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Abstract

Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM) has
difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited
number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages
homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop
position. The w,y distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM). Models
are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The
performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as
low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin
complementarity-determining regions (mean RMSD ,2.0 Å), the DPM-HMM method performs as well or better than the
best templates, demonstrating that our automated method recaptures these canonical loops without inclusion of any IgG
specific terms or manual intervention. In cases with poor or few good templates (mean RMSD .7.0 Å), this sampling
method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling
to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical
CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful
application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop
modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near
native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/,dahl/
software/cortorgles/.
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Introduction

Starting from a known structural homolog, template based

modeling (TBM) of protein structure provides the most accurate

predictions of protein sequences with unknown structure [1,2].

However, even with close structural homologs, structurally

variable regions (SVRs), commonly referred to as loops, are the

worst predicted segments [3,4,5]. Because loop regions join

elements of regular secondary structures and often play an

important role in active site composition, ligand binding, and

protein-protein interactions, accurate sampling is integral to a

useful TBM prediction of protein structure. Structurally, loops

often lie on the solvent-exposed surface of proteins, allowing them

more conformational flexibility and susceptibility to insertions and

deletions. This variability makes loop regions notoriously difficult

to align at both the sequence and structural level, which often

results in large stretches of gapped positions. As an added level of

complexity, the conformational space is usually poorly populated

due to the low structural homologs. This variability and sparsity of

data pose much of the challenge in modeling with current

approaches, and these problems increase with loop length.

Typically, loop-modeling methods have adopted one of two

general strategies, de novo and knowledge-based loop modeling

methods. In de novo loop modeling [4,6], physico-chemical based

principles are used to compute the lowest energy conformations

for a loop [7,8]. In successful applications to short loop modeling,

de novo methods include molecular dynamics simulations [9],

simulated annealing [4], buildup from discretized w,y pairs

[10,11,12], and ‘random tweak’ [8,13]. However, these methods

are limited because they require significant computational

resources to sample near-native conformations. Alternatively, the

loops in some proteins can be classified into structural families or

canonical types, as in the antibody hypervariable regions (comple-

mentarity determining regions or CDRs) [14,15,16,17,18]. Such
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knowledge-based schemes utilize known structures or fragments of

structures to efficiently sample loop conformations, [19,20,21,22,23],

but are limited to sampling within the knowledge base. Using large

databases of supersecondary structures [24], loops are successively

aligned with templates based on parameters such as the stem region

geometry, length, and sequence similarity [25,26,27]. While the

strategies in various methods differ in many respects, the funda-

mental idea is to efficiently sample the available conformational

space for loops of the particular length, and then score the samples

using various energy functions [7]. The modeling of longer loops up

to 13 residues in length has been achieved using exhaustive sampling

of w,y space with clustering and energy minimization [28]. In

addition, there are approaches that combine the use of loop data-

bases and physical-based algorithms [29,30,31] as well as methods

sampling loop libraries that focus on loop closure [32,33,34,35]. For

all methods leveraging information from known structures, sampling

is limited to the discrete conformational space represented in the

structural library. While providing efficient sampling, this approach

poses difficulties in completely representing the structural variability

of a loop region.

To address these obstacles in sampling of loop models, a novel

statistical method has been developed that implements a Dirichlet

process mixture of hidden Markov models (DPM-HMM) [36,37]

for continuous density estimation of w,y residue torsion angles in

the loop region. This statistical modeling not only retains the

advantages of utilizing information from homologous proteins but

also provides the continuous sampling of conformational space

allowed by physico-chemical methods. From the sparse sampling

at each loop position, the DPM-HMM method computes a joint

w,y density using statistical inferences from neighboring residues

to make probable estimations of a continuous probability. The

approach uses the w,y data from homologous loops to model the

joint w,y distributions at each loop alignment position. The results

are continuous density estimations of each residue’s Ramachan-

dran space, which allows sampling from a wider range of w,y
values than the discrete possibilities using a loop library

[7,10,12,28], yet the distribution is informed by the homologous

loops. A related statistical method with a different formulation

called DBN-torus has been concurrently developed by Boomsma

et. al. [34] for the modeling of fragments in template-free protein

structure prediction. Unlike the specificity of this method for

fragment generation, our approach is tailored for TBM and

produces nearer native loop samples even when good templates

are not available. Moreover, the DPM-HMM method allows fast,

knowledge-based sampling of backbone torsion angles focused

within probable regions of w,y space [36,37]. In this study, the

ability of the DPM-HMM approach to sample near-native

candidates is demonstrated in the modeling of loops from the

following three groups: (1) canonical and non-canonical hyper-

variable loops within the heavy chain complementarity-determin-

ing regions (CDRHs) of immunoglobulins, (2) the conserved EF

loop from the globin fold, and (3) the loops of CASP9 targets.

Examples of these are shown in Figure 1. Sampling near native

loop conformations was tested in leave one out (LOO) approach

and general applicability of the method is demonstrated with the

results for loop modeling of TBM targets from CASP9 experi-

ment. Also, the performance of DPM-HMM method was com-

pared with LoopyMod by using CDRH1 and CDRH3 data sets.

Results

In the following sections, the DPM-HMM density estimation

approach is shown to sample near native loop conformations in

various classes of loop prediction difficulty. To simplify our

discussion, the difficulty of prediction is classified based on the

global RMSD of the closest known template to the native loop

structure. Loops in the canonical class have templates that are less

than 2 Å to the native structure. The common classes include

templates that are 2–4 Å to the native loop conformation,

although these are by no means simple to predict. Difficult loops

are those that have templates greater than 4 Å and in many cases

contain fewer than 10 templates to model.

w,y Distributions
At the heart of our approach is the DPM-HMM density

estimation of the backbone w,y angles [36,37], and the method’s

ability to correctly model the torsion angle space helps to explain

our success or failure in modeling particular targets in our LOO

tests. Figure 2 shows four examples of Ramachandran plots [38]

taken from predictions of targets from the CDRH2 loops. Our

method uses the normalized w,y data from template loops [39] as

a prior or basis for its density estimations (see Materials and

Methods) of the probability distributions. As shown by the

scattered points in Figure 2, the backbone w,y angles from the

templates provides the raw data that combine with the prior to

produce the estimated distributions shown as contour lines in the

plots. In a number of cases our statistical estimation of density

performed well, as evidenced by the presence of the native, target

w,y pair (shown as a red point in Figure 2) being predicted within

the highest probability regions. Panels (a) and (c) in Figure 2 show

the native w,y pair within the highest region of estimated density.

For Figure 2a, the observed result is expected as these positions

hold the anchoring residues for CDRH2, which are consistently in

the b-sheet region of the Ramachandran plot. As can be seen in

Figure 2c, certain positions heavily favor the left-handed helical

region. This method’s success in loop prediction corresponds well

with density plots that contain a majority of residues with highest

density around the native w,y pair. By contrast, panels (b) and (d)

in Figure 2 show instances in which the native w,y resides in a

lower probability region of our density estimates. Figure 2b shows

a residue sampling the second highest region of a left-handed

helix. In Figure 2d, unlike the majority residues that populate the

Author Summary

A protein’s structure consists of elements of regular
secondary structure connected by less regular stretches
of loop segments. The irregularity of the loop structure
makes loop modeling quite challenging. More accurate
sampling of these loop conformations has a direct impact
on protein modeling, design, function classification, as well
as protein interactions. A method has been developed that
extends a more comprehensive knowledge-based ap-
proach to producing models of the loop regions of
protein structure. Most physical models cannot adequately
sample the large conformational space, while the more
discrete knowledge based libraries are conformationally
limited. To address both of these problems, we introduce a
novel statistical method that produces a continuous yet
weighted estimation of loop conformational space from a
discrete library of structures by using a Dirichlet process
mixture of hidden Markov models (DPM-HMM). Applied to
loop structure sampling, the results of a number of tests
demonstrate that our approach quickly generates large
numbers of candidates with near native loop conforma-
tions. Most significantly, in the cases where the template
sampling is sparse and/or far from native conformations,
the DPM-HMM method samples close to the native space
and produces a population of accurate loop structures.

DPM-HMM Loop Modeling
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Figure 1. The 465 loop data set. Global superposition data set of 465 loops used to test sampling. All representations are in backbone cartoon.
(a) 111 target loops from CDRH1 (12 residues), (b) 130 target loops from CDRH2 (7, 8 and 10 residues), (c) 111 target loops from CDRH3 (8, 10–17
residues), (d) 21 loops from CASP9 target, T0617 (12 residues), and (e) 92 globin EF loops (12, 13 and 15 residues).
doi:10.1371/journal.pcbi.1002234.g001

DPM-HMM Loop Modeling
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b-sheet region, the glycine residue at the anchor position after the

CDRH2 loop exhibits w,y values in the commonly disallowed

lower right quadrant of the Ramachandran plot. Because our

density estimation model does not exclude but places a lower

probability distribution in this region, these positions in the loop

are more of a challenge to our sampling and helps to explain the

prediction limit of 3.66 Å for poor/sparse input data described

below.

Global RMSD Comparisons
Instead of a measure based just on Ca atoms, root mean

squared deviations (RMSDs) were calculated using all of the main-

chain heavy atoms between the candidates and the native target to

analyze the data and measure the accuracy of the prediction (see

Materials and Methods). In addition, we performed global

superposition of the loop fragments on the protein structure to

calculate the RMSD between the models and the reference

structure, which is a departure from the more commonly used

local superposition that is independent of the overall protein

structure. A local superposition of the loop candidates certainly

produces lower average RMSD values to the reference structure as

loop fragments often fit well locally to the reference, but the loop

might not be the best candidate due to lever arm effects in the take

off and landing residues. In contrast, while a global superposition

will always yield a higher value for RMSD than local superposition

as pointed out by Choi et. al. [40] assessing loop accuracy in the

global context of the protein structure properly reproduces

modeling conditions, where the native loop or overall structure

is not known and loops are placed onto a backbone template.

Figure 3 demonstrates the accuracy of global over local alignment

in providing a more realistic measure to evaluate loop modeling.

In both parts of Figure 3, the same 97 candidates of a loop for

CASP9 target T0617, whose average Ca distance for C-terminal

anchor is below 1.0 Å, are either locally (Figure 3a) or globally

(Figure 3b) superposed to the native target crystal structure

depicted by a thicker red backbone trace. Comparing Figures 3a

with 3b, local superposition of the 97 candidates produces a much

smaller spread over a global superposition. The average RMSD

proves this observation: 1.86 Å for local superposition opposed to

3.17 Å for global superposition. However, the most significant

difference occurs at the take-off and landing positions. In the local

superposition, the variation around the ends is larger, whereas in

the global superposition, it is quite small. Comparing the closest

candidates by both methods demonstrates the importance of using

global superposition. The blue line is the best candidate by local

superposition, which has a local RMSD of 0.58 Å yet a global

RMSD of 1.10 Å. So, while this candidate looks to be the best

match in Figure 3a, this loop would not be the best fit on the

protein structure as shown in Figure 3b. It can be seen that even

though the first N-terminal residue (anchoring residue) coordinates

are shared between the target and all candidates, the overall

orientations of the loops are very diverse. The green backbone is

the best overall loop candidate found by global superposition at a

RMSD of 0.77 Å (Figure 3b), which is closer to the red native

backbone than the top loop selected by local superposition. This

candidate would have been missed in a local superposition with a

RMSD of 0.65 Å. By not considering the fit of the loop onto the

structure, local superposition accuracy is misleading and imprac-

tical in TBM as loops need to be evaluated in the context of a

complete structure. Therefore, even though the RMSD values are

higher for global superpositioning, the comparison stays truer to

real prediction situations where the loop is being matched onto the

body of model structure.

Sampling Efficiency
The DPM-HMM method is able to produce consistent results

across the various types of loop targets. In our LOO tests modeling

the 465 loop data set (Table 1), the low mean global RMSDs for

the best candidates shown in Table 1 demonstrate that our

method performs well at sampling near-native loop candidates. To

provide more details about the DPM-HMM’s performance,

sampling accuracy was measured by comparing the global RMSD

of the best sampled candidate to that of the best template from the

discrete set of template loop structures (Figure 4). The best

template is the one with lowest global RMSD to the target native

loop segment. In Figure 4, the points below the diagonal line

indicate loops our method modeled better than the best available

template (best candidate’s RMSD is lower than that of the best

template). The DPM-HMM method performs consistently well for

common targets with templates averaging between 3 to 4 Å

RMSD and even for the difficult targets with a mean template

RMSD above 7 Å. Of all the 465 targets predicted by the DPM-

Figure 2. Density estimations of w,y distributions. Examples of DPM-HMM estimated backbone dihedral angle density distributions at various
positions of targets from predictions of the CDRH2 loop and anchor residues. The grey dots represent the observed w,y input data at a particular
alignment position. The contour lines represent the calculated density estimation calculated from the w,y pair data. The red dots indicate the actual
w,y values of the target structure. Position refers to the place in the modeled loop and the PDB code refers to the predicted target. (a) position 1 of
1mfa [55], (b) position 6 of 1w72 [56], (c) position of 6 for 1gig [57] and (d) position 9 (last anchor residue) of 1rmf [58].
doi:10.1371/journal.pcbi.1002234.g002

DPM-HMM Loop Modeling

PLoS Computational Biology | www.ploscompbiol.org 4 October 2011 | Volume 7 | Issue 10 | e1002234



HMM method, the best candidate global RMSDs are in the range

from 0.45 Å to a top value of 3.66 Å, regardless of the loop length,

number of templates, and the quality of the templates. So, we can

reliably say that our method samples loop conformations at least

within 3.66 Å to the native.

The inset in Figure 4 shows the percentage of better or worse

candidates compared to the best template binned by RMSD. In

the very close canonical RMSD range of 0–1 Å, 38% candidates

were sampled better than the best templates. Moreover, in this

regime very close to the native structure where there is a higher

probability to produce incorrect structures over the right ones,

the DPM-HMM method sampled the remaining 62% in this

canonical class not far from the best template. The worst case is

with maximum deviation of 0.6 Å and mean deviation of 0.2 Å

from the best template. As shown in the inset to Figure 4, our

sampling percentages from the DPM-HMM method only

improve as the difficulty of loop modeling increases. In the

RMSD range of 1–2 Å, around 75% of the best candidates

improved on the best templates, and of the 25% that did not, the

average increase in RMSD was 0.3 Å with a worst case of 1.3 Å

deviation from the best template. In the next bin between 2–3 Å

RMSD, 93% or almost all cases produced better candidates. In

this range, the 7% of the cases that produced worse candidates

averaged 0.6 Å RMSD with a maximum at 1.4 Å. For the cases

with templates above 3.0 Å RMSD, which combines some

common and all the difficult loop targets, our DPM-HMM

method consistently constructs candidates that were better than

the closest templates. Overall, about 76% of the loop conforma-

tions are sampled more accurately than the best templates

available. This consistency of the DPM-HMM method in

building improved loop models over these sets of varying

difficulty demonstrates its utility and promise.

Influence of the Template Knowledge Base
We wanted to investigate how much influence the input data set

had on our ability to build near native models. Figure 5 shows the

correlation between the input templates’ average RMSD and the

best predictions for each of the 465 targets in our LOO tests. As a

measure of the diversity of the templates, the average RMSD is

calculated as the mean value between all the templates used in the

DPM-HMM density estimation with each other. A larger average

RMSD indicates greater diversity in the input template data. As

expected, near native input data produces better model structures.

As shown previously, the DPM-HMM has a limit of 3.66 Å even

with very poor input data with average RMSD values past 7.0 Å.

Furthermore, the targets were classified into 3 groups according to

the number of templates used to produce the DPM-HMM models:

(1) those relying upon less than 10 templates, (2) those with between

11–30 templates, and (3) those with greater than 30 templates. For

the loops molded with fewer than 10 templates, their best RMSDs

are mostly above 2 Å and do not demonstrate a strong dependence

on the quality of input data. This suggests that the influence of the

prior distribution determines the upper limit of our approach’s

abilities to sample the native structure. The targets that used between

11–30 templates display the expected correlation of improved

candidate production from nearer native sets of templates. For this

amount of input data, the DPM-HMM approach increases the

probability of sampling near the target structure, which results in

RMSDs of most of the best candidates below 2 Å. In our data set,

there were only three loop examples that possessed more than 30

templates for input data: CDRH1 12 residue loop with 111 targets,

CDRH2 8 residue loop with 87 targets, and EF 13 residue loop with

66 targets. Their average RMSD values are similar and cluster

around 2.5 Å (see black filled circles in Figure 5). The large clustering

is due to the numerous LOO tests that could be performed in this

Figure 3. Local versus global superposition. The 97 candidate loops below 1 Å average Ca–Ca termini distance cutoff for the target loop 3bpx
from dataset T0617, showing various orientations of the candidate loops (grey) in backbone Ca trace. Reference loop is shown in red stick
representation. The best candidate by local superposition in blue and best candidate by global superposition is shown as green. (a) Local
superposition of candidate loops to the reference crystal structure with average local RMSD of 1.86 Å. (b) Candidate loops are superposed only at the
take-off region (first residue at N-terminus) of the loop. Average global RMSD of candidates to the reference crystal structure is 3.17 Å.
doi:10.1371/journal.pcbi.1002234.g003

DPM-HMM Loop Modeling
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group. The best RMSD values range from 0.5 to 1.8 Å with a few

exceptions discussed below, and 260 target tests in this class are

modeled as below 1.8 Å RMSD. Although a large number of tem-

plates gives a better chance to model the long loops close to the native

structure, the results from this class suggests that there is a saturation

limit to the amount of information provided by the input data.

The DPM-HMM approach fails to produce a model that is better

than the average RMSD of the templates in two special cases (data

points above the unity line in Figure 5). One particular case is a 15

residue EF loop that was modeled using only 2 templates. For this

target, the average RMSD of templates is 1.46 Å but the RMSD of

the best candidate is 2.77 Å, which is shown as the grey filled circle

above the unity line in Figure 5. This high RMSD arises primarily

from using idealized bond lengths and bond angles to build loop

structures from w,y angles that are unable to reproduce that native

loops conformation due to irregularities in bond angles, which has

been previously discussed in detail [41]. The other loop that was

poorly modeled belongs to the CDRH1 segment from the

humanized anti-gamma-interferon antibody (1b2w [42]) in the

class of greater than 30 templates. The best sampled model has a

global RMSD of 2.53 Å to the native loop structure (black dot

above the diagonal in Figure 5). This loop possesses a 310 helical

conformation in the middle of the CDRH1, which places it as a

distinct outlier in the dataset with over 100 canonical templates.

Sampling Efficiency Dependence on Loop Length and
Template Number

The relationship between the loop length and the sampling

efficiency was also investigated. In general, loop-modeling

methods are more effective at predicting the shorter loops, where

the accuracy decreases as the loop length increases. Figure 6 shows

sample of various sizes of loops ranging from 7 to 17 amino acid

residues. A linear correlation exists between the loop length and

best-sampled loop conformation (Figure 6a). In loop modeling,

loops with 11–13 amino acid residues are considered long and

prediction accuracies of about 1.0–1.5 Å for these long loops are

considered to be a success [40]. In this study, sampling efficiency

for shorter loops (7–10 amino acid residues) was found to be below

0.5 Å. For the loops with 11–13 residues, the best candidates’

global RMSDs are below 1.2 Å. For longer loops with 14–17

amino acids in length, the global RMSD is within the range of

1.8–3.0 Å, which improves upon the sampling reported by other

methods [40,43]. The upper bound of sampling efficiency

achieved here is about 3.66 Å, which encompasses the largest

global RMSD for one of the predicted candidates belonging to the

longest (17 residue long) of CDRH3 loop category. The best

candidates’ RMSDs are also plotted against the number of

templates in Figure 6b. As expected, the higher number of

templates improves upon the sampling. From Figure 6b, the

DPM-HMM method requires at least 30 templates in a data set to

consistently make a prediction below 1 Å. With less than 30

templates, the dependency is more about how close the input data

is to the target loop structure, where some instances are successful

and others approach the 3.66 Å limit of our method.

To further investigate the DPM-HMM method, sampling was

analyzed for 90 properly identified loops modeled in 45 TBM

targets during our group’s CASP9 campaign. Figure 7 shows

RMSD of the best candidate as a function of loop length. This

Table 1. Loop modeling template datasets and accuracy measure (RMSD) for the sampled candidates.

LOOP Length (AA) Targets Templates’ Average RMSD Best RMSDd Average Best RMSDe

Mina Maxb Averagec

CDRH1 12 111 2.35 2.44 2.42(0.01) 0.61 1.04(0.28)

CDRH2 7 30 1.49 1.61 1.58(0.02) 0.45 0.62(0.20)

8 87 2.49 2.69 2.68(0.02) 0.54 0.84(0.19)

10 13 1.97 2.88 2.75(0.24) 0.50 0.81(0.16)

CDRH3 8 13 2.26 3.86 3.65(0.42) 0.77 1.08(0.17)

10 15 4.53 5.31 5.18(0.19) 1.12 1.46(0.22)

11 13 3.14 3.54 3.41(0.11) 1.17 1.52(0.29)

12 6 4.47 5.39 4.96(0.41) 1.81 2.10(0.17)

13 28 4.81 5.30 5.20(0.10) 1.32 1.92(0.40)

14 14 5.46 7.37 7.11(0.49) 1.72 2.16(0.39)

15 8 3.93 4.50 4.31(0.20) 1.64 2.36(0.46)

16 5 6.08 6.93 6.42(0.34) 2.92 3.15(0.19)

17 9 7.05 7.68 7.43(0.24) 2.82 3.13(0.32)

EF 12 23 2.58 2.79 2.73(0.05) 0.58 0.98(0.28)

13 66 2.58 2.97 2.95(0.05) 0.68 1.08(0.15)

15 3 1.46 4.15 3.11(1.45) 2.01 2.43(0.39)

T0617 12 21 3.17 3.41 3.33(0.07) 0.77 1.23(0.39)

Of the best candidates, lowest RMSD (Å) and average RMSD (Å) for five loops sampled using DPM-HMM method along with their loop length, number of targets in each
group and average RMSD (Å) of all the templates used.
aMinimum average RMSD of all the templates in a subgroup.
bMaximum average RMSD of all the templates in a subgroup.
cAverage of mean RMSD of all the templates in the group. Standard deviations are given in parenthesis.
dLowest of all best candidates’ RMSD that is sampled in each subgroup of loop targets.
eAverage of best candidate’s RMSDs for every target in each subgroup. Standard deviations are given in parenthesis.
doi:10.1371/journal.pcbi.1002234.t001

DPM-HMM Loop Modeling
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dataset represents realistic modeling under real-world conditions

where very few templates are available to model the torsion angle

space. Also, available templates were of various sizes in loop length

for each target loop. Our results demonstrate that sampling

efficiency is very good for the loops of smaller lengths (3–7

residues) with best-sampled candidates global RMSD of 0.25 Å to

the native reference structure. Average global RMSD for best-

sampled candidates in this group is about 0.89 Å. For medium

sized loops (8–13 residues), best candidate RMSD is 0.99 Å and

the mean over the group is 1.9 Å. For longer loops with more than

16 residues, sampling efficiency escapes the DPM-HMM limit of

3.66 Å. These longer loops pose a problem to the DPM-HMM to

accurately model the data over so many residues. As can be seen

from Figure 7, the limit is stretched at 20 residues, where the best

candidates are greater than 5 Å. Overall, the results demonstrate

the general applicability of our method in realistic TBM situation

where limited number of templates with variable loop lengths was

used for modeling.

Figure 4. DPM-HMM Sampling performance. RMSD of the best candidate versus RMSD of the best template. The diagonal line is unity. Points
below the line indicate predictions better than the best template. The inset shows the percentage of better and worse predictions in each RMSD bin.
When the RMSD of the best templates are below 1 Å, the chances our methods improve the loop are about 38%. When they are between in 1–2 Å,
the chances are higher than 75%. In the 2–3 Å range, chances of improvement are higher than 93%. For higher than 3 Å, the loop structures are
always improved.
doi:10.1371/journal.pcbi.1002234.g004

DPM-HMM Loop Modeling
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Sampling Efficiency Compared to LoopyMod
Figure 8 compares the sampling efficiencies of DPM-HMM and

LoopyMod for 2 sets of loops: the canonical CDRH1 and the non-

canonical CDRH3. First, canonical conformations from CDRH1

dataset containing 111 target loops were sampled with LoopyMod

and results compared to the DPM-HMM method in the first 2

columns of Figure 8. The global RMSD of the best candidate by

LoopyMod is 1.02 Å, which is higher than the 0.61 Å by DPM-

HMM method. Variance within RMSDs of the best candidates is

also lower in DPM-HMM method than in LoopyMod. The DPM-

HMM method produces all of its best candidates below 2.5 Å

global RMSD, whereas LoopyMod has some cases upwards of

4 Å. In this canonical class, the DPM-HMM demonstrates that it

performs well. Secondly, we tested the sampling efficiency of our

method against LoopyMod for the non-canonical class of loops

from CDRH3. The third and the fourth columns in Figure 8 show

comparison of sampling efficiency for CDRH3 by both DPM-

HMM and LoopyMod, respectively. As expected, the distribution

from both methods is wider as compared to the RMSD

distribution for canonical class of loops (CDRH1). The median

global RMSD of the best candidates is lower from the DPM-

HMM method. The best models have RMSDs of 0.77 Å and

1.05 Å by DPM-HMM and LoopyMod, respectively. The tighter

distribution of the DPM-HMM for both the canonical and non-

canonical class of loops indicates this method’s ability to take

advantage of the knowledge base in producing near native

candidates. (See Figure S1 in Text S1 for scatter plot of individual

data points)

Discussion

General Dependencies of the DPM-HMM Method
The DPM-HMM method’s use of a knowledge base implies that

the approach is dependent on quality of the input data. Because

longer loops are sampled less accurately and less consistently, loop

length needs to be included in the discussion. As Figures 4 and 8

show, the DPM-HMM method performs well with canonical

loops, so the discussion will focus on the longer more difficult to

predict loops. Loops with lengths of 15, 16 and 17 are modeled

only with 2 to 8 templates. The longest 17 residue loops from

CDRH3 was modeled with 8 templates and is considered to be a

very difficult loop to model because of the length and the

conformational variability (templates’ average global RMSD is

7.4360.24 Å). The best models for this group show average global

RMSD of 3.1360.32 Å, which improves upon the closest

templates as well as models predicted by other methods for the

Figure 5. Influence of the variation of input data. RMSD of the best candidate versus average RMSD between all the templates. The data points
are classified according to the number of templates used for input in the DPM-HMM w,y density estimation. Grey filled circles represent targets with
less than 10 templates, open circles are with 10 to 30 templates and black filled circles are with more than 30 templates.
doi:10.1371/journal.pcbi.1002234.g005
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loops of similar length [40,44]. Recently, Choi et. al. [40] reported

best models for 15–17 residue loops in the range of 3.48–4.75 Å.

With best candidate global RMSDs between 1.12 to 1.81 Å

(Figure 4), moderate length loops of 10–13 residues from CDRH3

were sampled closer to the target structure than that of the best

templates. Another example of a longer loop used in this study is

the 15 residue EF loop from the globin fold. There are only 3 EF

loop targets with 15 residues; therefore one target is modeled using

only the remaining two loops as input template data (average

RMSD 3.1161.45 Å). The best predicted candidates were found

to deviate from the target structure on average by 2.4360.39 Å.

While many of the w,y density estimations properly model the

backbone torsion angles in high density areas (see Figures 2a and

2b), it requires only a few residues with angles reside in lower

density regions of our density estimation (see Figures 2b and 2d) to

make sampling a close model more difficult. It’s also worth

mentioning that two of the three globin EF loop 15mers are from

crystal structures of the similar proteins with identical sequence in

loop regions, however loop conformations varies from these

15mers with global RMSD of 2.26 Å. This reflects an extreme

case of template based loop modeling with a limited number of

templates, and the DPM-HMM method still achieves reasonable

sampling efficiency in such difficult cases.

The templates’ average global RMSD provides an independent

measure about the variability within the input knowledge base that

can be used in real-world conditions to predict model’s sampling

performance. Lower values of RMSDs result from similar loop

conformations to the other templates and higher values are

attributed to the large deviation of loop conformations in the

template set. Hence, the wider the range of template average

RMSDs, the more diverse the template set is. Yet, even with a

large variability in conformational space, our DPM-HMM can

sample a diverse w,y distribution, and still produce models better

than the best template. Even if templates’ average RMSDs are

larger than 7.0 Å, the best candidates are at a maximum 3.66 Å

RMSD. One example of improvement is 17 residue CDRH3 loop

from monoclonal antibody hGR-2 F6 (1dqd [44]). The 8 input

templates possess an average template RMSD of 7.05 Å and the

best template has the RMSD of 8.30 Å to the target structure (data

point not shown in Figure 4). For this difficult case, the DPM-

HMM method produced a best candidate with a 3.11 Å RMSD to

the native loop. This result demonstrates the ability of the DMP-

HMM method to produce consistently good models for even

difficult loop modeling examples. A major reason for this ability is

that the continuous density estimations do not outright exclude

areas of Ramachandran space, but rather bias the more probable

regions as informed by the input data from the templates.

Unfortunately, the DPM-HMM method has a residue limit of

about 20 amino acids as shown by our CASP9 results in Figure 7,

where the method begins to under-sample the density estimations

due to computational constraints. Overall, our approach directly

addresses the familiar problem of insufficient templates as well as

those all too common instances where the native loop uniquely

deviates from the prevalent conformation of the templates at

certain positions. For these reasons, the DPM-HMM method

proves to be a reliable tool for loop modeling, since even with a

small number of templates and low structural similarity, the DPM-

HMM approach can quickly and thoroughly sample backbone

w,y space to identify loop structures near to native structure.

Assessment of Method for Loop Modeling
In this study, we applied a novel loop modeling method, the

Dirichlet process mixture of hidden Markov models or DPM-

HMM [36,37] for w,y density estimation in loop regions. 465

Figure 6. Dependence of input data: length and amount. (a) Correlation of the best candidate RMSD with loop length. The prediction shows a
linear correlation to loop length. (b) Correlation of RMSD of the best candidate to the number of templates. The candidates decrease in RMSD as the
number of templates increases to a cutoff of ,30 templates, suggesting that more than 30 templates do not improve the sampling in the DPM-HMM
method.
doi:10.1371/journal.pcbi.1002234.g006
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target loops classified in 17 groups depending on the loop identity

and length were modeled. These targets were representatives of

the various challenges in loop modeling from the easier canonical

loops to non-canonical loops with many residues and insufficient

sampling. By estimating a continuous distribution across confor-

mational space, the DPM-HMM method combines the advantag-

es of continuous sampling from physical methods and propensities

from knowledge-based methods without compromising modeling

speed or being limited to specific conformations found in

fragment-based libraries. The best global RMSD of a candidate

is as low as 0.45 Å for one of the shortest loops (7 amino acid

residues) from CDRH2. For these canonical loops with templates

below 1.0 Å, the DPM-HMM produces improved models in about

38% of target loops. Also, It is also very encouraging that we can

always improve the best templates when best template RMSDs are

higher than 3.0 Å. For the most difficult case of a long 17 residue

loop with sparse input data, the DPM-HMM approach produces

models within 3.66 Å, which is the limit independent of loop

length and quality of input data (Figures 4 and 5). Our results

demonstrate that the DPM-HMM method provides consistent and

reliable model sampling across the spectrum of loop modeling up

to 20 residues.

The modeling accuracy was found to depend on three factors.

The first, and most important, is loop length. It is well known that

a loop becomes more difficult to model as length becomes longer

(Figures 6a and 7), since more residues exponentially increase the

Figure 7. CASP9 Loop sampling. Assessment of sampling efficiency for the 90 loops modeled in the CASP9 experiment (see Materials and
Methods for selection). All loops were modeled with very limited number of templates, mostly 1–5, and with templates of various lengths. For smaller
loops with 3–8 residues, global RMSD is mostly below 2.5 Å. For medium sized loops (8–13 amino acids), global RMSD is between 1–3 Å. As the loop
length increases, best-sampled conformations have higher RMSD from the native structure. The DPM-HMM fails after 20 residues as shown by the
increase in RMSD above 5 Å.
doi:10.1371/journal.pcbi.1002234.g007
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potential conformational space. This quickly reduces the effective

sampling that can be done. However, a loop with 17 amino acids

was successfully modeled to 2.82 Å RMSD of the native with only

8 templates in the input data set. The low number of templates for

input data points out the second factor: the number of templates

available (Figure 5 and 6b). The sampling efficiency shows

negative correlation with the number of templates when less than

30 templates are used (Figure 6b). The sampling efficiency

becomes saturated when more than 30 templates are available.

The last factor is the quality of the templates, which provides the

input data for our density estimations. If near native templates are

available, modeled loops are most likely close to the target

structure. Even in cases where no good templates are available, the

DPM-HMM method can produce improved loop models. Since

all of the allowable Ramanchandran space possesses some

probability in the density estimation, this approach can sample

into underrepresented areas of conformational space and account

for novel loop conformations outside of the representation of the

knowledge base. To conclude, the DPM-HMM method can be

generally applied as an effective and reliable template based loop-

modeling algorithm as seen from the results for benchmarking

loops from the CASP9 targets.

Materials and Methods

Data Sets
A dataset of 465 target loops was compiled for this study, as

given in Table 1. For all loops, two anchoring residues on either

side were included as anchoring residues. Structural alignments

were performed using MUSTANG [45]. Structures of 132

immunoglobulin heavy variable domains at greater than 95%

sequence identity were retrieved from the ASTRAL compendium

Figure 8. Loop sampling comparison. Boxplots display the RMSD sampling distribution of the DPM-HMM method alongside that of the
LoopyMod method for loops of different difficulty: canonical (CDRH1) and non-canonical (CDRH3) loops. Comparison of sampling to the canonical
CDRH1 is shown by the left 2 boxplots and the comparison to the non-canonical CDRH3 by the right 2 boxplots. In both cases, the DPM-HMM
exhibits a tighter distribution and lower median RMSD.
doi:10.1371/journal.pcbi.1002234.g008
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of protein structure [46]. As one of the most common

representatives for template-based loop modeling, the three

complementarity-determining regions (CDRs) from the heavy

chain were selected for modeling. According to IMGT numbering

scheme [47], the CDR loop sets were constructed by extracting

the residues at following sequence positions: 23–39 for CDRH1,

56–67 for CDRH2 and 104–118 for CDRH3. The second loop

data set was taken from 92 globin structures which were

downloaded from the PDB [48] and structurally aligned, as used

previously by Tsai et. al. [36,37]. DSSP [49] secondary structure

profiles were used to determine the boundaries of the longest loop

in the globin fold. This loop connecting helices E and F consists of

alignment positions 93–106 in the multiple structural alignments.

The third data set consisted of the templates for a CASP9 target,

T0617 (3nrv). The longest loop containing 12 residues was

extracted from 21 structurally superposed non-redundant template

structures. Table S1 in Text S1 shows PDB identifiers and loop

sequence positions for all the data sets used in this study.

Table 1 provides the details of the final data sets used and

Figure 1 shows structural superposition of all the templates in each

dataset. The set is briefly described here. A total of 352 well-

defined loops from 132 antibody structures were classified into

three major classes as CDRH1, CDRH2 and CDRH3. Not all the

loop regions are well defined in each PDB, so each set consisted of

slightly different numbers of templates. Therefore, 111 protein

structures are in the CDRH1 loop set, which is well conserved

with 12 residues in each loop structure. CDRH2 contains 130

loop structures and is subdivided in three groups by loop lengths

of 7, 8 and 10 residue loops. CDRH3 is the most diverse dataset,

containing a total of 111 loop structures that are grouped by sizes

ranging from 8–17 amino acid residues. Next, 92 globin EF loops

are grouped into the 3 classes: 12, 13, and 15 residue loops.

Lastly, 21 target loops were extracted from the template structures

to the CASP9 target T0617 and all loops are 12 residues in

length. The crystal structure geometry of the backbone atoms (N,

Ca and C) of the first anchoring residue (N-terminal) of the target

loop was used to build the models. All the models were built

starting from the second residue at N-terminal residue to the last

residue at C-terminal. Sharing the first anchoring residue

backbone coordinates results in globally superposed loops, so no

further superposition is needed. Length of the loops refers to the

total number of residues modeled. Although two more residues on

both sides of the loop region are included in the sampling, only

the second residue from the N-terminus and last two residues at

the C-terminus were counted in the total number of residues (as

defined by loop length).

Dataset from CASP9 Targets
To show the general applicability of our sampling method

outside a specific class or fold in protein family, data was compiled

for 90 identified loops modeled during the CASP9 campaign. As

this work focuses on loop sampling, only cases were considered

where loop regions were identified correctly. For each target

protein sequence from 305 putative loops in 45 TBM targets,

closely similar templates were identified by a PSI-BLAST [50]

search. Template structures were superposed by MUSTANG [45]

program as described above. The target sequence was aligned to

the multiple templates using the profile alignment function in

Muscle [51]. Based on the multiple sequence/structure alignment

of target sequence and templates, loop regions in the target

sequence were defined. The loop region definition in some of the

cases was erroneous depending on the quality and number of

templates as well as accuracy of the sequence alignment. Also,

loops with no available reference structures were excluded from

this analysis. (See Table S2 in Text S1 for PDB ids of reference

structures and positions of loops with their RMSDs).

Comparison of Sampling Efficiency with Sampling
Algorithm of LoopyMod

For fair comparisons with a common method for loop modeling,

the dataset of canonical (CDRH1) and non-canonical (CDRH3)

loop conformations were modeled using both DPM-HMM and

LoopyMod program [13,21]. Although LoopyMod is a complete

loop prediction algorithm that includes sampling, scoring and

ranking steps, we are interested in only comparing the sampling

efficiency of our method to that of LoopyMod. Therefore, scoring

and ranking steps in LoopyMod were omitted and all the sampled

loop conformations were collected for global RMSD calculations.

To simulate a realistic loop-modeling problem, the best template

was provided as the input to the LoopyMod and a million

conformations were generated. From these, a global backbone

RMSDs against the reference crystal structure of the loop was

calculated. (See Figure S1a and S1b in Text S1 for comparison of

RMSD of best candidates to the RMSD of best template used by

DPM-HMM and LoopyMod methods).

Generation of Correlated w,y Density Distributions
The joint w,y distribution were estimated using the Dirichlet

process mixture of hidden Markov models (DPM-HMM) [36,37].

Data consists of sequences of angle pairs (wij, yij), where

i = 1,2,3,…,n is the index for a particular observed loop and

j = 1,2,3,…,m is the index for the sequence position within the

alignment. The model uses standard Bayesian nonparametrics

density estimation techniques to estimate the joint density of all

angle pairs across all m positions. Conceptually, it states that the

data of loop i across the m positions - (wi1,yi1), (wi2, yi2),…,

(wim,yim) - arises from one of many clusters. Each cluster has a

unique ‘‘centering’’ backbone angles, whereas members of a given

cluster randomly deviate from its cluster center. The cluster to

which each loop belongs is uncertain and the method mixes over

this uncertainty, providing so-called mixture models. In contrast to

many traditional mixture modeling approaches, however, the

number of component distributions in our model is theoretically

infinite, increasing the flexibility of the model.

Naively, one might simply model the ‘‘centering’’ backbone

angles of each cluster as being independent, but that would ignore

the obvious secondary structure that can readily be inferred from

the observed data. Instead, the DPM-HMM considers a hidden

Markov model for these ‘‘centering’’ backbone angles. Statisti-

cally, this represents a prior distribution on the values of

parameters for the bivariate von Mises (BVM) sine model. The

hidden states consisted of four secondary structure types: coil,

helix, strand, and turn. The emission distributions for BVM

location (or ‘‘centering’’) parameters were bivariate von Mises sine

model mixtures designed to mimic the distributions of torsion

angles within each state from the PDB. Conditioning on inferred

secondary structure (i.e., the hidden state in the Markov chain),

the location parameters can be very specific. Transition pro-

babilities among the states were also calculated based on observed

distributions. Different emission distributions were used at loca-

tions containing proline or glycine due to the distinctive properties

of these amino acids. (The emission distributions for scale

parameters were identical for all states.) This informative

centering distribution allowed us to leverage information along

a sequence to provide informative secondary structure based

density estimates even at positions with poor representation in an

alignment.
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Briefly, the formal statistical model can be written as:

wij ,yij

� �
mij ,nij ,Vij*p
�� wij ,yij

� �
mij ,nij ,Vij

��� �

mi,ni,Vi*G

G*DP tH1H2ð Þ
where p ((w,y) | m, n, V) is a bivariate von Mises sine model [52]

with mean parameters (m,n), mi = (mi1, mi2, mi3, …, mim), ni = (ni1, ni2,

ni3, …, nim), Vi = (Vi1, Vi2, Vi3, …, Vim), and precision matrix V, G

is a draw from a Dirichlet process with mass parameter t and

centering distributions H1 for mi, ni, and H2 for Vi.. H2 is taken to

be the product of m identical Wishart distributions with shape

parameter a0 and scale matrix b0, with an expected value of a0/

(2b0). The distribution H1 is the hidden Markov model discussed

previously, with a state space consisting of four secondary structure

classes (helix, turn, coil, and strand) each of which is represented

by a mixture of between one and five bivariate von Mises sine

models. A complete description of this method, including com-

putational details, is provided in [36]. For each density estimate,

we ran two Markov chain Monte Carlo (MCMC) [53] runs for

11,000 iterations with the first 1,000 discarded as burn in. Using 1-

in-20 thinning, this gave us 1,000 draws from the posterior

distribution, which forms the basis for our density estimate. For

our hyperparameter settings, we took t = 5. H2 was the product of

m independent Wishart distributions with shape parameter a0 = 2

and a 262 scale matrix b0, which had diagonal elements equal

to 0.25 and off diagonal elements equal to 0. Because density

estimation is the most computationally intensive portion of our

loop-modeling scheme, this approach makes the simplification of

only uniquely modeling positions with proline and glycine. For this

reason, two loops can produce equivalent posterior distributions

if their prolines and glycines appear in the same positions.

Additional details on fitting this model and adjustments for gaps in

alignment data are provided in previous work [36].

DPM-HMM Model Building from w,y Sample Space and
Analysis

We used the leave one out (LOO) approach to model every

target in a dataset. For each sampling and prediction run, the

target loop is left out: not included as input data for the DPM-

HMM density estimation. Remaining loops from the subgroup of

the target were then used as templates to model and sample the

joint w,y distributions for a target sequence. A set of one million

w,y draws from the estimated densities was generated for each of

the target loops. For all the one million draws of the torsion angles,

all backbone atom models were constructed in Cartesian

coordinate space using Self-Normalizing Natural Extension

Reference Frame (SNerf) algorithm [54] with standard bond

length and angle data [52]. In comparison to the initial density

estimation, these two steps of making draws from the distribution

and building the loop in Cartesian coordinates are relatively fast.

About three hours of CPU time are required to sample one million

points in w,y space for an average sized target loop (about 12

amino acid residues). Model building from the sampled torsion

angle space and filtering using average backbone a carbon (Ca)

distance takes about 1.5 hours of CPU time. The computational

expense scales linearly with the number of residues in the loop and

the number of models to be built.

Three backbone atom coordinates of the first residue at entering

N-terminal side of the target loop were used as the anchor for

construction of the models in a Cartesian space. So all models in

the set are built from the same starting point. To ensure

appropriate loop closure, models were refined using a simple

distance filter with a 2.0 Å cutoff value. This Ca distance filter is

very basic using the average distance between the last two Ca
atoms of a candidate loop model and those of target loop crystal

structure in the loop exit. Since the backbone atom coordinates of

first anchoring residue are shared in all the models and the

reference structure, this simple filter works well and produces a

pool of suitable candidates. Filtered models can be further scored

for side chain clashes after grafting on the surface of the whole

protein.

The DPM-HMM software used in this analysis is available for

download at http://www.stat.tamu.edu/,dahl/software/cortor-

gles/.

Supporting Information

Text S1 Primary data for the five classes of loops used for

statistical modeling and sampling (Table S1a through S1e) and

data for target loops that were modeled during CASP9 experiment

(Table S2). Figure S1 shows comparison of RMSDs for the best

candidates modeled using DPM-HMM and LoopyMod methods

for (a) canonical and (b) non-canonical classes of loops.
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