION

Antibiotic resistance is a serious threat to public health. With 
the indiscriminate use of antibiotics in humans and livestock, 
more antibiotic-resistant pathogenic bacteria have been reported 
(Canton and Coque, 2006; Mathew et  al., 2007; MacGowan 
and Macnaughton, 2017; Peterson and Kaur, 2018; He, 2020). 
Multiple studies have shown that antibiotics change the bacterial 
composition in the gut (Chang et  al., 2008; Seekatz et  al., 
2016; Palleja et al., 2018)—like the expansion of enterobacteria 
and depletion of butyrate-producing bacteria—and promote 
the development of multidrug-resistant strains (Magiorakos 
et  al., 2012; Klemm et  al., 2018).

Metagenomics-based computational methods can estimate 
the abundance of antibiotic resistance genes (ARGs) and profile 
their distribution in the gut microbiome (Hu et  al., 2013; 
Forslund et  al., 2014; Milani et  al., 2016; Mac Aogáin et  al., 
2020). ARGs are identified using homology-based searches 
against ARG sequence databases, such as CARD (McArthur 
et al., 2013), ResFinder (Bortolaia et al., 2020), and ARG-ANNOT 
(Gupta et al., 2014), or machine learning-based models (Arango-
Argoty et  al., 2018). ARG-related mobilome and ARG origins 
have helped us understand their transfer mechanism (McMillan 
et  al., 2019). Compared with the traditional polymerase chain 
reaction (PCR)-based methods to identify and profile ARGs, 
the metagenomic approach provides more comprehensive 
information about novel ARGs and the related mobilomes. It 
facilitates a deeper understanding of their dispersion, evolution, 
and effects on microbial communities.

Metagenomic sequencing data have been widely used to 
understand microbial communities and their association with 
the disease physiopathology (Hopkins and Macfarlane, 2002; 
Mammen and Sethi, 2016). Compared to non-CDI patients, 
the gut microbiome of CDI patients was enriched with 
Enterococcus but depleted with Ruminococcus and 
Bifidobacterium (Milani et  al., 2016; Vincent et  al., 2016; 
Amrane et  al., 2019; Kim et  al., 2020; Vasilescu et  al., 2021). 
For COPD patients, there was a limited number of studies 
reporting the microbial composition in the gut. For example, 
a recent study reported that Streptococcus, and Rotia genera 
were enriched in the gut microbiome of stable COPD patients, 
while a 16S rRNA-based study found that the Firmicutes were 
enriched (Chiu et  al., 2022). These metagenomic data have 
been used to find the association between ARGs and race, 
habitat, and antibiotic use by comparing their relative abundance 
and distribution patterns among different countries (Forslund 
et al., 2013; Hu et al., 2013; Yang et al., 2016). Several studies 
have revealed that antibiotics directly or indirectly affect the 
gut bacterial diversity (Dethlefsen and Relman, 2011; Pérez-
Cobas et  al., 2013; Buelow et  al., 2017; Wang et  al., 2020). 
Long-term antibiotic use may be  associated with microbiota 
dysbiosis (Chang et  al., 2008; Francino, 2015; Wang et  al., 
2020). A high frequency of horizontal transfer has also been 
reported in humans and their environments, suggesting the 
need for judicious use of antibiotics (Li et al., 2019; McMillan 
et  al., 2019; He, 2020; Sun et  al., 2020). Multi-habitat 
microbiomes have been analyzed in humans, animals, and 

external environments to determine how ARGs are shared 
among them (Pal et  al., 2016).

This study compared the microbiomes and resistomes of three 
groups (two diseased and one healthy) using metagenomic 
sequencing data. We  analyzed 103 Korean gut microbiome 
samples, including 61 healthy individuals, 16 patients with chronic 
obstructive pulmonary disease (COPD), and 26 patients with 
C. difficile infection (CDI). These groups have experienced different 
patterns of antibiotic treatment. The healthy individuals had 
minimum exposure to antibiotics, whereas the CDI patients were 
expected to have had recent heavy exposure to antibiotics. Patients 
with stable COPD were exposed to antibiotics intermittently 
due to COPD exacerbation. Our investigation revealed differences 
in microbial diversity among the three groups and the patterns 
of ARG prevalence and abundance. The association between 
the clinical characteristics and ARG abundance was analyzed. 
In addition, we  identified the mobilome structures for the 
prevalent aminoglycoside resistance genes and β-lactamases (bla) 
in three groups and determined dominant patterns and their 
distribution. This study observed an association between antibiotic 
use, ARG distribution, and gut microbiome diversity using three 
groups that experienced different patterns of antibiotic treatment. 
In addition, dominant mobilome patterns of each ARG were 
observed in a population, regardless of the history of antibiotic use.

MATERIALS AND METHODS

Enrolled Participants
The participants were divided into three groups: 61 healthy 
individuals, 16 COPD patients, and 26 CDI patients. The 
inclusion criteria for healthy adults were a zero score on 
Charlson’s comorbidity index and no admission history within 
the last year (Kim et  al., 2020). The selected COPD patients 
had been followed up in an outpatient clinic under COPD 
diagnosis and prescribed antibiotics within the previous 2 years. 
The CDI patients who complained of unformed stool more 
than three times per day were selected, and the toxin gene 
was confirmed using multiplex PCR using C. difficile isolates 
from the patient (Kim et  al., 2020). For healthy individuals 
and CDI patients, we  used sequencing data obtained from a 
different study conducted by our group (Kim et  al., 2020). 
For COPD patients, we  sequenced the samples in this study. 
The collection and sequencing methods employed for COPD 
data in this study were the same as those used to obtain data 
for healthy individuals and CDI patients.

Preparing Fecal DNA, Sequencing, and 
Filtering Sequences
We obtained 50 g of feces from 26 COPD patients and their 
medical records after informed consent. The feces were collected 
in a sterile container and stored at −80°C. About 2 ml of the 
specimen was used and total DNA was extracted using the 
Fast DNA SPIN Kit for Feces (MP Biomedicals, #116570200). 
Each sample was prepared according to the Illumina protocols. 
The quantification of DNA and the DNA quality were measured 
by PicoGreen and agarose gel electrophoresis. Briefly, 100 ng 
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of genomic DNA for a 350 bp insert size is fragmented by 
Covaries. The fragmented DNA is blunt-ended and 
phosphorylated, following end repair. The appropriate library 
size is selected using different ratios of the sample purification 
beads. A single ‘A’ is ligated to the 3′ end, and Illumina adapters 
are then ligated to the fragments. The final ligated product is 
then quantified using qPCR according to the qPCR Quantification 
Protocol Guide and qualified using the Agilent Technologies 
2,200 Tapestation (Agilent Technologies, Palo Alto CA, 
United  States), HiSeq™ 4,000 platform (Illumina, San Diego, 
United  States). The Illumina HiSeqX platform (Illumina, San 
Diego, United  States) was used to sequence the samples. For 
each sample, all reads were 151-bp paired-end sequences with 
an insert size of ~350 bps. Quality trimming was performed 
using Sickle (Joshi, 2011) with Phred quality scores >20 and 
read length options >90 bp (pe -q 20 -t sanger -l 90). Reads 
containing ambiguous ‘N’ nucleotides were removed from 
the analysis.

Determining Microbiota Composition
The microbiota composition of each sample was profiled using 
MetaPhlAn 2.0 (Segata et  al., 2012). The genera with <0.1% 
abundance were filtered out from each sample, and those with 
>0.1% average abundance in any group were retained for 
analysis. To compare the microbiota of the healthy, COPD, 
and CDI groups, we  analyzed alpha and beta diversity. Alpha 
diversity was measured using the Shannon index with genus 
abundance. Beta diversity was measured using the Bray–Curtis 
dissimilarity. The samples were clustered by microbiota 
composition using a Dirichlet multinomial mixture (DMM). 
Principal coordinates analysis (PCoA) was applied using the 
Bray–Curtis dissimilarity and visualized as a 2-dimensional 
scatter plot. PCoA results were color-labeled by groups (healthy 
individuals, CDI patients, and COPD patients) and DMM 
cluster results (k = 3).

Identifying Antibiotic Resistance Genes
ARGs were identified using two different approaches: read 
mapping and gene sequence comparison. The read mapping 
approach measures the abundance of ARGs using the number 
of reads per kilobase per million mapped reads (RPKM). A 
total of 848 representative sequences were retained after clustering 
the ARGs obtained from the CARD 2.0.1 database (McArthur 
et  al., 2013) using cd-hit (−c 0.9 −n 8; Li and Godzik, 2006) 
and manual curation (Kim et  al., 2020). The reads were 
considered mapped if the similarity was >90% over 50% of 
the read length. An ARG was considered present if the reference 
coverage exceeded 70%. ARG abundance was expressed as 
log2 1RPKM +( ) . A gene sequence comparison approach was 
used to identify ARGs from contigs and reveal their mobilomes. 
The reads were assembled using MEGAHIT (Li et  al., 2015) 
with –min-contig-len = 501. The genes were annotated from 
the assembled contigs using FragGeneScan (Rho et  al., 2010) 
with -w 1 -t complete options. The annotated genes were 
considered ARG after comparing their protein sequences with 
the ones in CARD 2.0.1 (McArthur et  al., 2013) using BLAST 

(Altschul et  al., 1990). ARGs related to the efflux pumps and 
porins and those from uncultured bacteria were excluded from 
the analysis. The number of genes was counted and normalized 
by the million reads to give the gene counts per million reads 
(GPMR). We  also used the gene counts per million genes 
(GPMG)—the ratio of ARGs to the genes in the microbiome.

Identifying Mobilome Patterns in the 
Microbiomes
To determine the mobilome structure of ARGs, contig fragments 
harboring ARG and two neighboring genes upstream and 
downstream of the ARG were selected. These contigs were 
searched against a collection of ARGs and genes collected 
from the NCBI database for functional annotation. The matched 
position of the genome sequences was used as a reference to 
determine the mobilome structures in each sample. The following 
two criteria were used to assess the existence of each mobilome 
in the microbiome: (i) > 70% of the reference mobilome is 
covered by the sample reads, and (ii) there are one or more 
paired-end reads (i.e., conjunction reads) that are aligned both 
on the ARG and the neighboring gene. To be  considered 
conjunction read, three criteria should be  satisfied: (i) > 20% 
of each paired reads are aligned to either ARG or its neighboring 
gene (i.e., the rest are aligned to the intergenic regions), (ii) 
both paired reads have <10 bps of soft clips, and (iii) the 
distance between paired reads <350 × 3 bps.

Statistical Analysis
SPSS version 26.0 for Windows (SPSS Inc., Armonk, NY, 
United  States) was used to compare the demographics and 
clinical characteristics. A chi-square test was used to analyze 
categorical variables, and the Kruskal-Wallis test was used to 
analyze continuous variables. Spearman’s rank correlation test 
evaluated the relationship between the two variables. A value 
of p < 0.05, determined by a two-tailed test, was considered 
statistically significant. Shannon Index was calculated for 
analyzing alpha diversity and for the beta diversity function 
DistanceMatrix from skbio.stats.distance library was utilized 
using Bray–Curtis dissimilarity. To determine the correlation 
in a scatterplot, the geom_smooth function with the method = lm 
and formula = y ~ x option was used to build a linear line, and 
stat_cor with the “Pearson” method was used to get the r- and 
value of p.

RESULTS

Demographic and Clinical Characteristics
We analyzed 61 healthy individuals, 16 COPD, and 26 CDI 
patients. Table  1 shows the demographic and clinical 
characteristics of each group. The females comprised 47.5% 
of the healthy group, 18.8% of the COPD group, and 50% 
of the CDI group. The median age of the healthy, COPD, 
and CDI groups was 46, 68, and 66.5 years, respectively. The 
Charlson Comorbidity Index score was significantly different 
(p < 0.001; Table  1; Supplementary Table S1). All patients 
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with CDI were hospitalized, and all patients with stable COPD 
were enrolled in the outpatient clinic. Medical history within 
60 days differed substantially between the groups. The median 
number of antibiotic-free days from the day of stool collection 
was 40 days (Q1: 9.5; Q3: 60) in COPD patients and 0 days 
(Q1: 0; Q3: 0.3) in CDI patients. The median days of antibiotic 
use within the last 60 days were 0, 8, and 18.5 days for the 
healthy, COPD, and CDI groups, respectively. Diverse broad-
spectrum antibiotics were used more in the CDI patients 
than in COPD patients. In the COPD group, four patients 
(25%) received β-lactam, five (31%) fluoroquinolones, and 
one (6%) macrolide (Supplementary Table S2). In the CDI 
group, six patients (23%) received vancomycin, nine (35%) 
carbapenem, 20 (77%) β-lactam including β-lactam/β-lactamase 
inhibitor, seven (27%) fluoroquinolones, two (8%) doxycycline, 
six (23%) metronidazole, and one (4%) clindamycin, colistin, 
amikacin, or macrolide (Supplementary Table S3). The average 
DOT of antibiotics per group was higher in the CDI group 
(Table  1).

Microbial Distribution in CDI and COPD 
Patients and Healthy Individuals
The microbial composition was compared among the three 
groups. The CDI and healthy groups showed distinct traits in 
the microbial composition, while the COPD samples showed 
both healthy and CDI traits (Figures  1A,D; 
Supplementary Figure S1). The most abundant genera were 
Bifidobacterium, Ruminococcus, and Enterococcus in the healthy, 
COPD, and CDI groups, respectively (Figures  1A,E). The 
median proportion of Bifidobacterium was 12.4% in the healthy 
group, 3.3% in COPD, and 0.1% in CDI (p < 0.01 for the 
healthy vs. CDI groups). Notably, the proportion of Enterococcus 
was significantly higher in the CDI group (24%) but low in 
the healthy (0.0%) and COPD groups (0.0%; p < 0.01). 
Ruminococcus was the most abundant genus in the COPD 

group (10.1%), had comparable levels in the healthy group 
(7.8%), but was scarce in the CDI group (0.0%; p < 0.01 between 
COPD vs. CDI and between healthy vs. CDI). The genera 
(mean proportion ≥ 0.1% in any group) and their mean 
proportion values in each group are listed in 
Supplementary Table S4. Enterococcus was significantly high 
in the CDI group, with a median proportion of 2.5% or below 
for all other genera. Such group-specific genus composition 
showed an association with antibiotic resistance composition, 
presented in the next section.

The distinctive pattern described above is represented in 
the principal coordinates analysis (PCoA) plot constructed with 
the relative abundance of each genus (Figure  1D). Samples 
of CDI and healthy individuals diverged in opposite directions. 
The samples of the COPD patients (81.3%) were closer to 
healthy samples; however, three COPD samples were found 
closer to the CDI group showing a high abundance of Enterococcus 
(13.1–31.6%; 0.0% for the median value in the COPD group). 
These three patients had received broad-spectrum antibiotics 
during the past 2 months. The one CDI sample is most similar 
to the healthy samples that harbored only 1.1% of Enterococcus 
(24.0% for the median value in the CDI group). The other 
three CDI samples closer to the healthy samples had less than 
or around 3% of Enterococcus.

To measure the diversity of genera in each group, alpha 
and beta diversity were used (Figures  1B,C). The CDI group 
had the lowest alpha diversity. The median Shannon indices 
for the healthy, COPD, and CDI groups were 2.5, 2.4, and 
1.7, respectively. Notably, the microbial diversities in the CDI 
and COPD groups were lower than those in the healthy group. 
We  measured the intra- and inter-group Bray-Curtis index to 
analyze the beta diversity between groups. The median Bray-
Curtis index in healthy samples was the lowest, followed by 
the COPD and CDI groups (median index of 0.55, 0.69, and 
0.72 for healthy, COPD, and CDI, respectively; Figure  1C). 
Like the observation in PCoA (Figure  1D), the inter-group 

TABLE 1 | Subject characteristics.

Healthy (N = 61) COPD (N = 16) CDI (N = 26) Value of p

Gender-female n (%) 29 (47.5) 3 (18.8) 13 (50) 0.87
Age median (1Q, 3Q) 46 (38.5, 50.5) 68 (61.5, 75) 66.5 (59.8, 76.3) <0.001*
Body mass index median (1Q, 3Q) 23.31 (21.58, 24.96) 20.9 (18.95, 25.6) 22.78 (19.25, 26.6) 0.503*
Charlson’s comorbidity score+ median (1Q, 3Q) 0 (0, 0) 3 (2.3, 3) 3 (1, 5) <0.001*
Cerebrovascular disease n (%) 0 2 (12.5) 8 (30.8) <0.001
Dementia n (%) 0 1 (6.3) 5 (19.2) 0.001
COPD n (%) 0 16 (100) 5 (19.2) 0.001
Connective tissue disease n (%) 0 1 (6.3) 4 (15.4) 0.002
Diabetes n (%) 0 7 (43.8) 5 (19.2) 0.001
Moderate to severe renal disease n (%) 0 2 (12.5) 9 (34.6) <0.001

Past medical history within 60 days
Admission - Yes n (%) 0 3 (18.8) 16 (61.5) <0.001
Antibiotics – Yes n (%) 0 (0) 10 (62.5) 24 (92.3) <0.001
Antibiotic-free days median (1Q, 3Q) 60 (60, 60) 40 (9.5, 60) 0 (0, 0.3) <0.001*
Days of antibiotic usage median (1Q, 3Q) 0 (0, 0) 8 (0, 17.8) 18.5 (6.8, 41.5) <0.001*
Probiotic - Yes n (%) 12 (19.7) 7 (43.8) 5 (19.2) 0.754

Value of p, p for trend; COPD, chronic obstructive pulmonary disease; CDI, Clostridioides difficile infection; AIDS, acquired immunodeficiency syndrome. *value of p by Kruskal-
Wallis test.
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beta diversity between healthy and COPD groups was the 
lowest (median index of 0.64), while that between the healthy 
and CDI groups was the highest (median index of 0.89), 
suggesting that the healthy and COPD groups had similar 
genus composition.

To further investigate the relationship between the bacterial 
composition and disease group, the Dirichlet multinomial 
mixture (DMM) clustering method was used to cluster the 
entire sample by genus proportion (Figure  1A; 
Supplementary Figures S2A,B). In the DMM model (k = 2 
for the lowest Laplace approximation value), one cluster included 
most of the healthy and COPD samples (98% of healthy; 81% 
of COPD; see Cluster 1  in Figure  1A), while the other cluster 
included most of the CDI samples (92%), one healthy, and 
three COPD samples (Cluster 2  in Figure  1A). But when the 
samples were clustered into three clusters (k = 3 for the second-
lowest Laplace approximation value), the third cluster separated 
some healthy and COPD samples from Cluster 1 (see Cluster 
3  in Figure  1A; Supplementary Figure S2B): 28% of healthy 
and 44% of COPD samples. We  found that Cluster 1 had 
similar proportions of Bifidobacterium, Ruminococcus, 
Eubacterium, and Faecalibacterium (median values between 8.1 
and 9.2%), while Cluster 3 had a higher proportion of 
Bifidobacterium and lower Bacteroides than Cluster 1 
(Supplementary Figure S2B and Table S4).

Antibiotic Resistance Genes in CDI and 
COPD Patients and Healthy Individuals
The composition of antibiotic resistance genes (ARGs) was 
distinct among the CDI, COPD, and healthy groups (Figure 2). 
We  identified individual ARGs and placed them in the ARG 
families according to the ARG ontology in CARD (McArthur 
et  al., 2013). For example, the blaTEM genes (e.g., blaTEM-1 and 
blaTEM-2) were identified and grouped under the ARG family 
name TEM. In the embedding of samples based on the abundance 
of the ARG families, healthy individuals were tightly clustered 
together, while the CDI samples were dispersed (Figure  2A). 
The COPD patients were placed between the CDI and healthy 
samples. Notably, the CDI samples had the most diverse ARG 
families (24, 30, and 38.5 ARG families (median) in healthy, 
COPD, and CDI groups, respectively) as reflected in the PCoA 
plot (Figure  2A). When the PCoA with ARG families was 
labeled by the DMM clusters resulting from the bacterial 
composition, a strong association was observed between the 
samples grouped using bacteria composition and ARG proportion 
(Figures  2A,B). When the clusters resulting from the bacterial 
and ARG compositions were compared, 66% of the samples 
fell into the same cluster (Supplementary Figure S3).

We found 57 ARG families prevalent in at least one group 
(≥ 30% of the population; Figure 2C; Supplementary Table S5). 
Among those 57 ARG families, 28 were prevalent in the CDI 

A

D E

B C

FIGURE 1 | Bacterial composition in three groups. (A) The four most abundant taxa from each group (Bifidobacterium, Ruminococcus, Eubacterium, and 
Faecalibacterium in healthy; Enterococcus, Lactobacillus, Escherichia, and Bacteroides in CDI; Ruminococcus, Eubacterium, Bifidobacterium, and Lactobacillus in 
COPD) were visualized using stack bar, sorted by group and DMM clustering results (k = 2 and 3). The PCoA labeled by DMM clustering was provided in 
Supplementary Figure S2. (B) Alpha-diversity by Shannon index. (C) Beta-diversity by Bray–Curtis dissimilarity. For (C), all pairs except intra-CDI and intra-COPD 
showed statistical significance (value of p <0.05). (D) PCoA of bacteria composition at the genus level, labeled by group, and (E) relative abundance of the prevalent 
genus in each group.
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group and 13  in the COPD group but were scarce in healthy 
individuals. All genes prevalent in the COPD group were also 
prevalent in the CDI group. In addition, 29 genes prevalent 
in healthy individuals were also prevalent in the CDI or the 
COPD group.

When the abundance of ARG families was compared among 
the three groups, the median RPKM for all ARGs in the 
healthy, COPD, and CDI groups were 684.2, 1215.2, and 2025.0, 
respectively. Among the 57 prevalent ARG families, six showed 
significantly different abundance distribution among all three 
groups (p < 0.05): AAC (6′), AAC (3), APH (3′), blaSHV, tet32, 
and bacA (Table  2; Figure  2C). Compared to the healthy 
group, the average abundance of 34 ARG families was higher 
in the CDI group (p < 0.05, CDI vs. healthy) and 26  in the 
COPD group (p < 0.05, COPD vs. healthy; 
Supplementary Table S5). For example, APH (2″) was found 
in most samples (100, 93.75, and 100% in healthy, COPD, 
and CDI, respectively; Supplementary Table S5), but showed 

significantly different abundances between the groups (p < 0.05 
for all pairs; 23.6, 45.7, and 334.6 RPKM for average abundance 
in the healthy, COPD, and CDI groups, respectively). In contrast, 
the prevalence and abundance of tetQ in all three groups were 
comparable (prevalence: 100, 93.8, and 80.77%; RPKM for 
average abundance: 84.9, 54.9, and 87.5  in the healthy, COPD, 
and CDI groups, respectively).

We further investigated the diversity and abundance of 
ARGs using four different metrics: the Shannon index, RPKM, 
GPMG, and GPMR (Figures 2D–G). For comparison, we chose 
the four most prevalent ARG classes—aminoglycosides, 
β-lactams, MLS, and tetracycline. In general, the tetracycline 
class showed a different ARG diversity pattern than 
aminoglycoside, β-lactam, and MLS (Figure  2D). For these 
three, healthy individuals had the lowest alpha diversity (i.e., 
Shannon index), followed by the COPD and CDI groups. 
CDI showed the lowest diversity for tetracycline, followed 
by the COPD and healthy groups. The healthy and COPD 

A C

B

D E F G

FIGURE 2 | ARG composition in three groups. PCoA result of ARG composition labeled (A) by groups, and (B) by DMM (k = 3) cluster resulted by bacteria 
composition. (C) Prevalence of ARG family (≥ 30% of prevalence in any group). Heatmap cell represents log2 (RPKM+1). (D–G) Diversity and abundance of four 
ARG classes were measured using four different metrics: (D) Alpha diversity of ARGs, (E) ARG abundance in the number of reads per kilobase per million mapped 
reads (RPKM), (F) Gene counts per million genes (GPMG), and (G) Gene counts per million reads (GPMR).
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groups had higher median RPKM values of tetracycline 
abundance than the CDI group. In contrast, the abundance 
of the other three classes was higher in the CDI group than 
in the other two groups (Figure  2E). The CDI group showed 
a significantly higher ARG ratio to the total number of genes 
predicted in the microbiome (i.e., GPMG) for all four classes 
since it harbored fewer genes in the gut microbiome 
(Figure  2F). This was due to the dominance of Enterococcus 
in the CDI group. The median GPMGs for the healthy, COPD, 
and CDI groups were 64.1, 102.5, and 299.8.

Correlation Among Bacterial Composition, 
ARGs, and Medical Histories
We observed an association between the microbial distribution 
and ARG abundance (Figure  3). Although bacterial diversity 
varied among the healthy, COPD, and CDI groups (p < 0.05  in 
all group pairs), the ARG alpha diversity did not show a 
strong correlation with bacterial alpha diversity (Figure  3A). 
However, we  observed a negative correlation between bacterial 
diversity and total ARG abundance—samples with high ARG 
abundance showed lower genus diversity (Figure  3B). When 
the total ARG abundance and genus abundance was compared, 
the highest positive correlation was seen with Enterococcus, 
the most abundant genus in the CDI group (Figure  3D). 
Escherichia also showed a low-level positive correlation in the 
COPD samples (Figure  3E). In contrast, Bifidobacterium and 
Ruminococcus were negatively correlated with ARG abundance 
(Figures  3F,G). Correlation between genus and an ARG were 
also analyzed (Supplementary Figure S4).

When the medical history of antibiotic use was compared 
with the abundance of a specific genus, we  found Enterococcus 
and Escherichia to be positively correlated with the days of antibiotic 
therapy (DOT), admission history, and patient category (Table 3). 
However, Ruminococcus, Bifidobacterium, Faecalibacterium, and 
Eubacterium showed a negative correlation. The Shannon index 
of bacterial composition showed a strong correlation with DOT 
(≤ 60 days), admission history, and patient category (rho = −0.444, 
p < 0.001; rho = −0.348, p < 0.001; rho = −0.56, p < 0.001, respectively). 
The Shannon index of ARGs was positively correlated with DOT 
(≤ 60 days) and the patient category (rho = 0.282, p < 0.01; rho = 0.29, 
p < 0.01, respectively). The abundance of ARGs was positively 
correlated with DOT (≤ 60 days), admission history, patient category, 
and history of COPD (rho = 0.524, p < 0.001; rho = 0.304, p < 0.001; 
rho = 0.573, p < 0.001; rho = 0.464, p < 0.001, respectively). The CDI 

samples showed higher ARG abundance and longer periods of 
antibiotic intake (Figure  3C). However, the period of antibiotic 
intake was limited to 60 days before sampling and might not 
represent the total antibiotic consumption by each person. 
Nevertheless, it can infer a pattern of antibiotic intake in a short 
period among the groups.

Mobilome Patterns of the Prevalent 
Aminoglycoside-Resistant Gene 
AAC(6′)-Ie-APH(2″)-Ia
To find whether the transferring carriers of ARGs are the 
same among the groups or not, we  performed genome-level 
analysis on mobilomes and neighboring genes of ARGs. The 
most prevalent ARG in the aminoglycoside class was AAC(6′)-
Ie-APH(2″)-Ia, found in more than 99% of the samples (61, 
15, and 26 samples in the healthy, COPD, and CDI groups, 
respectively; Supplementary Table S5). This fused gene has 
been observed with nearby transposases in both chromosomes 
and plasmids in a limited number of bacterial species such 
as Enterococcus faecium, Enterococcus faecalis, Lactobacillus 
salivarius, and Staphylococcus aureus (Rouch et  al., 1987; 
Tenorio et  al., 2001), and showed high-level gentamicin 
resistance (Patterson and Zervos, 1990). A previous study 
reported that E. faecalis isolates harboring AAC(6′)-Ie-
APH(2″)-Ia tends to be resistant to multiple antibiotics (Costa 
et  al., 2019). In our analysis, Enterococcus exhibited a high-
level correlation with the abundance of AAC(6′)-Ie-APH(2″)-Ia 
with statistical significance (value of p < 0.001 and rho > 0.7; 
Supplementary Table S6).

We have found three types of mobilome structures according 
to the position of IS256 transposases after analyzing five 
neighboring genes of AAC(6′)-Ie-APH(2″)-Ia in the assembled 
contigs (Figure  4). In addition, the prevalence of each type 
was measured to determine the dominant mobilome structure 
in the population. The first structure, which has IS256 
transposases on both sides of AAC(6′)-Ie-APH(2″)-Ia (type 
1  in Figure  4), was identified as the most prevalent type in 
the samples. In particular, the AAC(6′)-Ie-APH(2″)-Ia mobilome 
structure observed in Tn4001 was found in 67 samples (59.0, 
86.7, and 69.2% of AAC(6′)-Ie-APH(2″)-Ia containing samples 
in the healthy, COPD, and CDI groups, respectively). Although 
this mobilome was highly prevalent, its bacterial origin could 
not be  identified because of the short length of the 
assembled contigs.

TABLE 2 | ARG families of differential abundance in the three groups.

ARG family+

Prevalence Abundance (mean/median)

Healthy CDI COPD Healthy CDI COPD

AAC(6′) 21.31 92.31 50.00 1.3/0.0 146.34/73.98 11.43/0.27

AAC(3) 6.56 69.23 31.25 0.15/0.0 13.37/3.74 39.41/0.0
APH(3″) 13.11 69.23 31.25 1.36/0.0 18.20/0.96 22.39/0.0
tet32 100.00 65.38 87.50 37.02/36.37 16.65/8.27 44.18/47.97
SHV 9.84 57.69 31.25 0.20/0.0 37.35/0.63 4.41/0.0
bacA 40.98 80.77 81.25 4.37/0.0 20.54/7.6 34.72/3.84

+Among the 57 prevalent ARG families, those with statistical significance among the three groups (p < 0.05) were selected. Value of p by Kruskal-Wallis test.
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The second structure, which has IS256 transposase only on 
the same strand of AAC(6′)-Ie-APH(2″)-Ia (type 2  in Figure 4), 
had a low prevalence. This structure was also scarce in most 
annotated bacterial genomes in public repositories. A type 
2-containing contig was partially aligned with two different 
species: AAC(6′)-Ie-APH(2″)-Ia and IS256 transposase region 
were aligned to S. aureus transposon Tn6072 with 99.9% similarity 
and the other regions of the contig to Clostridiales bacterium 
with 99.9% similarity. This finding suggests that the ARG mobilome 
from Tn6072 was inserted into the Clostridiales bacterium. On 
the other hand, the third structure, which has the IS256 transposase 
only on the reverse strand of AAC(6′)-Ie-APH(2″)-Ia (type 3  in 
Figure  4), was also highly prevalent in the samples. When 

compared with the annotated transposons, this structure along 
with its neighboring genes, was homologous (> 99%) to that 
of C. difficile Tn6218 first reported in China (Zhao et  al., 2020).

The metagenomic approach in this study enabled the discovery 
of the mobilome structures and their prevalence and identified 
the dominant carriers of AAC(6′)-Ie-APH(2″)-Ia in the 
population. Without confining to a specific strain or species, 
our method found that all subjects except one harbored AAC(6′)-
Ie-APH(2″)-Ia genes with the dominant mobilome structures 
being IS256 transposases on both sides and in the reverse 
strand. A similar pattern was observed in a previous PCR-based 
study limited to enterococcal strains in Japan (Watanabe 
et  al., 2009).

A B C

D E F G

FIGURE 3 | Correlation between bacterial and ARG diversity and abundance. (A) Diversity of bacterial and ARG composition. (B) Diversity of bacterial composition 
and ARG abundance. (C) Antibiotic intake period and ARG abundance. (D–F) ARG abundance and relative abundance of (D) Enterococcus, (E) Escherichia, and 
(F) Bifidobacterium, (G) Ruminococcus.

TABLE 3 | Correlation between clinical characteristics and bacterial or antibiotic resistance genes (ARG) distribution.

DOT of antibiotics  
(< 60 days)

Category Admission history COPD

rho Value of p rho Value of p rho Value of p rho Value of p

Bacteria Shannon index −0.444 <0.001 −0.56 <0.001 −0.348 <0.001 −0.131 0.186
Enterococcus 0.66 <0.001 0.759 <0.001 0.503 <0.001 0.135 0.175
Escherichia 0.295 0.002 0.401 <0.001 0.218 0.027 0.29 0.003
Ruminococcus −0.424 <0.001 −0.559 <0.001 −0.475 <0.001 0.044 0.661
Bifdobacterium −0.631 <0.001 −0.583 <0.001 −0.34 <0.001 −0.168 0.09
Faecalibacterium −0.605 <0.001 −0.725 <0.001 −0.452 <0.001 −0.244 0.013
Eubacterium −0.522 <0.001 −0.626 <0.001 −0.409 <0.001 −0.075 0.454

ARG Abundance (RPKM) 0.524 <0.001 0.573 <0.001 0.304 0.002 0.464 <0.001
Shannon index 0.282 0.004 0.29 0.003 0.17 0.086 0.12 0.227
SHV 0.486 <0.001 0.482 <0.001 0.305 0.002 0.051 0.609

DOT, days of therapy; category, category of healthy people, chronic obstructive pulmonary diseases, and Clostridioides difficile infections; COPD, chronic obstructive pulmonary 
disease; RPKM, reads per kilobases per million reads; SHV, SHV β-lactamases.
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Mobilome Patterns of Prevalent 
β-Lactamamases
Among the β-lactamases, blaTEM, blaSHV, and blaCTX-M were the 
most prevalent in this study. We  used the backbone sequences 
of the ARG mobilome obtained by searching the assembled 
contigs and the reference genomes. We estimated the prevalence 
of specific mobilome structures for the β-lactamase genes. 
Overall, each mobilome pattern was observed similarly to the 
ARG proportion in CDI patients, COPD patients, and healthy 
individuals. In total, 41.7% of all samples contain blaTEM genes 
(21.3, 50, and 84.6%, in healthy, COPD, and CDI samples, 
respectively) and blaTEM-1 was the most prevalent in the 
samples—60.5% of which was carried by Tn1 (11.5, 18.8, and 
61.5%, in healthy, COPD, and CDI groups, respectively; 
Figure 5A). The minor type of mobilome for blaTEM-1 contained 
IS26 transposase, found in 30.2% of blaTEM-1-carrying samples. 
In the case of blaSHV, a dominant gene arrangement was observed, 
which constitutes 96.2% of the blaSHV-carrying samples and 

comprises RecF, ATPase, blaSHV, DeoR, and ygbJ without any 
nearby transposase (Figure 5D). This highly conserved structure 
of chromosomal blaSHV has also been observed with nearby 
IS26 transposase for the mobile blaSHV (Ford and Avison, 2004). 
Notably, blaCTX-M-14 and blaCTX-M-15—the most prevalent extended-
spectrum β-lactamases (ESBLs) worldwide—showed similar 
mobilome patterns (Figures 5F,H). The most dominant mobilome 
contained ISEc9 transposase in our samples (61.9 and 58.8% 
of the samples with blaCTX-M-14 and blaCTX-M-15, respectively). 
The minor mobilome had IS26 transposase, found in 4.8 and 
23.5% of the samples that contained blaCTX-M-14 and blaCTX-M-15, 
respectively.

DISCUSSION

In this study, we  compared the bacterial composition of the gut 
in three groups of people (healthy individuals and COPD and 

FIGURE 4 | The mobilome patterns and prevalence of AAC(6′)-Ie-APH(2″)-Ia. The backbone sequence is in the black rectangle. The prevalence is plotted in the 
stacked bar.
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CDI patients) and determined its association with antibiotic use 
and ARGs. These three groups have experienced different patterns 
of antibiotic treatment. While healthy individuals had minimum 
exposure to antibiotics, patients with COPD represent the group 
with chronic intermittent antibiotic use, and patients with CDI 
were currently receiving antibiotics. Within the last 60 days before 
stool collection, COPD patients were antibiotic-free for a median 
of 40 days and CDI patients were antibiotic-free for 0 days, whereas 
all healthy individuals were antibiotic-free for 60 days. Since it is 
difficult to obtain a lifetime history of antibiotic treatment for 
the subjects, we  chose two different disease groups that had 
different patterns of antibiotic treatment and recorded the recent 
treatments. The COPD patients generally used β-lactam or 
fluoroquinolones for <14 days, except for one patient who received 
macrolide for a month. In contrast, the CDI group received more 
various broad-spectrum antibiotics such as carbapenem, β-lactam/β-
lactam inhibitors, vancomycin, and fluoroquinolones. Thus, our 

data implicate the impact of the type, amount, and duration of 
antibiotic administration on the human gut microbiome.

We enrolled COPD patients with chronic bronchitis and 
emphysema with different exacerbation frequencies from an 
outpatient clinic. Two-thirds of them had received antibiotics 
during the last 2 months before sampling. Despite their history 
of antibiotic use, microbial diversity was relatively well conserved. 
However, it was slightly lesser than that in healthy individuals 
(median Shannon index, 2.4 vs. 2.5), and the bacterial composition 
showed little difference. The Ruminococcus genus represented 
a major portion of the gut microbiome together with Lactobacillus 
and Escherichia genera in the COPD patients. In a recent study, 
Streptococcus, Rotia, and Lachnospiraceae genera were reported 
as the dominant genera in the gut microbiome of stable COPD 
patients (Bowerman et  al., 2020). These three genera were not 
the dominant ones in our study, but we  observed a strong 
influence of antibiotic use on the bacterial composition.

A B

C D

E F

G H

FIGURE 5 | Abundance and prevalence of ARGs and their mobilome. ARG abundance was measured using 𝑙𝑜𝑔2 (RPKM+1) in the boxplot, visualizing its 
prevalence with stack bars. (A,B) TEM, (C,D) SHV, (E,F) CTX-M-14, and (G,H) CTX-M-15.
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The CDI patients were on broad-spectrum antibiotics at the 
time of sample collection. The diversity of their gut microbiome 
was much lesser than the COPD and healthy groups. A 
characteristic finding in the bacterial composition of CDI patients 
was the dominance of Enterococcus, Lactobacillus, Bacteroides, 
and Escherichia, and their diversity was markedly decreased. 
Our previous study categorized patients with CDI into 
Enterococcus-rich and Bacteroides-Lactobacillus-rich groups. The 
Enterococcus-rich group had lesser diversity and more antibiotic 
use than the Bacteroides-Lactobacillus-rich group (Kim et  al., 
2020). Together with these findings, we  speculated that the 
Enterococcus genus is generally dominant in guts most severely 
disrupted by antibiotics.

The overall ARG abundance was the highest in the CDI 
group, as expected. The ARGs against aminoglycosides, β-lactams, 
and MLSs showed significant differences among the three 
groups. Macrolide, β-lactam, and quinolone antibiotics are the 
most commonly prescribed antibiotics worldwide (ECDC, 2017), 
and resistance genes against aminoglycosides, β-lactams, and 
MLS were the most abundant, especially in the CDI and COPD 
groups. Although aminoglycosides have not been commonly 
used in human medicine, the enhancement of aminoglycoside 
resistance genes in patients with COPD or CDI might be  due 
to the enrichment of Enterococcus and Enterobacteriaceae in 
the gut of these patients.

Certain ARGs have been reported among the same species 
in different niches and even among different species. The horizontal 
transfer has been considered one of the major mechanisms for 
spreading ARGs. We, thus, estimated the prevalence of specific 
mobilome structures for highly abundant β-lactamase genes in 
this study. For each ARG, several types of mobilome were observed 
with a similar proportion in all three groups. For blaTEM and 
blaCTX-M, more than half of the bla genes exist with a type of 
mobile element, which is with Tn3 transposase for blaTEM and 
with ISEc9 transposase for blaCTX-M. For blaSHV, a type of gene 
arrangement was observed in its neighbor. Compared to the 
PCR-based analysis that targets a specific type of mobile element, 
this study could successfully profile the distribution of mobilome 
types that were prevalent in the community.

Despite the merits of these data, there are several limitations. 
As we selected the three groups based on the duration and amount 
of antibiotic treatment, their age and the number of comorbidities 
in the groups differed. The CDI group was heterogeneous, and 
the members had diarrhea caused by C. difficile after antibiotic 
treatment. Meanwhile, the COPD patients uniformly had lung 
disease with chronic obstruction, although the lung pathology 
differed, and most of them had variable comorbidities.

In summary, we identified many ARGs in antibiotic-affected 
gut microbiomes and correlated the abundance of resistomes, 
antibiotic use, and gut bacterial diversity.
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