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Abstract

Objective: To model and compare effect of digital contact tracing versus shelter-in-place on severe
acute respiratory syndrome e coronavirus 2 (SARS-CoV-2) spread.
Methods: Using a classical epidemiologic framework and parameters estimated from literature pub-
lished between February 1, 2020, and May 25, 2020, we modeled two non-pharmacologic in-
terventions d shelter-in-place and digital contact tracing d to curb spread of SARS-CoV-2. For
contact tracing, we assumed an advanced automated contact tracing (AACT) application that sends
alerts to individuals advising self-isolation based on individual exposure profile. Model parameters
included percentage population ordered to shelter-in-place, adoption rate of AACT, and percentage
individuals who appropriately follow recommendations. Under influence of these variables, the
number of individuals infected, exposed, and isolated were estimated.
Results: Without any intervention, a high rate of infection (>10 million) with early peak is predicted.
Shelter-in-place results in rapid decline in infection rate at the expense of impacting a large population
segment. The AACT model achieves reduction in infected and exposed individuals similar to shelter-
in-place without impacting a large number of individuals. For example, a 50% AACT adoption rate
mimics a shelter-in-place order for 40% of the population and results in a greater than 90% decrease in
peak number of infections. However, as compared to shelter-in-place, with AACT significantly fewer
individuals would be isolated.
Conclusion: Wide adoption of digital contact tracing can mitigate infection spread similar to universal
shelter-in-place, but with considerably fewer individuals isolated.

ª 2020 Mayo Foundation for Medical Education and Research n Mayo Clin Proc. 2020;95(9):1898-1905
I n the absence of a vaccine or cure, non-
pharmacological interventions are critical
to reducing spread of severe acute respira-

tory syndrome e coronavirus-2 (SARS-CoV-
2). This is primarily accomplished through
containment and isolation, such as the uni-
versal shelter-in-place order used in many cit-
ies and states across the United States.

The need for such orders is due to the
exponential growth of cases that occur during
anoutbreak,which generally needs tobe coun-
tered by a fast, coordinated, and widespread
Mayo Clin Proc. n September 2020;
www.mayoclinicproceedings.org n
response. Transmissionof SARS-CoV-2during
asymptomatic infectious periods further com-
plicates this response.1 Asymptomatic infected
individualsmay not see the need to self-isolate,
and it is difficult for public health infrastruc-
ture to identify such cases and enforce isola-
tion during this period.2

Contact tracing has the potential to limit
spread of infectious diseases. This has been
proven in epidemics such as SARS, bird flu,
Middle East respiratory syndrome, and
others.3,4 Traditional contact tracing suffers
95(9):1898-1905 n https://doi.org/10.1016/j.mayocp.2020.06.027
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from the problem of scalability as they are
based on phone interviews and record keep-
ing. On the other hand, current technologies
permit constant tracking of individuals and lo-
cations via mobile phones, global positioning
systems,WiFi, andBluetooth. A system that le-
verages these technologies to track and record
movement of individuals, and monitor prox-
imity to others for potential exposure, can
help overcome difficulties posed by manual
contact tracing. Many app-based systems d

for example, Private Kit: SafePaths,5 Covid
Symptom Tracker,6 and the Apple/Google
collaborative contact tracing venture7 d are
currently being tested. Such advanced auto-
mated contact tracing (AACT) systems, which
could infer exposure risk and propagate warn-
ings to people at risk, may help curb disease
spread by facilitating targeted self-isolation
rather than universal mandates such as shel-
ter-in-place.

In this paper, we compare universal
shelter-in-place with targeted self-isolation
envisioned in AACT. With available data
pertaining to SARS-CoV-2 we model strate-
gies for the United States and estimate soci-
etal burden. Our work builds on a prior
model.8 Materials and source code are avail-
able at Github.9

METHODS
Our disease model is based on the suscepti-
ble, exposed, infected, recovered (SEIR)
model assuming a constant susceptible pop-
ulation.8,10,11 Using these data, two separate
models were created d AACT and universal
shelter-in-place. In both, computational
methods were used to determine impact in
terms of infected individuals and proportion
of population impacted by isolation/quaran-
tine orders. Modeling and study was per-
formed based on data regarding the
pandemic published between February 1,
2020, and May 25, 2020.

Initial Variables
For the model, we assumed the following:
Tinc ¼ incubation period (w5.1 days),12

Tlat ¼ latency period before development of
symptoms (w 11.5 days),12 and basic
R0 ¼ 3.02.13 Preliminary death rate m ¼ 0.057
Mayo Clin Proc. n September 2020;95(9):1898-1905 n https://doi.o
www.mayoclinicproceedings.org
(with case fatality ratio of 1.5018%, as esti-
mated by recent global data).14 Further details
are summarized in Supplemental Material
(available online at http://www.mayoclinic
proceedings.org).

Several variables were considered in
model development and summarized in
Figure 1. Compartments included: S (sus-
ceptible individuals), E (exposed to infec-
tion, unclear symptomatic conditions, and
potentially infectious), I (infected, confirmed
symptomatic, and infectious), R (Recovered,
immune from further infection), and D
(death due to SARS-CoV-2). In AACT, an
additional compartment Sq (traced contacts
who are exposed and under self-isolation)
was used whereas for shelter-in-place, the
compartment Q (individuals isolated
through universal enforcement measures)
was used. The basic difference between the
models is that isolation/quarantine is based
solely on exposure history in AACT, whereas
isolation orders apply to the entire popula-
tion in universal shelter-in-place.

Advanced, Automated Contact Tracing Model
We assumed that through the AACT app
(Figure 1, at left), it is possible to inform
exposed (asymptomatic/noninfected) individ-
uals of exposure risk. Once warned, they
may self-isolate and prevent second-order
spreading. Therefore, self-isolated contacts
will depend on penetrance p of the AACT
app in infected and exposed populations. The
equations and details used to build the model
are summarized in the Supplemental Material
(available online at http://www.mayoclinic
proceedings.org). Two key elements that fall
into AACT include percentage of individuals
adopting (ie, downloading) the app, and per-
centage who self-isolate in response to an
exposure alert. Our model assumes that for
the fraction of individuals who heed the warn-
ing, there is no transmission of SARS-CoV-2
from exposed individuals to other susceptible
individuals.

Universal Shelter-in-Place Model
Measures that limit public gatherings or
mandate full lockdown uniformly impact the
susceptible population. They are successful
rg/10.1016/j.mayocp.2020.06.027 1899

http://www.mayoclinicproceedings.org
http://www.mayoclinicproceedings.org
http://www.mayoclinicproceedings.org
http://www.mayoclinicproceedings.org
https://doi.org/10.1016/j.mayocp.2020.06.027
http://www.mayoclinicproceedings.org


Susceptible

Exposed

Traced contacts

Infected

Recovered Fatalities

Susceptible Quarantined

Infected

Fatalities Recovered

Exposed

FIGURE 1. Overview of model transitions used to simulate advanced automated contact tracing based
targeted isolation (left) and universal shelter-in-place (right).
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in isolating a fraction of the population, with
the unquarantined transitioning through
exposure, infection, recovery, or death. Such
measures, depending on duration of enforce-
ment (assumed to be constant in our model),
are independent of percentage of infected
population or percentage exposed. The key
variable considered is percentage of popula-
tion that is under shelter-in-place orders. For
example, if 100% of the population (including
essential personnel) is ordered to stay at home,
nobody will be allowed outside and disease
transmission will be halted. In real life, per-
centages far below 100% would be expected.
In the current model, we assume shelter-
in-place measures will be released after 50
days (Figure 1, at right).
Software and Modeling
All models were created using R (version
3.6.1, 2019), and Tidyverse (2017) and Stats
packages (https://cran.r-project.org). All
graphs were created using R.
RESULTS
Both models agree with each other when
adoption of digital contact tracing and uni-
versal shelter-in-place mandate are close to
zero (ie, p¼0 and g¼0, where p is adoption
rate of AACT and g is percentage population
ordered to shelter-in-place) (Figure 2).
Without any control measures, our models
Mayo Clin Proc. n September 2020;
suggest a high rate of SARS-CoV-2 infection
(Table).

Both shelter-in-place and AACT achieve
reductions in number of infected cases
(Table). For example, with 20% adoption
and 100% compliance, AACT would lower
peak number of infected individuals by
49% and cumulative deaths by 23%. Enforc-
ing shelter-in-place measures for 30% of the
population would almost completely halt
SARS-CoV-2 spread. However, such a mea-
sure would quarantine, at peak, more than
71 million people as opposed to isolating
approximately 12 million in AACT to
achieve similar reduction. As can be seen
in Figures 2E and 2F, the main difference
between the models is in societal burden
imposed in terms of number of individuals
expected to be quarantined or isolated.

Both adoption of AACT (ie, how many
people downloaded the application), and
percentage of people who heed the advice
of the application (ie, self-isolate when a
warning is issued) are critical to success of
digital contact tracing. For example, if
100% of users respond to an exposure alert
by self-isolating, lower adoption rates would
be sufficient; conversely, lower response
rates to alerts require a higher adoption
rate in the general population. Figure 3A
and the Supplemental Video (available on-
line at http://www.mayoclinicproceedings.
org) summarize this tradeoff for different
95(9):1898-1905 n https://doi.org/10.1016/j.mayocp.2020.06.027
www.mayoclinicproceedings.org
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FIGURE 2. Comparison of impact of advanced automated contact tracing (left) and shelter-in-place (right) in terms of number
infected (A vs B), exposed (C vs D), and size of impacted population (E vs F). Dashed lines show maximum intensive care unit
capacity for the United States.
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TABLE. Estimated Disease Burden (Measured in Number of People Infected and Number of Fatalities at Pandemic Peak) and Societal
Burden of Implementing Isolation (Measured in Number of People Affected)a

AACT Universal shelter-in-place

% Adoption of
AACT system

Peak infected
(in thousands) Peak deaths

Peak
self-quarantined
(in thousands)

% Population
under

enforcement
Peak infected
(in thousands) Peak deaths

Quarantined
(in thousands)

0 10,623 91,384 0 0 10,623 91,384 0

10 8070 83,324 14,948 10 1522 25,276 25,218

20 5450 70,118 13,248 20 38 675 44,058

30 2919 33,472 7899 30 8 113 59,056

40 214 2150 620 40 5 45 71,635

50 5 123 12 50 5 25 82,480

60 5 30 11 60 5 17 92,004

70 5 16 11 70 5 12 100,485

80 5 11 11 80 5 10 108,120

90 5 8 11 90 5 8 115,050
aAACT ¼ advanced automated contact tracing.
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adoption rates and user response rates over
the course of the pandemic. Figure 3B offers
a graphic of the percentage of the population
impacted at peak as a function of the applica-
tion adoption rate and user response rate.

DISCUSSION
SARS-CoV-2 is a global pandemic with vari-
able approaches implemented to address its
spread. Past experience with Spanish flu,
SARS, and Middle East respiratory syndrome
shows that interventions that limit contact,
increase social distance, and reduce exposure
risk are essential to “flattening the curve.”
Governments around the world have insti-
tuted isolation measures such as shelter-in-
place or stay-at-home to achieve these goals.

However, universal isolation measures
disrupt the fabric of society by hindering so-
cial interactions, limiting support for people
with disabilities, and exacerbating mental
health challenges. On the economic front,
such measures decrease productivity, disrupt
supply chains, and unsettle financial mar-
kets. In fact, recent invocation of “aegrescit
medendo’’ in the US political discourse refers
to the pain and suffering associated with
these measures.

Contact tracing is routinely used for con-
trolling infectious diseases.15 Stochastic
mathematical models, and past experience
Mayo Clin Proc. n September 2020;
in the swine flu pandemic of 2009 and Ebola
outbreak of 2014, have shown contact
tracing can reduce R0 by as much as
90%.15 Preliminary studies have shown
that, accounting for heterogeneity of social
interactions, it may be sufficient to trace 36
contacts per infected person to reduce R0

for SARS-CoV-2 from 3.11 to 0.21.16

Contact tracing is not novel, but the
exponential nature of the ever-enlarging tree
of exposures makes conventional manual
contact tracing cumbersome.17 Especially in
later stages of an epidemic, an automated or
semi-automated solution is required to be
scalable d a solution that we have dubbed
AACT. In this paper we compared universal
containment against AACT, a version of auto-
mated contact tracing that is able to recur-
sively enumerate all persons who came into
contact with an infected person. AACT envi-
sions a system that can instantaneously trace
individuals in the exposure network of an
index case, and issue warnings to everyone
in this network.

AACT coupled with targeted self-isolation
has several advantages over universal contain-
mentmeasures. The obvious advantage is soci-
ety can still function with a select number of
individuals in isolation. This approach also
attempts to halt disease spread at the earliest
time point after identification of infected
95(9):1898-1905 n https://doi.org/10.1016/j.mayocp.2020.06.027
www.mayoclinicproceedings.org
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individuals. AACT enables first- or second-
order exposures to isolate and limit further
disease spread even when not showing symp-
toms. Therefore, it enables remedies that may
work in the pre-symptomatic stage. From the
point of view of public health officials, AACT
may provide an early estimate of exposure
risk and disease burden that the health care
system will face. Such information can be
used to increase readiness. Itmay also facilitate
patient surveillance and streamline flow and
distribution through the health care system.
Finally, with the envisioned pandemic control
system, AACT and targeted isolation can be
quickly deployed at first signs of an outbreak
with the goal of limiting disease spread
without resorting to measures such as shel-
ter-in-place.

Our models show that with targeted dig-
ital contact tracing it is feasible to reduce
disease spread while impacting fewer indi-
viduals. Success of AACT hinges not only
on user adoption, but also on users’ willing-
ness to abide by recommendations. If indi-
viduals do not universally respond to alerts
by self-isolating, impact of AACT on disease
spread would be minimal. Similarly, at lower
adoption rates, exposures could not be
tracked, thus undercutting benefits. AACT
would be most successful with universal
adoption and universal response. Nonethe-
less, we have shown even at modest adop-
tion and response rates, it is feasible to
significantly mitigate disease spread while
limiting number of individuals isolated.

In a real-world context, several countries
have started introducing AACT to help reopen
societies and mitigate continued disease
spread. Data from Singapore suggested that
digital contact tracing carries higher sensitivity
and specificity for identifying contacts than
traditional approaches.18 The data on the effi-
cacy of these measures, however, is limited
and requires rigorous analysis before conclu-
sions from models can be made. Thus, recom-
mendations have been proposed to achieve
this and hopefully will result in more rigorous
analysis.19 The need for real-world context is
especially important given that several factors,
including technological literacy, infrastructure,
governmental regulations, user adoption based
Mayo Clin Proc. n September 2020;95(9):1898-1905 n https://doi.org/10.1016/j.mayocp.2020.06.027
www.mayoclinicproceedings.org
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on culture, and factors such as regional popula-
tion flow may impact efficacy. For example,
likelihood of broad user adoption and compli-
ance would likely be lower in the absence of
governmental support, depending on the pop-
ulation. Furthermore, populations with high
frequency of exchangewith surrounding coun-
tries, states, or regions in which AACT is not
used may overcome any value of AACT. Addi-
tionally, without appropriate infrastructure
(wireless systems to transmit data, centralized
databases that can aggregate data, etc), the
viability of AACT would be limited.
Study Limitations
There are several limitations to our models.
First, we initialized our models with fixed
parameters; in reality, parameters have
been dynamic and evolved as the pandemic
progressed. However, the intent of this pa-
per was to compare strategies for mitigating
disease spread assuming a common disease
model. It is fair to assume comparative
outcome of AACT and universal stay-at-
home would be similar regardless of their
initialization. Second, success of AACT
may depend on type of technology used.
For example, global positioning systems
Mayo Clin Proc. n September 2020;
have lower location accuracy than Blue-
tooth or WiFi. Thus, systems that predict
exposure based on proximity between an
infected individual and an app user would
be more accurate (and thus impact fewer
people) when technology has higher loca-
tion accuracy. Also, we assumed adoption
of AACT is uniformly distributed
throughout the population. Diffuse uptake
evenly throughout a society would be ex-
pected to have more benefit than uptake
in dense pockets. Finally, our modeling
does not account for transmission from
exposed individuals to other susceptible in-
dividuals (eg, household members) be-
tween the time of exposure and the time
they self-quarantine. Such third-order expo-
sures were not accounted for by the model
and thus skew the data in favor of AACT.
However, with comprehensive use, near
real-time results, and application of self-
quarantine rules to household exposures,
such deviations could be reduced.
CONCLUSION
Contact tracing can mitigate disease spread
through a curated approach of identifying
and isolating exposed individuals, as opposed
95(9):1898-1905 n https://doi.org/10.1016/j.mayocp.2020.06.027
www.mayoclinicproceedings.org
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to shelter-in-place orders. Applications that
can be implemented through available smart
phones and other devices may offer an oppor-
tunity to facilitate contact tracing and alert in-
dividuals to self-isolate after exposure. These
efforts afford the ability to mitigate disease
spread in similar rates to universal shelter-
in-place when adopted at sufficient rates,
assuming a high percentage of users respond
to exposure alerts issued by the system.
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