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A B S T R A C T   

In this paper, we propose a coronavirus disease (COVID-19) epidemiological model called SEIR-FMi (Susceptible- 
Exposed-Infectious-Recovery with Flow and Medical investments) to study the effects of intra-city population 
movement, inter-city population movement, and medical resource investment on the spread of the COVID-19 
epidemic. We theoretically derived the reproduction number of the SEIR-FMi model by using the next- 
generation matrix method and empirically simulate the individual impacts of population movement and medi-
cal resource investment on epidemic control. We found that intra- and inter-city population movements will 
increase the risk of epidemic spread, and the effect of inter-city population movement on low-risk areas is higher 
than that on high-risk areas. Increasing medical resource investment can not only speed up the recover rate of 
patients but also reduce the growth rate of infected cases and shorten the spread duration of the epidemic. We 
collected data on intra-city population movement, inter-city population movement, medical resource investment, 
and confirmed cases in the cities of Wuhan, Jingzhou, and Xiangyang, Hubei Province, China, from January 15 to 
March 15, 2020. Using the collected data, we validated that the proposed SEIR-FMi model performs well in 
simulating the spread of COVID-19 in the three cities. Meanwhile, this study confirms that three non- 
pharmaceutical interventions, namely community isolation, population mobility control, and medical resource 
aid, applied during the epidemic period are indispensable in controlling the spread of COVID-19 in the three 
cities.   

1. Introduction 

Since late December 2019, the coronavirus disease 2019 (COVID-19) 
has caused the death of millions of people and brought about a huge 
economic loss worldwide. During the COVID-19 outbreak, scientific 
researchers have conducted numerous research studies on the trans-
mission mechanism of the virus [1], and on the prediction, prevention 
and control of its spread [2–6]. Among these studies, those that devel-
oped epidemiological models play an important role in guiding the 
prevention and control of the COVID-19 epidemic. Although the existing 
epidemiological models of COVID-19 consider many factors that could 
affect the spread of the epidemic, some improvements can be made in at 

least two aspects. First, medical resource investment is usually ignored 
in these epidemiological models in the current stage. During the 
epidemic outbreak, investments in medical resources play an important 
role in patient treatment and epidemic control [7]. Especially in the 
battle with the COVID-19 outbreak in Wuhan (capital of Hubei prov-
ince), other provinces in China aided Hubei province with medical re-
sources and staffs, which was recognized by the World Health 
Organization as one of the successful experiences in response to the 
outbreak.1 Thus, medical resource investment must be considered when 
modeling the spread of COVID-19. Second, the existing studies only 
considered the impact of population inflow and outflow in a single area 
[2,3,8], and ignore the impact of population flow between multiple 
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cities. At the same time, little literature has studied the differential 
impact of population flow for cities with different levels of epidemic 
development and risk. 

On the basis of the classic SEIR (Susceptible-Exposed-Infectious-Re-
covery) compartmental model, we propose a new epidemiological 
model called SEIR-FMi (Susceptible-Exposed-Infectious-Recovery with 
Flow and Medical investments) to study the impact of three factors, 
namely intra-city population movement, inter-city population move-
ment, and medical resource investment, on the spread of the COVID-19 
epidemic by model simulation. Using the next-generation matrix 
method, we derived the basic reproduction number and effective 
reproduction number of the proposed SEIR-FMi model and theoretically 
demonstrated the impact of intra-city population movement, inter-city 
population movement, and medical resource investment on the spread 
of the epidemic. Finally, we used the proposed model to simulate the 
spread of the COVID-19 epidemic in three cities in Hubei Province, 
namely Wuhan, Jingzhou, and Xiangyang, from January 24, 2020, to 
March 15, 2020. By comparing the real results with the simulation 
outcomes, we demonstrate that non-pharmaceutical interventions such 
as community isolation, population mobility control, and medical 
resource aid implemented in Hubei Province in this period exerted an 
indefensible effect on controlling the spread of COVID-19 in the three 
cities. Moreover, we find that low-risk cities are more vulnerable to the 
effects of population flow than high-risk cities. 

2. Literature review 

2.1. Epidemiological models 

Viral transmission in the population is a complex diffusion process. 
Thus, scientific researchers are striving to discover the viral propagation 
mechanism in terms of mathematical analysis and simulation models [9, 
10]. The current epidemiological models can be roughly classified into 
three categories: cellular automata-based epidemiological model [11, 
12], agent-based epidemiological model [13–15], and epidemiological 
compartment model [23]. 

Cellular automaton (CA) is a simulation model of a complex 
dynamical system in a discrete finite-state cell space according to local 
rules. It consists of four components of a cellular space (C): a finite-state 
set of all cells (Q), a finite set of indexes adjacent to each cell (V), and a 
set of rules for cell change (F). CA can be used to describe complex 
systems consisting of the interactions of multiple individuals in a regular 
space and is often used to model the spread of infectious diseases in 
complex situations. For instance, Bouaine et al. [12] used CA to study 
the effect of population migration and climate change on the spread of 
infectious diseases. Sirakoulis et al. [16] used CA to study the effects of 
population movement and the presence of immune groups on the spread 
of infectious diseases. Moreover, we also notice that the network 
modeling [17,18] is introduced to model the complex dynamic system 
with the goal to study the impact of network structure on the spread of 
infectious diseases [19–22]. 

The agent-based epidemiological model is an extension of CA that 
can simulate human activities and describe complex spatial environ-
ments with geographic information. For this reason, it can reflect the 
epidemic spread in more detail. Silva et al. [13] studied the development 
of the COVID-19 epidemic under different social distancing intervention 
schemes (including conditional lockdown, quarantine, and use of face 
masks) based on the agent-based model. They reported that partial 
quarantine and mask wearing are the most effective strategies when 
considering socioeconomics. Cliff et al. [14] proposed an agent-based 
epidemiological model with 19.8 million agents to simulate the dy-
namics of disease spread at multiple sites in Australia. They reported 
that their model can reproduce the epidemic propagation process with 
high accuracy. 

The SIR model proposed by Kermack et al., in 1927 [23] is widely 
accepted in the research area as a classic epidemiological compartment 

model. This model classifies the population into three different com-
partments: susceptible, infected, and recovered. On the basis of the 
classic SIR model, researchers can improve the compartment model in 
two ways. First, researchers can extend the classic compartment model 
to deal with different scenarios in real practice. For instance, the SEIR 
model extends the SIR model by adding the exposed compartment 
considering the disease incubation period [5,6]. The SEQIR model ex-
tends the SIR model by adding the quarantined compartment consid-
ering isolation measures [24,25]. The SEIAR model extends the SIR 
model by adding the asymptomatic infected compartment considering 
the presence of asymptomatic infected during an infectious disease [8]. 
Second, researchers consider more factors that would influence the 
epidemic spread on the basis of the classic SIR model. For instance, the 
epidemiological model with an age structure considers the age charac-
teristics of susceptible people [26,27]. The epidemiological patch model 
considers the migration of individuals between different groups [28,29]. 
The limited medical resource model considers the impact of medical 
resource on the cure rate of the disease [7,29]. 

2.2. SEIR model 

The classic SEIR model is widely used to model the spread dynamics 
of COVID-19 because the model considers the incubation period of the 
epidemic [6,35,36]. In the SEIR model, the whole population is divided 
into one of the following four states: susceptible (S, denotes the set of 
persons who are not yet infected but are at risk of being infectious), 
exposed (E, denotes the set of persons who are already infected but not 
showing symptoms), infectious (I, denotes the set of exposed persons 
who developed symptoms after the incubation period or confirmed as 
infected by medical testing), and recovered (R, denotes the set of persons 
who have recovered from the epidemic). Furthermore, the SEIR model 
for COVID-19 is built with the following hypotheses: 

(H-1): Recovered individuals are given a long period of immunity 
after having developed antibodies; thus, they will not become suscep-
tible again in the model. 

(H-2): In some of the early studies on the SEIR model [32,33], re-
searchers assumed that the exposed persons consists of individuals that 
are infected by virus but not infectious. However, unlike the existing 
studies, the patients infected with COVID-19 virus can infect others in 
the incubation period [6,8]. Therefore, many epidemiological models of 
the COVID-19 assumed that exposed individuals can infect susceptible 
ones [8,30]. In this paper, we also assume that the exposed individuals 
can infect susceptible individual before the onset of symptom. 

(H-3): The effects of natural birth and death rates on the epidemic 
spread are not considered in the model. 

The model is given by the following ordinary differential equation 
system. All the other parameters are summarized in Table 1. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= −

[

q
(

I
N

)

+ p
(

E
N

)]

S

dE
dt

=

[

q
(

I
N

)

+ p
(

E
N

)]

S − εE

dI
dt

= εE − γI

dR
dt

= γI

(1) 

Table 1 
Definitions of the parameters in the SEIR model.  

Parameter Description 

N Total population, N = S+ E+ I+ R 
p Effective infection rate between the susceptible and the infected 
q Effective infection rate between the susceptible and the exposed 
ε Transfer rate from exposed to infected 
γ Recovery rate of the infected  
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In the SEIR model, at each time step (in days in later analyses), 
susceptible individuals would be exposed with probability q or p if they 
have contact with an infected individual or an exposed individual. An 
individual exposed with an infected individual would become infected 
with probability ε after an incubation period. An infected individual 
would recover with probability γ. 

2.3. Population mobility and spread of the epidemic 

Recently, the development of transportation worldwide has greatly 
changed the travel patterns of people and made epidemic spread easier 
than before because of the fast population mobility across different re-
gions. For some cities with large populations and developed in-
frastructures and transportation networks, both inward and outward 
epidemic spread are highly possible [29]. For instance, severe acute 
respiratory syndrome (SARS) and COVID-19 infections spread from 
densely populated and developed transportation cities to surrounding 
cities [26]. Thus, it is important to understand the epidemic spread from 
the perspective of population mobility patterns [3,34]. Accordingly, 
Hanski proposed the meta-population theory to divide populations into 
subpopulations with spatial structures according to geographic location 
[35]. Gatto et al. [36] studied the impact of population movement on 
viral transmission from macroscopic and microscopic aspects. 

On the macroscopic aspect, Wang et al. [28] proposed a patch (i.e., 
subpopulation) model that assumes that the viral transmission within 
each patch follows the SIR compartment model and assumes heteroge-
neous migration rates of population movement between the patches. 
Ruan et al. [29] proposed a multi-regional model to study the spread of 
the SARS virus in different geographic areas. They reported that the 
return rate of people in a region has a significant effect on the number of 
infected and the basic reproduction number in the region. 

On the microscopic aspect, researchers use big data on mobile 
communication and global flight to build a spatial network model of 
population movement to study the impact of population mobility on 
viral transmission [2,36]. Chang et al. [2] used cell phone location data 
to obtain population movement information for 10 cities in the United 
States and construct a people travel network. On the basis of this 
network, they found that restaurants and places of worship are the main 
areas that caused the spread of the virus. Although the spatial network 
model is mathematically complete in characterizing people contact and 
disease transmission, the primary mechanism behind node generation 
and edge linking in modeling the real epidemic spread is still unclear. 
Moreover, its high computational volume has limited value for real in-
fectious disease prevention and control [37]. 

2.4. Medical resource and epidemic spread 

In the classic epidemiological models, the recovery rate of the 
infected individual is usually set as a constant. However, in real practice, 
most epidemics tend to produce a larger number of infected individuals 
in a short time. This outcome will cause an insufficient supply of medical 
resources and lower the recovery rate of patients. Thus, Many scholars 
suggest that the recovery rate is nonlinearly dependent on the number of 
patients and resources available to the medical system [38]. Wang [39] 
proposed a segmented linear recovery rate function (see Eq. (2)) that 
shows that when the number of patients I is small and the medical re-
sources r are uniformly distributed, the recovery rate T(I) is proportional 
to the medical resources and the number of patients. However, when the 
number of patients is larger than the threshold I0, the recovery rate T(I)
is a constant m. 

T(I)=
{

Ir 0 ≤ I ≤ I0
m I > I0

(2) 

Zhang et al. [40] proposed a continuous and unsaturated recovery 
rate function (see Eq. (3)), here r denotes the medical resource and a 

denotes the delayed recovery rate. When the number of patients I is 
small, the recovery rate T(I) positively correlated with the medical 
resource r(T(I)≈ rI). When the number of patients I is large, the re-
covery rate is fixed (T(I)≈ r /a). 

T(I)=
rI

1 + aI
(3) 

Many medical resource factors determine the recovery rate, such as 
the number of health-care workers, including physicians, nurses, and 
pharmacists, and the number of hospital facilities, including beds and 
medicines. Among these factors, the number of hospital beds is widely 
used by health planners as a method of estimating resource availability 
to the public. Shan et al. [38] proposed a dynamic recovery rate function 
(see Eq. (4)) based on the numbers of beds and patients, here γmax de-
notes the maximum recovery rate at the time of maximum number of 
beds, γmin denotes the minimum recovery rate at the time of shortage of 
beds, and b(t) denotes the total number of beds at the time t. 

T[b(t), I] = γmin + (γmax − γmin)
b(t)

b(t) + I
(4) 

Eq. (4) shows that when the number of infected patients is small or 
the number of beds is large enough, the recovery rate of patients T[b(t), I]
will be high. However, when the number of patients I is much larger 
than the number of beds b(t), the recovery rate T[b(t), I] will be low. This 
is in line with the actual medical resources needed for patient treatment. 
Thus, the function in Eq. (4) is widely adopted in the current infectious 
disease model [7,41]. For this reason, we also adopt the dynamic re-
covery rate function in our proposed SEIR-FMi model. 

3. Proposed SEIR-FMi model 

3.1. Mathematical model of SEIR-FMi 

Our proposed SEIR-FMi model improves the classical SEIR model in 
three aspects. First, we considered the impact of intra-city population 
movement on the spread of the COVID-19 epidemic and introduced the 
intra-city movement intensity variable a in the SEIR-FMi model. The 
intra-city movement intensity is exponential to the ratio of the mobility 
population to the living population in a city. We use it to measure the 
level of people’s mobility and contact activity within the city. The 
population activity intensity directly influences the infection probability 
of the susceptible population. A high intra-city movement intensity in-
dicates that the susceptible population has a high probability of con-
tracting the virus. 

Second, when studying the epidemic spread in a city, the population 
inflow from other cities, especially from the city of epidemic foci, must 
be considered. Considering that the infected and recovered are quar-
antined during the COVID-19 epidemic outbreak, we assume that these 
people do not move between cities, and only the susceptible and exposed 
move between cities. Meanwhile, the exposed will spread the virus to 
the target city and infect the susceptible during the movement. There-
fore, we introduce three aspects into the SEIR-FMi model: the inflow and 
outflow of susceptible and exposed populations between cities and the 
occurrence of infection in population movement. 

Finally, considering the influence of medical resource investment on 
the epidemic, we adopted the dynamic recovery rate function (see Eq. 
(4)) proposed by Shan [38]. First, compared with other models, Eq. (4) 
puts forward the maximum and minimum recovery rates, which can 
more truly reflect the recovery rate under different medical resources 
and the number of infected people, and we can use the maximum and 
minimum recovery rates to measure the goodness of the model. Second, 
compared with other factors of medical resource, the number of hospital 
beds can be a good indicator of the level of medical resource in a region 
and is easier to obtain. Therefore, according to Eq. (4), we used the 
number of hospital beds in each city over time to denote the level of 
medical resources and define the recovery rate as a function of the 
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numbers of beds and current infections. 
Combining the above three factors, we propose the SEIR-FMi 

epidemiological model as shown in Eq. (5). All the parameters of the 
proposed SEIR-FMi model are summarized in Table 2.   

The flow diagram of the proposed SEIR-FMi model is shown in Fig. 1. 
At each time step t, a susceptible individual Si in city i will be infected by 
an infected individual Ii or an exposed individualEi with the given 
probabilities. The parameter pi denotes the probability that a susceptible 
individual is infected by an infected individual in the same city. The 
parameter qi denotes the probability that a susceptible individual is 
infected by an exposed individual in the same city. During the incuba-
tion period, an exposed individual will be diagnosed as infected with the 
probability εi. Eventually, this infected individual will recover with the 
probability γi[bi(t), Ii]. Meanwhile, the susceptible population 
∑m

j=1,j∕=i

(
Fj,i

Sj+Ej

)
Sj and exposed population 

∑m
j=1,j∕=i

(
Fj,i

Sj+Ej

)
Ej in other cities 

move to city i. The susceptible population 
∑m

j=1,j∕=i

(
Fi,j

Si+Ei

)
Si and exposed 

population 
∑m

j=1,j∕=i

(
Fi,j

Si+Ei

)
Ei in city i move to other cities. This will in-

fluence the numbers of people in the S, E, I, and R compartments among 
all the cities. 

3.2. Reproduction number calculation of the SEIR-FMi model 

The basic reproduction number R0 can be defined as the number of 
new infections produced by an infected individual during the entire 
infectious period [42], which reflects the transmission ability of a virus 

during the early stage of an outbreak [43]. However, as the epidemic 
spreads, the social situation is changing with the implementation of 
control measures, such as reduced population movement and increased 
medical resources. Therefore, with the change of social situation, the 
basic reproduction number is no longer a fixed constant but a 
time-varying variable [49]. Considering the change of the actual social 
situation, we use the effective reproduction number Re(t) to denote the 

time-varying transmission ability of virus, which means the number of 
secondary cases that an infected individual could bring about at time t 
when all the other conditions are remained the same. By using the 
next-generation matrix approach [42,49], we derive the basic repro-

duction number R0 and the effective reproduction number Re(t) of the 
proposed SEIR-FMi model. 

We assume that the initial condition Si(0)+ Ei(0)+ Ii(0)+ Ri(0) ≥ 0, 
Ni(0) = N* at time t = 0, which indicates that the total population of city 
i at the initial time is N*. Let the compartment vector X =

(xE, xI, xS, xR)
T , here xE, xI, xS, and xR denote the number of persons in 

the exposed, infected, susceptible, and recovered compartments, 
respectively. It is easy to check that the disease-free equilibrium is given 
by the point at X* = (0, 0,N*,0). 

Let J(x) = (JE(x), JI(x), JS(x), JR(x))T be the generation rate of the 
newly infected individuals in each compartment and 
V(x) = (VE(x),VI(x),VS(x),VR(x))T be the transfer rate of individual 
movement in each compartment. Based on the proposed SEIR-FMi 
model, we can derive J(x) and V(x) as follows: 

J(x)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[

aipi

(
Ii

Ni

)

+ aiqi

(
Ei

Ni

)]

Si +
∑m

j=1,j∕=i

aiqiEjSi

Ni

(
Fj,i

Sj+Ej

)

0

0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(6)   

We define DJ(x) and DV(x) as the Jacobian matrices of J(x) and V(x), 

respectively. Then, we can obtain the Jacobian matrices DJ|X=X* =

(
F  0
0 0

)

and DV|X=X* =

(
V 0
J1 J2

)

at the disease-free equilibrium point 

X*, here F and V denote the infection and transfer force matrices for the 
population in the diseased individual compartment. Furthermore, we 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi

dt
= −

[

aipi

(
Ii

Ni

)

+ aiqi

(
Ei

Ni

)]

Si −
∑m

j=1,j∕=i

aiqiEjSi

Ni

(
Fj,i

Sj+Ej

)

+
∑m

j=1,j∕=i

(
Fj,i

Sj+Ej

)

Sj −
∑m

j=1,j∕=i

(
Fi,j

Si+Ei

)

Si

dEi

dt
=

[

aipi

(
Ii

Ni

)

+ aiqi

(
Ei

Ni

)]

Si +
∑m

j=1,j∕=i

aiqiEjSi

Ni

(
Fj,i

Sj+Ej

)

+
∑m

j=1,j∕=i

(
Fj,i

Sj+Ej

)

Ej −
∑m

j=1,j∕=i

(
Fi,j

Si+Ei

)

Ei − εiEi

dIi

dt
= εiEi − γi[bi(t), Ii]Ii, γi[bi(t), Ii] = γmin + (γmax − γmin)

bi(t)
bi(t) + Ii



dRi

dt
= γi[bi(t), Ii]Ii

(5)   

V(x)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
∑m

j=1,j∕=i

(
Fj,i

Sj+Ej

)

Ej +
∑m

j=1,j∕=i

(
Fi,j

Si+Ei

)

Ei + εiEi

− εiEi + γi[bi(t), Ii]Ii

[

aipi

(
Ii

Ni

)

+ aiqi

(
Ei

Ni

)]

Si +
∑m

j=1,j∕=i

aiqiEjSi

Ni

(
Fj,i

Sj+Ej

)

−
∑m

j=1,j∕=i

(
SjFj,i

Sj+Ej

)

+
∑m

j=1,j∕=i

(
SiFi,j

Si+Ei

)

− γi[bi(t), Ii]Ii

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7)   
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obtain F =

(
F11 F12 
0 0

)

, V =

(
V11 0 
V21 V22

)

, here F11 = diag(a1q1,a2q2,...,

amqm)(Dm + M), F12 = diag(a1p1, a2p2, ..., ampm), V11 = diag(ε1, ε2, ...,

εm)(Dm + M), V21 = − diag(ε1, ε2, ..., εm), V22 = diag(γ1
′

, γ2
′

, ..., γm
′

) and 

γ′

i = γmin + (γmax − γmin)
[

bi(t)
bi(t)+Ii(t)

]2
. Dm denotes an m × m identity matrix, 

M = {mi,j}(i, j∈ [0,m]) denotes the flow rate matrices of the populations 
of city j to city i, and diag() is a diagonal matrix. According to the next- 
generation matrix approach [42,49], the basic reproduction number for 
the proposed SEIR-FMi model is the spectral radius of the 
next-generation matrix FV− 1. Therefore, the basic reproduction number 
for all cities as a whole R0 based on the proposed SEIR-FMi model as 
follow. 

R0 = ρ
(
FV− 1)= ρ

((
F11 F12 
0 0

)(
V − 1

11 0 
V − 1

22 V21V − 1
11 V − 1

22

))

: = ρ
(
F11V − 1

11 +F12V − 1
22 V21V − 1

11

)
(8) 

For simplicity, we take two cities (cities A and B) as the examples and 
derive the whole basic reproduction number for two cities. We assume 
that the intra-city movement intensity and the number of inter-city 
population movements are all the same as that of the initial condition 
of the COVID-19 epidemic. For computational convenience, let λ1 =

F1,2/(E1 +S1) be the proportion of the number of people moving from 
city A to city B to the total number of susceptible and exposed in city A at 
the beginning of epidemic. Let λ2 = F2,1/(S2 +E2) be the proportion of 
the number of people moving from city B to city A to the total number of 

susceptible and exposed in city B at the beginning of epidemic. Because 
the number of infections at the beginning of the epidemic is equal to 0, 
the recovery rates for both cities A and B are the maximum as γ1 = γ2 =

γmax. Thus, the proposed SEIR-FMi model can be described in Eq. (9). 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1

dt
= − a1

(

p1

(
I1

N1

)

+ q1

(
E1

N1

))

S1 − a1q1
λ2E2

N1
S1 + λ2S2 − λ1S1

dS2

dt
= − a2

(

p2

(
I2

N2

)

+ q2

(
E2

N2

))

S2 − a2q2
λ1E1

N2
S2 + λ1S1 − λ2S2

dE1

dt
= a1

(

p1

(
I1

N1

)

+ q1

(
E1

N1

))

S1 + a1q1
λ2E2

N1
S1 + λ2E2 − λ1E1 − ε1E1

dE2

dt
= a2

(

p2

(
I2

N2

)

+ q2

(
E2

N2

))

S2 + a2q2
λ1E1

N1
S1 + λ1E1 − λ2E2 − ε2E2

dI1

dt
= ε1E1 − γ1I1; 

dI2

dt
= ε2E2 − γ2I2; 

dR1

dt
= γ1I1; 

dR2

dt
= γ2I2

(9) 

With Eq. (9), the infection and transfer force matrices can be derived 
as Eqs. (10) and (11), respectively. 

F=

⎡

⎢
⎢
⎣

a1q1 a1q1λ2 a1p1 0
a2q2λ1 a2q2 0 a2p2
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ (10)  

V=

⎡

⎢
⎢
⎣

λ1 + ε1  − λ2 0 0
− λ1 λ2 + ε2 0 0
− ε1 0 γ1 0
0 − ε2 0 γ2

⎤

⎥
⎥
⎦ (11) 

To simplify the calculation, we assume that the transfer rates from 
exposed to infected in the two cities are equivalent (i.e., ε1 = ε2 = ε). 
Based on the next-generation matrix method, the whole basic repro-
duction number of city A and B can be derived in Eq. (12). 

R0 = ρ
(
FV− 1) ≈

a1p1

2γ1
+

a2p2

2γ2
+

a1q1 + a2q2

2ε +
a1q1λ2 + a2q2λ1

2ε (12) 

Considering the changes of population movements and medical re-
sources with the implement of control measures, the reproduction 
number is no longer a constant. Thus, we use the effective reproduction 
number Re(t) to reflect the time-varying transmission ability of virus. We 
set theai(t) as intra-city movement intensity of the cityi at timet, Fi,j(t) as 
number of people moving from cityj to cityi at timet, and 
γi(t) = γmin + (γmax − γmin)

bi(t)
bi(t)+Ii(t)

as the dynamic recovery rate of city i at 
timet. By analogy, for computational convenience, let 
λ1(t) = F1,2(t)/(E1 +S1) be the proportion of the number of people 

Fig. 1. Flow diagram of the SEIR-FMi model.  

Table 2 
Definitions of the parameters of the SEIR-FMi model.  

Parameters Description 

i The i th city in the model, i ∈ [0,m]

Si Number of susceptible in the city i 
Ei Number of exposed in the city i 
Ii Number of infected in the city i 
Ri Number of recovered in the city i 
Ni Total population in the city i, Ni = + Si + Ei + Ii + Ri 

ai Intra-city movement intensity of the city i 
pi Effective infection rate between the susceptible and infected in the city 

i 
qi Effective infection rate between the susceptible and the exposed in the 

city i 
Fj,i Number of people moving from city j to city i 
εi Transfer rate from exposed to infected in the city i 
γmax Maximum recovery rate 
γmin Minimum recovery rate 
bi(t) Total number of beds in the city i at time t  
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moving from city A to city B to the total number of susceptible and 
exposed in city A at time t. Let λ2(t) = F2,1(t)/(S2 +E2) be the proportion 
of the number of people moving from city B to city A to the total number 
of susceptible and exposed in city B at time t. Similarly, we can derive 
the infection and transfer force matrices as Eqs (13) and (14), 
respectively. 

F=

⎡

⎢
⎢
⎣

a1(t)q1 a1(t)q1λ2(t) a1(t)p1 0
a2(t)q2λ1(t) a2(t)q2 0 a2(t)p2
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ (13)  

V=

⎡

⎢
⎢
⎣

λ1(t) + ε1  − λ2(t) 0 0
− λ1(t) λ2(t) + ε2 0 0
− ε1 0 γ1

′

(t) 0
0 − ε2 0 γ2

′

(t)

⎤

⎥
⎥
⎦ (14) 

Here, the γ1
′

(t) = γmin + (γmax − γmin)
[

b1(t)
b1(t)+I1(t)

]2 
and 

γ2
′

(t)= γmin +(γmax − γmin)
[

b2(t)
b2(t)+I2(t)

]2
. We assume that the transfer rates 

from exposed to infected in the two cities are equivalent (i.e., ε1 = ε2 =

ε). Based on the next-generation matrix method, the whole effective 
reproduction number of city A and B is derived as shown in Eq. (15). 

Re(t) = ρ
(
FV− 1) ≈

a1(t)p1

2γ1
′
(t)

+
a2(t)p2

2γ2
′
(t)

+
a1(t)q1 + a2(t)q2

2ε

+
a1(t)q1λ2(t) + a2(t)q2λ1(t)

2ε (15) 

By deducing the partial derivative of effective reproduction number 
Re(t) on intra-city movement intensity, we can obtain ∂Re(t)

∂a1(t)
=

p1
2γ1

′
(t)+

q1 [1+λ2(t)]
2ε > 0 and ∂Re(t)

∂a2(t)
= p2

2γ2
′
(t) +

q2 [1+λ1(t)]
2ε > 0, which indicates that the 

intra-city movement intensities a1(t) and a2(t) positively affects the 
effective reproduction number. Therefore, during the spread of the 
epidemic, the denser the intra-city population movement, the higher the 
number of infections in both cities. Similarly, we can derive ∂Re(t)

∂λ1(t)
=

a2(t)q2
2ε > 0 and ∂Re(t)

∂λ2(t)
=

a1(t)q1
2ε > 0, which indicates that the inter-city pop-

ulation movement proportion λ1(t) and λ2(t) also positively affects the 
effective reproduction number. The increases in the numbers of moving 
population between two cities as F1,2(t) andF2,1(t) will increase the inter- 
city population movement proportions asλ1(t) = F1,2(t)/(E1 +S1) and 
λ2(t) = F2,1(t)/(S2 + E2). Consequently, it will also increase the effective 
reproduction number. Therefore, during the spread of the epidemic, a 
large population flow between cities will lead to a serious epidemic 
development. In addition, we can obtain partial derivatives as ∂Re(t)

∂γ1
′
(t) =

−
a1(t)p1

2(γ′1(t))
2 < 0， ∂Re(t)

∂γ2
′
(t) = −

a2(t)p2
2(γ2

′
(t))2

< 0, which indicates that the larger the 

health-care resource investment, the higher the dynamic recovery rates 
γ1

′

(t) and γ2
′

(t), and thus the lower the effective reproduction number of 
the disease. Therefore, during the epidemic spread, enough medical 
resource investment for tackling the epidemic will mitigate the epidemic 
spread in the city. 

Furthermore, we give the effective reproduction number for city i 
based on the proposed model (see Eq. (5)). In this case, we assume that 
the epidemic trends in other cities is not influenced by city i. Therefore, 
the proportion of susceptible and exposed individuals in the population 
of other cities will not influenced by city i. For simplicity, let λi,j(t) =
Fi,j(t)/(Ei +Si) be the proportion of the outflow population from cityi to 
city j to the total number of susceptible and exposed in cityi at timet, and 
λj,i(t) = Fj,i(t)/(Ej +Sj) be the proportion of the inflow population from 
city j to city i to the total number of susceptible and exposed in city j at 
time t. Based on Eq. (5), the infection and transfer force matrices of city i 
can be derived as Eqs. (16) and (17), respectively. 

F=

[
ai(t)qi ai(t)pi
0 0

]

(16)  

V=

⎡

⎣

∑m

j=1,j∕=i

λi,j(t) + εi 0

− εi γi
′

(t)

⎤

⎦ (17) 

Based on the next-generation matrix method, the effective repro-
duction number for city i is derived as shown in Eq. (18). 

Ri
e(t)=

ai(t)qi
∑m

j=1,j∕=i
λi,j(t) + εi

+
ai(t)piεi

γi
′
(t)

[
∑m

j=1,j∕=i
λi,j(t) + εi

] (18) 

Eq. (18) shows that the effective reproduction number Ri
e(t) for city i 

is positively affected by intra-city movement intensity ai(t) and nega-
tively affected by medical source investment γi

′

(t). Moreover, the more 
people are exported from the city i (i.e., 

∑m
j=1,j∕=iλi,j(t)), the smaller the 

effective reproduction number Ri
e(t). 

4. Model simulation 

4.1. Data collection 

We selected three cities, namely Wuhan, Jingzhou, and Xiangyang, 
in Hubei Province, China, to examine the appropriateness of the pro-
posed SEIR-FMi model by conducting simulation experiments. We 
investigated the impact of the epidemic prevention and control mea-
sures on the development of the COVID-19 epidemic. In December 2019, 
the outbreak of the COVID-19 epidemic began in Wuhan. Wuhan City is 
one of the transportation hubs in China, where a larger number of people 
travel between Wuhan and other cities. In addition, two cities, Jingzhou 
and Xiangyang, were selected for analysis in this study. These cities have 
similar resident populations and have large population flow (in and out) 
between Wuhan. The three cities have obvious geographical boundaries 
to differentiate them and have large-population movements in the usual 
time. This elaborates our observation on the collected data of population 
movement. 

The data used in our study can be divided into three parts. The first is 
the actual infected cases data of COVID-19 in the three cities. We 
collected the actual infected case data of the COVID-19 epidemic from 
the official websites of Hubei Provincial Health Committee, which 
include the number of new infection cases, the total number of infections 
cases, and the number of new cured cases per day in the three cities from 
January 15 to May 20, 2020. 

The second is the data on intra- and inter-city population movements 
across the three cities. We collected the population movement data from 
the Baidu Migration Big Data Platform, which includes the population 
movement data of the three cities for each day from January 15 to March 
15, 2020. Baidu Migration Big Data Platform is an open data platform 
(online: https://qianxi.baidu.com/#/2020chunyun). That platform re-
cords the population migration data based on city size during 2020 
spring festival in China. The source of the data in this platform is from 
user location services embedded in the Apps provided by Baidu such as 
Baidu Map, Baidu News and Baidu Search. Because Baidu Apps have a 
large number of users and a great market share in China, the Baidu 
Migration Big Data Platform can provide us with an approximately ac-
curate population travel data [44]. The data in this platform is open and 
free to use and we collect the data used in our paper by network crawler. 
Although there might be a small difference between the data provided 
by this platform and the real numbers of population migration, we re-
gard that it can reflect an overall status of the actual population travel 
during 2020 spring festival in China. There are also some existing studies 
[44,45] that also use the data from this platform to study the population 
movement and COVID-19 in China. 

The third is the data of the total number of hospital beds in each city 
during the COVID-19 epidemic. We collected the bed data of the 
designated and square cabin hospitals from the official websites of the 

W. Zhang et al.                                                                                                                                                                                                                                  

https://qianxi.baidu.com/#/2020chunyun


Computers in Biology and Medicine 149 (2022) 106046

7

health committees of the three cities. Table 3 shows the information on 
the detailed data sources. 

Fig. 2 shows the daily intra-city population movement intensities in 
Wuhan, Jingzhou, and Xiangyang from January 15, 2020, to May 20, 
2020. From January 1 (New Year’s Day) to January 23, 2020 (Chinese 
New Year’s Eve), the intra-city population movement intensity gradu-
ally increased. On January 24, 2020, the Hubei province activated the 
level I public health emergency response to the Wuhan COVID-19 
epidemic outbreak. Thereafter, the intra-city population movement in-
tensities in the three cities rapidly decreased. 

Fig. 3 shows the inter-city movements in the three cities from 
January 15 to March 15, 2020. The inter-city movement between the 
three cities is at a high level until January 24, 2020. Most people moved 

out from Wuhan to Jingzhou and Xiangyang because many Wuhan 
residents returned to their homes to celebrate the Chinese Spring 
Festival. After January 24, the inter-city movement rapidly decreased 
owing to the level I public health emergency response and the lockdown 
of Wuhan. 

Fig. 4 shows the numbers of hospital beds in the three cities. The 
hospital bed capacities in Jingzhou and Xiangyang increased rapidly 
from February 7, 2020, because medical resource aids were initiated on 
February 7 by the joint prevention and control mechanism of the State 
Council. Medical resources from outside provinces gradually entered the 
Hubei province after February 11, 2020. In Wuhan, the number of 
hospital beds started to increase on January 25 and peaked on February 
28 as the square-cabin hospitals in the city started to provide beds for 
patients. After March 7, the number of beds began to decline because the 
epidemic in Wuhan was controlled; thus, the officials decided to stop the 
construction of more square-cabin hospitals. 

4.2. Parameter estimation 

Before using the SEIR-FMi model, the model parameters, including 

Table 3 
Real data information.  

Data description Source Period Minimum Maximum 

Number of infected 
with COVID-19 in 
Wuhan 

Hubei province 
Health 
Committee 

2020/1/ 
15–2020/5/ 
20 

227 37925 

Number of infected 
with COVID-19 in 
Xiangyang 

2020/1/ 
15–2020/5/ 
20 

1 1025 

Number of infected 
with COVID-19 in 
Jingzhou 

2020/1/ 
15–2020/5/ 
20 

1 1241 

Intensity of intra- 
city population 
movement in 
Wuhan 

Baidu migrates 
big data 
platform 

2020/1/ 
15–2020/3/ 
15 

0.56 5.33 

Intensity of intra- 
city population 
movement in 
Jingzhou 

2020/1/ 
15–2020/3/ 
15 

1.49 6.21 

Intensity of intra- 
city population 
movement in 
Xiangyang 

2020/1/ 
15–2020/3/ 
15 

1.27 6.2 

Number of migrant 
population: 
Wuhan >
Xiangyang 

2020/1/ 
15–2020/3/ 
15 

202 19181 

Number of migrant 
population: 
Wuhan >
Jingzhou 

2020/1/ 
15–2020/3/ 
15 

272 22644 

Number of migrant 
population: 
Jingzhou >
Wuhan 

2020/1/ 
15–2020/3/ 
15 

777 7584 

Number of migrant 
population: 
Jingzhou >
Xiangyang 

2020/1/ 
15–2020/3/ 
15 

80 932 

Number of migrant 
population: 
Xiangyang >
Wuhan 

2020/1/ 
15–2020/3/ 
15 

424 4531 

Number of migrant 
population: 
Xiangyang >
Jingzhou 

2020/1/ 
15–2020/3/ 
15 

50 1007 

Number of hospital 
beds in Wuhan 

Health 
Committee of 
Wuhana 

2020/1/ 
15–2020/3/ 
15 

600 60500 

Number of hospital 
beds in Xiangyang 

Health 
Committee of 
Xiangyangb 

2020/1/ 
15–2020/3/ 
15 

100 5367 

Number of hospital 
beds in Jingzhou 

Health 
Committee of 
Jingzhouc 

2020/1/ 
15–2020/3/ 
15 

100 4508  

a Health Committee of Wuhan. Online: http://wjw.wuhan.gov.cn/. 
b Health Committee of Xiangyang. Online: http://wjw.xiangyang.gov.cn/. 
c Health Committee of Jingzhou. Online: http://wjw.jingzhou.gov.cn/. 

Fig. 2. Intra-city population movement of Wuhan, Jingzhou and Xiangyang.  

Fig. 3. Inter-city population movements between Wuhan, Jingzhou, 
and Xiangyang. 
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the infection rates p and q, the transfer rate from exposed to infected ε, 
and the maximum recovery rate γmax and minimum recovery rate γmin, 
must be estimated for each city. By using real epidemic data from 
January 20, 2020 to March 15, 2020, we fitted the proposed SEIR-FMi 
model and derived the estimates of the parameters. Specifically, we 
adopt a two-step parameter estimation method in this paper [46,47]. 
Firstly, we estimate a set of outcomes by minimizing the Sum of Squared 
Errors (SSE) of total number of infected cases between the model 
simulation outcomes and actual epidemic data. The SSE function is 
minimized with the gradient-based method by setting the iteration 
number as 10 000 [47]. Secondly, we use the estimated set of parameters 
as the initial values of the Markov Chain Monte Carlo (MCMC) approach 
[48]. Similar to the approach used by Zu et al. [46], we set the iteration 
number to 8000 and the first 6000 iterations as burn-in periods. Finally, 
we obtain the estimated parameters in proposed SEIR-FMi model. In 
Table 4, we list the estimated values of parameters, as well as its cor-
responding 95% confidence intervals (CIs). 

Table 4 shows that the transfer rates (i.e., ε) from exposed to infected 
were 0.153, 0.12, and 0.1303 in Wuhan, Jingzhou, and Xiangyang, 
respectively. The reciprocal values of the three transfer rates ranged 
from 6 to 8, which is consistent with the 6- to 8-day average incubation 
period given by the World Health Organization for COVID-19 [24]. The 
maximum and minimum recovery rates were 0.14 and 0.05, respec-
tively, in all three cities. The reciprocal values of the two recovery rates 

ranged from 7 to 20, which are also consistent with the average cure 
period range given by the World Health Organization for patients with 
COVID-19 [31]. On the basis of the results of the parameter estimates, 
the proposed SEIR-FMi model performs better in characterizing the real 
epidemic spread than the traditional SEIR model. 

Fig. 5 shows the number of infected cases fitted using the SEIR-FMi 
model and the number of infected cases in the three cities. The model 
fitting results are close to the real results on the infected and recovered 
curves, which indicates that the proposed SEIR-FMi model is good at 
fitting the real epidemic spread in the three cities. 

4.3. Calculate the effective reproduction number 

Based on Eq. (15) and Eq. (18), we calculate the time-varying 
effective reproduction number Re(t) for Wuhan, Jingzhou and Xian-
gyang as a whole and for each of the city. Moreover, we calculate the 
effective reproduction number Ri

e for each of city under the best situa-
tion and the worst situation. 

Firstly, we give the whole effective reproduction numbers of three 
cities over time under the actual situation in Fig. 6. We can see that at 
the beginning of the COVID-19 outbreak, the whole Re(t) for the three 
cities was about 5.5. From about January 25th, Re(t) quickly dropped to 
nearly 1. By around March 20, Re(t) gradually dropped to below 1, 
indicating that the COVID-19 is under control at this time. For each of 

Fig. 4. Hospital bed capacities in Wuhan, Jingzhou, and Xiangyang.  

Table 4 
SEIR-FMi model parameters.  

Parameters Wuhan Jingzhou Xiangyang 

Values 95% CIs Values 95% CIs Values 95% CIs 

p 0.301 (0.296, 0.306) 0.265 (0.260, 0.270) 0.265 (0.260, 0.270) 
q 0.001 (0.0008,0.0012) 0.0013 (0.0011,0.0015) 0.0012 (0.0001,0.0014) 
ε 0.153 (0.149, 0.157) 0.12 (0.116, 0.124) 0.1303 (0.126, 0.134) 
γmin 0.05 (0.055, 0.045) 0.05 (0.055, 0.045) 0.05 (0.055, 0.045) 
γmax 0.14 (0.137, 0.143) 0.14 (0.137, 0.143) 0.14 (0.137, 0.143)  

Fig. 5. Real epidemic and the simulated spread by the proposed SEIR-FMi model.  
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the city, the effective reproduction number of the Wuhan RWuhan
e (t) was 

about 5.9 at the beginning of the COVID-19 outbreak, but quickly 
dropped to near 1 at middle of February. Until mid-March, its effective 
reproduction number gradually dropped to below 1. The effective 
reproduction number of Jingzhou RJingzhou

e (t) and the effective repro-
duction number Xiangyang RXiangyang

e (t) from January 15th to 25th were 
gradually increased, because the intra-city movement intensity ai(t) for 
the two cities were increased and the number of hospital beds bi(t) were 
not increased during this time. Until the level I public health emergency 
response was implemented on January 24, 2020, the effective repro-
duction number of Jingzhou and Xiangyang were gradually decreased to 
near 1. Around March 14, both Jingzhou’s effective reproduction 
number RJingzhou

e (t) and Xiangyang’s effective reproduction number 
RXiangyang

e (t) dropped to below 1. Thus, we can find that all the three cities 
have a relatively high effective reproduction numbers at the early stage 
of the COVID-19 outbreak. With the implementation of population 
movement control measures and medical investment measures on 
January 24, 2020, the effective reproduction number began to decrease. 
In the late March 2020, the epidemic gradually receded. 

Furthermore, we calculate the effective reproduction number for a 
single city under the best situation and the worst situation. According to 
Equation (18), we can see that for a single city, its effective reproduction 
number Ri

e(t) can be reduced by reducing its intra-city population 
movement intensity ai(t), increasing its medical resources investment 
γi

′

(t), and increasing its city population outflow 
∑m

j=1,j∕=iλi,j(t). Therefore, 
the best situation for a single city is to have the lowest intra-city 

movement intensity, the largest number of hospital beds and the 
largest outflow population. On the contrary, the worst situation for a 
single city is to have the highest intra-city movement intensity, the least 
number of hospital beds and the least out-flow population. We also 
calculate the effective reproduction number Re(t) for three cities as a 
whole when all of them are in the best and worst situations separately. 

Table 5 shows the effective reproduction number of the three cities 
under the best and worst situations. The effective reproduction number 
for each city under the best situation is smaller than 1, which means that 
if a city is considered individually, the epidemic can be eliminated by 
restricting travel within the city, increasing medical investment, and 
increasing the outflow population. However, when all the cities are at its 
best situation, the effective reproduction number Re(t) for the three 
cities as a whole is greater than 1. The reason lies in two sides. On the 
one side, it is impossible that all the three cities are at its best situations 
at the same time on the condition that the epidemic is spreading. On the 
other side, although the effective reproduction number for an individual 
city can be reduced by increasing outflow population (see Eq. (18)), the 
outflow population also increase the epidemic risk of other cities. Thus, 
when a city increases its outflow population to reduce its effective 
reproduction number, it would increase the whole Re(t) for the three 
cities as a whole (see Eq. (15)). Therefore, it is unadvisable to increase 
the outflow population if a city has developed the epidemic, because this 
will increase the epidemic risks of other cities as well as the epidemic 

Fig. 6. The effective reproduction number for three cities as a whole and for each city under actual situation.  

Table 5 
Effective reproduction number of Wuhan, Jingzhou and Xiangyang under the 
best and worst situation.  

Situation RWuhan
e (t) for 

Wuhan 
RJingzhou

e (t) for 
Jingzhou 

RXiangyang
e (t) for 

Xiangyang 
Re(t) for three 
cities as a 
whole 

Best 0.777 0.703 0.703 1.036 
Worst 6.261 5.938 5.938 6.045  

Table 6 
Experiment scenarios design.  

Scenario Community isolation 
measure 

Inter-city mobility 
control measure 

Medical resource 
aid measure 

1 No Yes Yes 
2 7 days delayed Yes Yes 
3 7 days early Yes Yes 
4 Yes No Yes 
5 Yes 7 days delayed Yes 
6 Yes 7 days early Yes 
7 Yes Yes No 
8 Yes Yes 7 days delayed 
9 Yes Yes 7 days early  
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risk of all the cities as a whole. The effective reproduction number for 
each city and for all the cities as a whole are nearly 6 under the worst 
situation, which means that without the control measures, the epidemic 
can spread quickly in cities and cause large numbers of infected persons. 

4.4. Simulation scenario setup 

With the fitted SEIR-FMi model, we simulate the COVID-19 epidemic 
spread in the three cities by counterfactual analysis. The Level I public 
health emergency response includes community isolation, inter-city 
population mobility control and medical resource aid that exactly cor-
responds to the measures on intra-city population movement, inter-city 
population movement, and medical resources investment. Following the 
line of Ye [15] and Ge [49], we also set the impact of different timing of 
the implementation of the Level I public health emergency response as 
one week earlier or one week later. Thus, we setup 9 scenarios in Table 6 
to study the effects of intra-city population movement, inter-city popu-
lation movement, and medical resources aid on the COVID-19 spread. 

We design scenarios 1 to 3 to study the impact of intra-city move-
ment on the spread of COVID-19. In the three scenarios, the three cities 
of Wuhan, Jingzhou, and Xiangyang were assume to maintain inter-city 
population mobility control and medical resource aid during the COVID- 
19 epidemic outbreak. In scenario 1, community isolation was not 
implemented on January 24, 2020, and the population movement in-
tensities in the three cities were kept at the same levels as those before 
January 24, 2020. In scenario 2, community isolation was implemented 
7 days later, while the population movement intensities in the three 
cities remained at the same levels as those before January 24 until 
January 31, 2020, and were controlled and thus decreased after January 
31, 2020. In scenario 3, community isolation was implemented 7 days 
earlier, while the population movement intensities in the three cities 
were at the same levels as those before January 17, 2020, and were 
controlled and thus decreased after January 17, 2020. 

We designed scenarios 4 to 6 to study the impact of inter-city 
movement on the spread of COVID-19. In the three scenarios, we 
assumed that the three cities of Wuhan, Jingzhou, and Xiangyang 
maintained community isolation and medical resource aid during the 
COVID-19 epidemic outbreak. In scenario 4, inter-city mobility control 
was not implemented on January 24, 2020, and the number of mobile 
populations between the three cities remained at the same level as that 
in 2019. In scenario 5, inter-city mobility control was implemented 7 
days later, while the population mobility between the three cities 
remained at the same level as that in 2019 until January 31, 2020, and 
was controlled and thus decreased rapidly after January 31, 2020. In 
scenario 6, inter-city mobility control was implemented 7 days earlier, 
while the population movement between the three cities before January 
17, 2020, remained at the same level as that in 2019 and was controlled 
and thus decreased after January 17, 2020. 

We designed scenarios 7 to 9 to study the impact of medical resource 
aid on the spread of COVID-19. In the three scenarios, we assumed that 
the three cities of Wuhan, Jingzhou, and Xiangyang maintained com-
munity isolation and inter-city mobility control during the COVID-19 

epidemic outbreak. On February 7, 2020, the medical resource aid to 
Hubei province was initiated by the joint prevention and control 
mechanism of the State Council. After February 11, 2020, the medical 
resource aid from other provinces gradually entered to Hubei province 
territory. Therefore, the numbers of hospital beds in the three cities 
before February 11, 2020, were considered as the initial medical re-
sources, while the numbers of additional hospital beds in the three cities 
after February 11, 2020, were considered as the external medical 
resource aid during the COVID-19 outbreak. In scenario 7, medical 
resource aid was not implemented on February 11, 2020, while the 
numbers of hospital beds in the three cities remained at the initial 
medical resource levels. In scenario 8, medical resource aid was 
implemented 7 days later, while the numbers of hospital beds in the 
three cities remained at the initial medical resource levels until February 
18, 2020, and were controlled and thus gradually increased after 
February 18, 2020. In scenario 9, medical resource aid was implemented 
7 days earlier, while the numbers of hospital beds in the three cities 
started to increase on February 4, 2020. 

4.5. Impact of intra-city movement on the COVID-19 spread 

Fig. 7 illustrates the outcomes of the simulated epidemic spread in 
scenario 1 compared with the real epidemic spread in the three cities. 
The numbers of infected in the three cities increased sharply when the 
community isolation measures were lacking. The peak numbers of 
simulated infected in Wuhan was 129% larger than the real peak 
numbers of infected. The peak numbers of simulated infected in Jingz-
hou and Xiangyang were four times more than the real peak numbers of 
infected. The total numbers of simulated infected in Wuhan was 96% 
more than the real total numbers of infected. The total numbers of 
simulated infected in Jingzhou was 368% more than the real total 
numbers of infected. The total number of simulated infected in Xian-
gyang was 495% more than the real total numbers of infected. This 
outcome indicates that the lack of community isolation would signifi-
cantly prolong the epidemic spread in all three cities. Thus, we can infer 
that the level I response, which restricts intra-city movements, has a 
significant effect on epidemic control. 

Fig. 8 shows the outcomes of the simulated epidemic spread in sce-
nario 2 compared with the real epidemic spread in the three cities. The 
number of infected in the three cities would significantly increase in the 
case of delayed implementation of community control measures. The 
peak number of simulated infected in Wuhan was 73% more than the 
real peak numbers of infected. The peak numbers of simulated infected 
in Jingzhou and Xiangyang were three times more than the real numbers 
of infected. The total number of simulated infected in Wuhan was 52% 
more than the real total numbers of infected. The total number of 
simulated infected in Jingzhou was 273% more than the real total 
numbers of infected. The total number of simulated infected in Xian-
gyang was 369% more than the real total numbers of infected. At the 
same time, the epidemic duration would be prolonged if community 
isolation measures were implemented 7 days late. Thus, we can infer 
that increasing intra-city population movements have positive effects on 

Fig. 7. Simulated spread by the SEIR-FMi model in scenario 1 compared with the real epidemic spread.  
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the spread of the epidemic. 
Fig. 9 shows the outcomes of the simulated epidemic spread in sce-

nario 3 compared with the real epidemic spread in the three cities. We 
see that the numbers of infected in the three cities would significantly 
decrease in the case of early implementation of community control 
measures. The peak number of simulated infected in Wuhan was 29% 

smaller than the real peak numbers of infected. The peak numbers of 
simulated infected in Jingzhou and Xiangyang were nearly 70% smaller 
than the real peak numbers of infected. The total number of simulated 
infected in Wuhan was 22% smaller than the real total numbers of 
infected. The total numbers of simulated infected in Jingzhou was 60% 
smaller than the real total number of infected. The total number of 

Fig. 8. Simulated spread by the SEIR-FMi model in scenario 2 compared with the real epidemic spread.  

Fig. 9. Simulated spread by the SEIR-FMi model in scenario 3 compared with the real epidemic spread.  

Fig. 10. Comparison of the proportions of population flow between 2019 and 2020 in Wuhan, Jingzhou, and Xiangyang from January 15 to March 15, 2020, and the 
same period in 2019 (according to the lunar calendar). 

Fig. 11. Simulated spread by the SEIR-FMi model in scenario 4 compared with the real epidemic spread.  
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simulated infected in Xiangyang was 68% smaller than the real total 
number of infected. At the same time, the epidemic duration would be 
shortened in Jingzhou and Xiangyang if community isolation measures 
were implemented 7 days early. Thus, we can infer that decreasing intra- 
city population movements have negative effects on the spread of the 
epidemic. 

4.6. Impact of inter-city movement on COVID-19 

We used the population mobility data of the same period in 2019 and 
2020 to study the impact of inter-city population movement on the 
spread of COVID-19 under the scenarios 4 to 6. Fig. 10 shows a com-
parison of the proportions of population flow among the three cities for 
the same period in 2019 and 2020. After the implementation of the level 
I response, the numbers of people moving into and moving out from the 
three cities in 2020 were significantly smaller than those in 2019. 

Fig. 11 shows a comparison between the real epidemic spread and 
the model simulation results in scenario 4. The results show that if inter- 
city mobility control measures were not implemented during the Spring 
Festival in 2020, the numbers of infected in all the three cities would 
increase. The peak number of simulated infected in Wuhan was 6% more 
than the real peak numbers of infected. The peak numbers of simulated 
infected in Jingzhou and Xiangyang were more than the real peak 
numbers of infected by more than 50%. The total number of simulated 
infected in Wuhan was 7% more than the real total numbers of infected. 
The total numbers of simulated infected in Jingzhou was 81% more than 
the real total numbers of infected. The total number of simulated 
infected in Xiangyang was 105% more than the real total numbers of 
infected. At the same time, the duration of the epidemic would be pro-
longed in Jingzhou and Xiangyang if community isolation measures 
were not implemented. Thus, we can infer that the level I response, 
which increases inter-city population movements, will accelerate the 
spread of the epidemic and that the inter-city mobility control measure 
has a significant effect on epidemic control. 

Fig. 12 shows the outcomes of the simulated spread in scenario 5 
compared with the real epidemic spread in the three cities. The numbers 
of infected in the three cities would increase in the case of delayed 

implementation of inter-city mobility control measures. The peak 
number of simulated infected in Wuhan was 4% more than the real peak 
numbers of infected. The peak numbers of simulated infected in Jingz-
hou and Xiangyang were more than the real peak numbers of infected by 
more than 25%. The total numbers of simulated infected in Wuhan was 
5% more than the real total numbers of infected. The total number of 
simulated infected in Jingzhou was 40% more than the real total 
numbers of infected. The total number of simulated infected in Xian-
gyang was 46% more than the real total numbers of infected. Mean-
while, the duration of the epidemic would be prolonged if inter-city 
mobility control measures were implemented 7 days later. 

Fig. 13 shows a comparison between the real epidemic spread and 
the model simulation results in scenario 6. The numbers of infected in 
the city of Jingzhou and Xiangyang would decrease if inter-city mobility 
control measures were implemented 7 days early, but the number of 
infected did not change significantly in Wuhan. The peak numbers of 
simulated infected in Jingzhou and Xiangyang were nearly 40% smaller 
than the real peak numbers of infected. The total number of simulated 
infected in Jingzhou was 25% smaller than the real total number of 
infected. The total number of simulated infected in Xiangyang was 31% 
smaller than the real total numbers of infected. Thus, we can infer that 
restricted inter-city population movements affect epidemic control. 
However, different cities have different impact levels, with low-risk 
cities being affected more than high-risk cities. 

4.7. Impact of medical resource investment on the spread of COVID-19 

Fig. 14 shows a comparison between the real epidemic spread and 
the model simulation results in scenario 7. The number of simulated 
infected remains approximately the same as the real number of infected 
at the beginning of the epidemic spread. After February 11, 2020, the 
numbers of infected in the three cities in the real situation peaked, and 
the growth rate in the number of cured cases gradually increased. This is 
because the increasing number of medical resources invested in Hubei 
province led to a significant acceleration in the recovery rate after 
February 11. Meanwhile, an increase in the number of recoveries would 
also reduce the number of new infections and play a preventive role in 

Fig. 12. Simulated spread by the SEIR-FMi model in scenario 5 compared with the real epidemic spread.  

Fig. 13. Simulated spread by the SEIR-FMi model in scenario 6 compared with the real epidemic spread.  
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the epidemic outbreak. Nevertheless, the simulation results also indicate 
that the number of infected cases after February 11 remained at the same 
growth rate as before and would not reach its peak immediately. The 
reason here is that without the investment of external medical resources, 
more and more infected cases would not be treated timely and recov-
ered. Then, the infected cases would infect more susceptible individuals 
in real practice. For example, during the early stage of the COVID-19 
outbreak in Wuhan in 2020, some infected cases had to be quaran-
tined at home due to the shortage of hospital beds, and this cause many 
of their family members infected as they cannot isolate themselves 
completely in their daily life. 

Fig. 15 shows the outcomes of the simulated spread in scenario 8 
compared with the real epidemic spread in the three cities. As shown in 
Fig. 15, the numbers of infected cases in all three cities would increase 
after February 11 if medical resource investment measures were 
implemented 7 days late. The total number of simulated infected in 
Wuhan was 2% more than the real total numbers of infected. The total 
number of simulated infected in Jingzhou was 13% more than the real 
total numbers of infected. The total number of simulated infected in 
Xiangyang was 16% more than the real total numbers of infected. The 

epidemic duration would be prolonged if the medical resource aid 
measure was implemented 7 days late. At the same time, the simulated 
number of recoveries was smaller than the real number of recoveries 
between February 13 and March 1 because the delay in medical resource 
investment led to a decrease in recovery rate. At the late stage of the 
epidemic, medical resources were increased, and the recovery rate in the 
simulation was improved. However, as the number of infected cases in 
the early stage increased, the number of recoveries by the model 
simulation was more than the real number. 

Fig. 16 shows the outcomes of the simulated spread in scenario 9 
compared with the real epidemic spread in the three cities. Between 
February 9 and March 1, the numbers of simulated infected in all three 
cities were smaller than the numbers of real infected cases, but the 
number of simulated recoveries were more than the real number of re-
coveries. Meanwhile, the recovery rate by the simulation model was 
higher than the real recovery rate, as the early implementation of 
medical resource aid measure. At the late stage of the epidemic, the 
number of simulated recovered is smaller than the real number because 
of the decrease in the number of infected cases in the early stages. 

Fig. 14. Simulated spread by the SEIR-FMi model under scenario 7 compared with the real epidemic spread.  

Fig. 15. Simulated spread by the SEIR-FMi model in scenario 8 compared with the real epidemic spread.  

Fig. 16. Simulated spread by the SEIR-FMi model in scenario 9 compared with the real epidemic spread.  
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4.8. Summary of simulation results 

Table 7 shows the outcomes of the total and peak numbers of infected 
cases derived from the simulation compared with the real number of 
infected cases in the three cities. Here, the values represent the per-
centage difference between the real and simulated results. The positive 
value indicates that the simulated number is larger than the real num-
ber, and the negative value indicates that the simulated number is 
smaller than the real number. Scenarios 1 to 3 reflect the impact of the 
intra-city population movement on the spread of COVID-19. Scenarios 4 
to 6 reflect the impact of inter-city population movement on the spread 
of COVID-19. Scenarios 7 to 9 reflect the impact of medical resources on 
the spread of COVID-19. 

On the basis of the simulation results, we can infer that first, the 
impact levels of the three factors on the number of infections is as fol-
lows: intra-city population movement > inter-city population move-
ment > medical resource investment. This indicates that during the 
epidemic outbreak in the cities, controlling the movements of people 
within cities by, for example, implementing community isolation, 
restricting gatherings, and closing public places plays the most impor-
tant role in the prevention and control of epidemic. This result also 
shows that controlling crowd contact is the most fundamental preven-
tive approach against the spread of infectious diseases. 

Second, either to delay or implement community control measure, 
the impact of intra-city movement on the spread of COVID-19 will be 
much greater in the low-risk areas such as Jingzhou and Xiangyang than 
that in the high-risk areas such as Wuhan. This result is mainly due to 
two reasons. On the one hand, a few days before the level I response was 
implemented, the intra-city movement intensity in Wuhan had already 
started to decline and was at a lower state because a COVID-19 outbreak 
had already started in Wuhan. However, owing to the Spring Festival, 
the intra-city movement intensities in Jingzhou and Xiangyang were in 
the increasing stage and at their peaks on the January 24th. Therefore, 
the change in intra-city movement intensity caused by the early or 
delayed implementation of emergency response measures was more 
pronounced for Jingzhou and Xiangyang than for Wuhan. On the other 
hand, as depicted in Fig. 3, before the level I response was implemented, 
a large flow of people from the high-risk city (Wuhan) to the low-risk 
cities (Jingzhou and Xiangyang) due to the COVID-19 epidemic 
outbreak and Spring Festival was observed. This would cause a larger 
number of potential contagions from high-to low-risk cities and increase 
the threat of the epidemic in low-risk areas. 

Third, regardless of whether inter-city mobility control measures 
were delayed or implemented, inter-city population movement had a 
relatively small impact on the epidemic spread in Wuhan as a high-risk 
city but a large impact on the epidemic spread in Jingzhou and Xian-
gyang as low-risk cities. This is because the high-risk cities export a 
higher proportion of potentially infected individuals, so they have a 
greater impact on low-risk cities. On the contrary, a smaller proportion 
of potentially infected individuals are exported from low-risk cities, so it 
has a smaller impact on high-risk cities. In addition, high-risk areas, 
where the epidemic is worse, are usually prioritized in the imple-
mentation of social distancing and medical resource investments. 
However, from to our simulation results, we found that increasing the 
intensity of control and medical resource investment in low-risk areas 
will bring more significant effects. 

4.9. Sensitivity analysis experiments 

In this section, based on the collected data in Section 4.1, we conduct 
a series of sensitivity analysis on the parameters as different sizes and 
risk levels of the cities to investigate the robustness of experimental 
outcomes. 

First, we define two types of cities based on city size, namely large 
and small city. The large city has more population (including resident 
population and migrant population) as well as larger number of initial 
hospital beds than small city. We assume that the large city has the 
similar population, initial hospital beds and intra-city movement in-
tensity as that of Wuhan, and that the small city has the similar popu-
lation, initial hospital beds and intra-city movement intensity as that of 
Jingzhou. The proportion of migrant population between large city and 
small city is similarly to that between Wuhan and Jingzhou. The pro-
portion of migrant movement population between two cities of equal 
size is similarly to that between Jingzhou and Xiangyang. 

Second, we define two types of risk levels of the cities, namely high- 

Table 7 
Comparison between the simulated total number of infections and the real total 
number of infections under different scenarios.  

Response Scenario Indicator Wuhan Jingzhou Xiangyang 

Intra-city 
population 
movement 

1 number of 
infected 
cases 

+96% +368% +495% 

peak 
number 

+129% +409% +517% 

2 number of 
infected 
cases 

+52% +273% +369% 

peak 
number 

+73% +310% +392% 

3 number of 
infected 
cases 

− 22% − 60% − 68% 

peak 
number 

− 29% − 70% − 73% 

Inter-city 
population 
movement 

4 number of 
infected 
cases 

+7% +81% +105% 

peak 
number 

+6% +55% +79% 

5 number of 
infected 
cases 

+5% +40% +46% 

peak 
number 

+4% +28% +42% 

6 number of 
infected 
cases 

− 1% − 25% − 31% 

peak 
number 

− 3% − 40% − 37% 

Medical 
resource 
investment 

7 number of 
infected 
cases 

+1% +44% +45% 

peak 
number 

+3% +49% +41% 

8 number of 
infected 
cases 

+2% 13% +16% 

peak 
number 

+3% 10% +13% 

9 number of 
infected 
cases 

− 2% − 19% − 20% 

peak 
number 

− 3% − 22% − 19%  

Table 8 
Sensitivity analysis experiments scenarios design.  

Scenario City A City B City C 

10 Large city with low 
risk level 

Small city with high 
risk level 

Small city with low 
risk level 

11 Large city with low 
risk level 

Small city with low 
risk level 

Small city with low 
risk level 

12 Large city with high 
risk level 

Large city with low 
risk level 

Large city with low 
risk level 

13 Large city with low 
risk level 

Large city with high 
risk level 

Small city with low 
risk level 

14 Large city with low 
risk level 

Large city with low 
risk level 

Small city with high 
risk level  

W. Zhang et al.                                                                                                                                                                                                                                  



Computers in Biology and Medicine 149 (2022) 106046

15

risk city and low-risk city. The high-risk city means that the city is the 
source city of the epidemic and has more initial number of infected cases 
than the low-risk city. We assume that the high-risk city has the similar 
proportion of initial number of infected cases and population as that of 
Wuhan, and the low-risk city has the similar proportion of initial number 
of infected cases and population as that of Jingzhou. For high-risk city, 
the effective infection rate and, the number and speed of the increase in 
hospital beds is similar to that of Wuhan. For low-risk city, it has the 
similar situation as that of Jingzhou. 

Based on the different sizes and risk levels of cities, we design five 
simulation scenarios in Table 8. In scenario 10 to 14, we assume that all 
the three cities, namely city A, city B and city C, implement control 
measures, i.e., with level I public health emergency response on January 
24, 2020 to control intra-city and inter-city population movement and 
invest medical resource. In the appendix, we present the simulated 
epidemic trends for each scenario. 

In each scenario, we compare the differences in peak numbers and 
total numbers of infected cases with and without population movement 
control measures (including intra-city movement and inter-city move-
ment) and medical resource investments measures. Table 9 shows the 
percentage increase in the total number and in the peak number of 
infected cases with the absence of control measures. We can see that in 
all the scenarios, the percentage increase with intra-city population 

movement is larger than that with inter-city population movement, and 
the percentage increase with intra-city population movement is larger 
than that with medical resource investment. Without the control on 
inter-city population movement, the low-risk city have larger percent-
age increases in peak numbers and total numbers of infected cases than 
those of the high-risk city. This indicates that the experimental results on 
the rank of impacts of the three measures on the number of infections is 
robust. The control measures such as community isolation and social 
distance exert the most important role to prevent the epidemic outbreak. 
With population movement restriction, it is more effective to prevent the 
spread of COVID-19 in low-risk cities than in high-risk cities. The 
epidemic trends in the sensitivity analysis are shown in the appendix. 

5. Discussion 

The above simulation experiments of the COVID-19 epidemic illus-
trates that the level I public health emergency response, including 
community isolation, population mobility control, and medical resource 
investment, implemented in early 2020 in Hubei province significantly 
reduced the contact probability between the susceptible and infected 
populations and reduced the risk of epidemic transmission. Meanwhile, 
the implemented response accelerated the treatment of patients with 
COVID-19 and shortened the epidemic development period. From the 
experimental results, we can make the following three advices to control 
the spread of the COVID-19 epidemic worldwide. 

First, we should reduce the intra-city movement and increase per-
sonal protection. Reducing the intensity of contact between people is an 
effective measure to control the spread of the epidemic. Therefore, 
during the large-scale epidemic outbreak, intra-city population move-
ments should be controlled to avoid the gathering of people. Meanwhile, 
personal protection should be applied to reduce direct human-to-human 
contact by wearing masks and keeping social distance. Public places 
should be ventilated in a timely manner to reduce the probability of 
people being infected with the virus. 

Second, we should control population movement and reduce popu-
lation access to high-risk areas. During the epidemic, the population 
mobility between cities should be controlled, especially in high-risk 
areas. On the one hand, the inflow of people should be controlled to 
avoid importing infected cases. On the other hand, the outflow of people 
should be monitored to reduce the risk of infection of susceptible people 
in other cities during their travel. 

Third, the medical and quarantine supply aids, inoculation rates, and 
the scope of vaccination should be augmented. During the epidemic, it is 
important to speed up treatment of infected patients by increasing 
medical investments and screening of exposed populations by increasing 
quarantine supplies. Meanwhile, it is also an effective measure to 
combat infectious diseases by increasing the number of immune persons 
through widespread vaccinations. 

6. Conclusion 

Since the late December of 2019, the COVID-19 epidemic has rapidly 
spread in Wuhan and gradually spread to many countries and regions 
worldwide, causing millions of victims. To study the spread of the 
COVID-19 epidemic, many epidemiological models have been proposed 
to predict the number of infected people, estimate the development of 
COVID-19, and assess the prevention and control measures. However, in 
most existing models, the effects of population mobility in different 
cities and medical resource assistance from other provinces on the 
spread of COVID-19 are ignored. In this paper, first, we propose a novel 
epidemiological model called SEIR-FMi that considers three factors, 
namely intra-city population movement, inter-city population move-
ment, and medical resource investment. We theoretically derived the 
basic reproduction number and effective reproduction number of the 
proposed SEIR-FMi model and analyzed the effects of the three factors 
on the development of the COVID-19 epidemic. Second, we used the 

Table 9 
The results in peak numbers and total number of infected with and without 
control measures in sensitivity analysis.  

Scenario Response Indicator City A City B City C 

10 Intra-city 
population 
movement 

peak number +482% +54% +423% 
number of 
infected cases 

+500% +48% +406% 

Inter-city 
population 
movement 

peak number +208% +23% +96% 
number of 
infected cases 

+201% +38% +96% 

Medical resource 
investment 

peak number +26% +6% +18% 
number of 
infected cases 

+26% +9% +16% 

11 Intra-city 
population 
movement 

peak number +212% +114% +114% 
number of 
infected cases 

+242% +169% +169% 

Inter-city 
population 
movement 

peak number +12% +35% +35% 
number of 
infected cases 

+15% +38% +38% 

Medical resource 
investment 

peak number +6% +9% +9% 
number of 
infected cases 

+7% +14% +14% 

12 Intra-city 
population 
movement 

peak number +60% +314% +314% 
number of 
infected cases 

+46% +300% +301% 

Inter-city 
population 
movement 

peak number +15% +124% +124% 
number of 
infected cases 

+11% +117% +117% 

Medical resource 
investment 

peak number +36% +47% +47% 
number of 
infected cases 

+30% +67% +67% 

13 Intra-city 
population 
movement 

peak number +512% +61% +332% 
number of 
infected cases 

+355% +53% +308% 

Inter-city 
population 
movement 

peak number +45% +8% +312% 
number of 
infected cases 

+36% +8% +321% 

Medical resource 
investment 

peak number +15% +10% +15% 
number of 
infected cases 

+16% +9% +16% 

14 Intra-city 
population 
movement 

peak number +271% +271% +66% 
number of 
infected cases 

+407% +407% +59% 

Inter-city 
population 
movement 

peak number +93% +93% +22% 
number of 
infected cases 

+98% +98% +36% 

Medical resource 
investment 

peak number +8% +8% +6% 
number of 
infected cases 

+5% +5% +10%  
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proposed SEIR-FMi model to simulate the spread of COVID-19 to ac-
count for the effect of the level I public health emergency response, 
which includes community isolation, population mobility control, and 
outside medical resource assistance, on the epidemic spread in Hubei 
province between January 15, 2020, and May 20, 2020. The simulation 
results show that the SEIR-FMi model is good at fitting the COVID-19 
epidemic in the cities of Wuhan, Jingzhou, and Xiangyang in this period. 

According to the simulation results in this study, first, the intra-city 
population movement can accelerate the spread of COVID-19. High-in-
tensity intra-city population movement would cause a high contact 
probability between susceptible and infected populations, which would 
in turn increase the infection risk of the susceptible population. Second, 
the population mobility among cities with different risk levels has 
different affects the epidemic spread. In high-risk cities, an increase in 
inter-city population movement will reduce the number of infected in-
dividuals in the city and mitigate the development of the epidemic. 
However, the influx of large numbers of exposed individuals from the 
high-risk cities would significantly increase the number of infected 
people in the low-risk cities. Meanwhile, the mobile population can also 
lead to an increase in the total number of infected people in all cities 
because the exposed population in the movement population have a 
higher risk of contact with susceptible people. Finally, the medical 
resource investment would impact the epidemic spread in two ways. 
First, medical resource aid would reduce the growth rate of the number 
of infected individuals and reduce the peak number of COVID-19 in-
fections. Second, medical resource aid would speed up the recovery of 
infected patients and reduce the development period of the epidemic. 
Thus, more medical resource investments could effectively reduce the 
total number of infected individuals in the COVID-19 epidemic, which 
positively affects the prevention and control of the epidemic. 
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