organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Methoxy-N-(4-nitrobenzyl)aniline

Kamini Kapoor,^a Vivek K. Gupta,^a Indresh Kumar,^b Nisar A. Mir^b and Raini Kant^a*

^aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and ^bSchool of Biology & Chemistry, College of Sciences, Shri Mata Vaishno Devi University, Katra 182 320 (J&K), India

Correspondence e-mail: rkvk.paper11@gmail.com

Received 17 February 2012; accepted 25 February 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.130; data-to-parameter ratio = 14.1.

In the title compound, $C_{14}H_{14}N_2O_3$, the nitro group is nearly coplanar with the benzene ring to which it is bonded [dihedral angle = $1.70 (2)^{\circ}$], and this ring is *para*-substituted by the aminomethylene group. The dihedral angle between the benzene rings is 57.8 (1) $^{\circ}$. The crystal structure is stabilized by N-H···O and C-H···O hydrogen bonds and weak C- $H \cdots \pi$ interactions are also observed.

Related literature

For related structures, see: Iwasaki et al. (1988). For the biological properties of aldimines, see: Rjosk & Neumann (1971); Hillesheim et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

C14H14N2O3 $M_r = 258.27$ Monoclinic, $P2_1/n$ a = 7.4993 (3) Å b = 17.1516 (7) Å c = 10.0048 (5) Å $\beta = 96.861 \ (4)^{\circ}$

$V = 1277.65 (10) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.10 \text{ mm}^{-1}$
T = 293 K
$0.3 \times 0.2 \times 0.1 \ \text{mm}$

Data collection

```
Oxford Diffraction Xcalibur
  Sapphire3 diffractometer
Absorption correction: multi-scan
  (CrvsAlis RED; Oxford
  Diffraction, 2010)
  T_{\min} = 0.955, T_{\max} = 1.000
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of
$wR(F^2) = 0.130$	independent and constrained
S = 1.05	refinement
2511 reflections	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
178 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

11435 measured reflections

 $R_{\rm int} = 0.035$

2511 independent reflections

1692 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the nitrophenyl (C1-C6) and methoxyphenyl (C9-C14) rings, respectively.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N8-H8\cdots O1^{i} C16-H16B\cdots O2^{ii} C3-H3\cdots Cg2^{iii} C6-H6\cdots Cg2^{iv} C16-H16A\cdots Cg1^{v} $	0.89 (2) 0.96 0.93 0.93 0.96	2.42 (3) 2.47 2.77 2.87 2.96	3.231 (2) 3.372 (3) 3.560 (2) 3.524 (2) 3.830 (2)	152.8 (19) 155 143 129 151

Symmetry codes: (i) -x, -y, -z + 1; (ii) x + 2, y, z + 1; (iii) -x, -y + 1, -z; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) x + 1, y, z + 1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the University of Jammu (India) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2415).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Hillesheim, W., Jaeschke, H. & Neumann, H.-G. (1995). Chem. Biol. Interact. 98.85-95

Iwasaki, F., Masuko, Y., Monma, S., Watanabe, T. & Mutai, K. (1988). Bull. Chem. Soc. Jpn, 61, 1085-1090.

Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Rjosk, H.-K. & Neumann, H.-G. (1971). Z. Krebsforsch. 75, 209-220.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o988 [doi:10.1107/S160053681200846X]

4-Methoxy-N-(4-nitrobenzyl)aniline

Kamini Kapoor, Vivek K. Gupta, Indresh Kumar, Nisar A. Mir and Rajni Kant

Comment

In continuation of our project on the preparation of various aldimines from *p*-anisidine and aromatic aldehydes in refluxing methanol, the title compound has been prepared using the reductive amination method. In undergoing further applications of aldimines in various cycloaddition reactions (Rjosk & Neumann, 1971; Hillesheim *et al.*, 1995), we observed that aldimines undergo a reductive amination with NaBH₄ in presence of catalytic amounts of AcOH in MeOH, to afford 4-methoxy-*N*-(4-nitrobenzyl)aniline as one of the products. We further tried to prepare this compound under similar conditions in a separate flask, and the title compound was obtained in high yield (> 90%) through reductive amination of *p*-nitrobenzaldehyde with *p*-anisidine.

The bond lengths in the molecule are within normal ranges (Allen *et al.*, 1987) and comparable with those found in related molecules (Iwasaki *et al.*, 1988). The nitro group is nearly coplanar to the benzene ring to which it is bonded, the dihedral angle being $1.70 (2)^{\circ}$. The 4-methoxy phenyl group is *trans* to the 4-nitro phenyl group about the C7—N8 bond. The torsion angle C1—C7—N8—C9 is 178.22 (17)°. Hydrogen H8 on atom N8 forms an intermolecular hydrogen bond with the nitro O atom O1 of a neighbouring centrosymmetrically related molecule. This interaction links the molecules into N—H…O hydrogen bonded dimers. Dimers are connected *via* C—H…O hydrogen bonds and form chains along the *c*-axis of the unit cell (Table 1, Fig. 2). On the other hand, C—H… π interactions (*Cg*1 is the centroid of the nitro-phenyl ring, Table 1) play important role in stabilizing the crystal structure.

Experimental

To a stirred solution of *p*-nitro-benzaldehyde (0.5 g, 3.3 mmol) in MeOH (10 ml) was added *p*-anisidine (0.41 g, 3.3 mmol) at room temperature and the mixture was refluxed for 4 h. The resulting reaction mixture was cooled to 273 K, which resulted in the precipitation of the corresponding aldimine intermediate. Few drops of AcOH were added, followed by NaBH₄ (0.09 g, 2.5 mmol), at the same temperature. The combined reaction mixture was stirred additionally for 2 h and quenched with sat. NaHCO₃ solution, extracted with EtOAc (2×15 ml), and concentrated under reduced pressure. The resulting crude amine compound was crystallized in hexane/EtOAc (2:1), to afford the title compound with 92% yield. ¹H-NMR: 3.68 (*s*, 3H), 4.38 (*s*, 2H), 6.40 (*d*, 2H), 6.72 (*d*, 2H), 7.65 (*d*, 2H), 8.10 (*d*, 2H).

Refinement

Hydrogen atom H8 was found in a difference map and refined isotropically. All other H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Computing details

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO* (Oxford Diffraction, 2010); data reduction: *CrysAlis RED* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick,

2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2009).

Figure 1

ORTEP view of the molecule with thermal ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Figure 2

The packing arrangement of molecules viewed down the *a* axis. The broken lines show the intermolecular N—H···O and C—H···O hydrogen bonds.

4-Methoxy-N-(4-nitrobenzyl)aniline

Crystal data

 $\begin{array}{l} C_{14}H_{14}N_2O_3\\ M_r = 258.27\\ \text{Monoclinic, } P2_1/n\\ \text{Hall symbol: -P 2yn}\\ a = 7.4993 \ (3) \ \text{\AA}\\ b = 17.1516 \ (7) \ \text{\AA}\\ c = 10.0048 \ (5) \ \text{\AA}\\ \beta = 96.861 \ (4)^\circ\\ V = 1277.65 \ (10) \ \text{\AA}^3\\ Z = 4 \end{array}$

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 16.1049 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2010) $T_{\min} = 0.955, T_{\max} = 1.000$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.048$ H atoms treated by a mixture of independent $wR(F^2) = 0.130$ and constrained refinement S = 1.05 $w = 1/[\sigma^2(F_0^2) + (0.0514P)^2 + 0.2077P]$ where $P = (F_0^2 + 2F_c^2)/3$ 2511 reflections 178 parameters $(\Delta/\sigma)_{\rm max} < 0.001$ 0 restraints $\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.15 \ {\rm e} \ {\rm \AA}^{-3}$ 0 constraints Extinction correction: SHELXL97 (Sheldrick, Primary atom site location: structure-invariant 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ direct methods Extinction coefficient: 0.0116 (18) Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.2703 (2)	0.01096 (11)	0.2223 (2)	0.0948 (6)	
02	-0.3470 (3)	0.12998 (13)	0.2161 (3)	0.1390 (10)	
N1	-0.2400(2)	0.07908 (13)	0.24933 (19)	0.0695 (5)	
C1	0.2618 (2)	0.14226 (11)	0.45527 (19)	0.0499 (5)	
C2	0.2220 (3)	0.06469 (12)	0.4248 (2)	0.0581 (5)	
H2	0.3072	0.0265	0.4505	0.070*	
C3	0.0581 (3)	0.04336 (11)	0.3571 (2)	0.0550 (5)	
H3	0.0320	-0.0086	0.3367	0.066*	
C4	-0.0654 (2)	0.10088 (11)	0.32049 (18)	0.0491 (5)	
C5	-0.0304 (3)	0.17839 (12)	0.3476 (2)	0.0563 (5)	
Н5	-0.1155	0.2165	0.3210	0.068*	

F(000) = 544

 $\theta = 3.6 - 29.0^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 293 K

Block, red

 $R_{\rm int} = 0.035$

 $k = -21 \rightarrow 21$

 $l = -12 \rightarrow 12$

 $D_{\rm x} = 1.343 {\rm Mg m^{-3}}$

 $0.3 \times 0.2 \times 0.1 \text{ mm}$

11435 measured reflections

2511 independent reflections

 $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$ $h = -9 \rightarrow 9$

1692 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 4747 reflections

C6	0.1338 (3)	0.19793 (11)	0.4152 (2)	0.0547 (5)
H6	0.1593	0.2501	0.4344	0.066*
C7	0.4411 (3)	0.16668 (12)	0.5260 (2)	0.0636 (6)
H7A	0.5284	0.1668	0.4619	0.076*
H7B	0.4319	0.2195	0.5592	0.076*
N8	0.5039 (2)	0.11659 (10)	0.63639 (18)	0.0597 (5)
C9	0.6719 (2)	0.13024 (10)	0.71064 (19)	0.0464 (5)
C10	0.7998 (2)	0.17809 (11)	0.66267 (19)	0.0511 (5)
H10	0.7719	0.2042	0.5814	0.061*
C11	0.9671 (3)	0.18720 (11)	0.73402 (19)	0.0531 (5)
H11	1.0507	0.2194	0.7000	0.064*
C12	1.0133 (2)	0.14945 (10)	0.85483 (19)	0.0485 (5)
C13	0.8871 (3)	0.10262 (10)	0.90428 (19)	0.0510 (5)
H13	0.9152	0.0772	0.9863	0.061*
C14	0.7188 (2)	0.09308 (10)	0.83278 (19)	0.0505 (5)
H14	0.6354	0.0610	0.8674	0.061*
O15	1.18447 (17)	0.16348 (8)	0.91664 (14)	0.0652 (4)
C16	1.2455 (3)	0.12020 (13)	1.0336 (2)	0.0724 (7)
H16A	1.1723	0.1321	1.1034	0.109*
H16B	1.3681	0.1337	1.0633	0.109*
H16C	1.2375	0.0655	1.0135	0.109*
<u>H8</u>	0.421 (3)	0.0966 (13)	0.683 (2)	0.072 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0735 (11)	0.0908 (13)	0.1143 (15)	-0.0263 (10)	-0.0125 (10)	-0.0124 (11)
O2	0.0739 (12)	0.1245 (17)	0.199 (3)	0.0363 (13)	-0.0627 (14)	-0.0507 (16)
N1	0.0484 (10)	0.0889 (14)	0.0686 (12)	0.0022 (11)	-0.0032 (9)	-0.0163 (11)
C1	0.0495 (11)	0.0541 (11)	0.0451 (11)	-0.0046 (9)	0.0008 (8)	0.0047 (8)
C2	0.0502 (11)	0.0527 (11)	0.0680 (14)	0.0079 (9)	-0.0063 (9)	0.0017 (10)
C3	0.0534 (11)	0.0500 (11)	0.0604 (13)	-0.0011 (9)	0.0020 (9)	-0.0047 (9)
C4	0.0407 (10)	0.0625 (12)	0.0435 (11)	0.0003 (9)	0.0030 (8)	-0.0043 (9)
C5	0.0539 (12)	0.0570 (12)	0.0570 (12)	0.0117 (10)	0.0021 (9)	0.0001 (10)
C6	0.0603 (12)	0.0471 (11)	0.0557 (12)	-0.0016 (9)	0.0029 (9)	0.0009 (9)
C7	0.0614 (13)	0.0599 (12)	0.0648 (14)	-0.0114 (10)	-0.0119 (10)	0.0118 (10)
N8	0.0488 (10)	0.0669 (11)	0.0601 (11)	-0.0124 (9)	-0.0074 (8)	0.0165 (9)
C9	0.0459 (10)	0.0408 (9)	0.0505 (11)	-0.0027 (8)	-0.0026 (8)	0.0000 (8)
C10	0.0549 (11)	0.0525 (11)	0.0442 (11)	-0.0055 (9)	-0.0011 (9)	0.0067 (9)
C11	0.0520 (11)	0.0520 (11)	0.0545 (12)	-0.0124 (9)	0.0033 (9)	0.0048 (9)
C12	0.0470 (10)	0.0426 (10)	0.0533 (12)	-0.0028 (8)	-0.0044 (9)	-0.0038 (8)
C13	0.0582 (12)	0.0454 (10)	0.0473 (11)	-0.0010 (9)	-0.0020 (9)	0.0067 (8)
C14	0.0503 (11)	0.0457 (10)	0.0544 (12)	-0.0075 (9)	0.0017 (9)	0.0081 (9)
O15	0.0553 (8)	0.0660 (9)	0.0688 (10)	-0.0128 (7)	-0.0150 (7)	0.0086 (7)
C16	0.0653 (13)	0.0741 (14)	0.0711 (15)	-0.0024 (12)	-0.0196 (11)	0.0062 (12)

Geometric parameters (Å, °)

01—N1	1.214 (2)	N8—C9	1.404 (2)
O2—N1	1.206 (2)	N8—H8	0.89 (2)

N1—C4	1.462 (2)	C9—C14	1.386 (2)
C1—C6	1.379 (3)	C9—C10	1.390 (3)
C1—C2	1.389 (3)	C10—C11	1.377 (2)
C1—C7	1.502 (2)	C10—H10	0.9300
C2—C3	1.380 (3)	C11—C12	1.378 (3)
С2—Н2	0.9300	C11—H11	0.9300
C3—C4	1.373 (3)	C12—C13	1.378 (3)
С3—Н3	0.9300	C12—O15	1.378 (2)
C4—C5	1.376 (3)	C13—C14	1.384 (2)
C5—C6	1.373 (3)	С13—Н13	0.9300
С5—Н5	0.9300	C14—H14	0.9300
С6—Н6	0.9300	O15—C16	1.415 (2)
C7—N8	1.433 (2)	C16—H16A	0.9600
С7—Н7А	0.9700	С16—Н16В	0.9600
C7—H7B	0.9700	C16—H16C	0.9600
0, 11,2			012000
02—N1—01	122.31 (19)	C9—N8—H8	115.1 (14)
02 N1 $C4$	118 5 (2)	C7—N8—H8	116.8 (14)
01— $N1$ — $C4$	119.17 (19)	C14-C9-C10	117 59 (16)
C6-C1-C2	118 38 (17)	C14-C9-N8	120 47 (16)
C6-C1-C7	119 78 (18)	C10-C9-N8	121.88 (17)
C_{2} C_{1} C_{7}	121 81 (17)	$C_{11} - C_{10} - C_{9}$	121.00(17) 120.77(17)
C_{3} C_{2} C_{1}	121.01(17) 121.14(18)	$C_{11} - C_{10} - H_{10}$	119.6
C_{3} C_{2} H_{2}	110 4	C_{10} H_{10}	119.6
$C_1 - C_2 - H_2$	119.4	C_{10} C_{11} C_{12}	121 28 (17)
$C_1 = C_2 = H_2$	119.4	$C_{10} = C_{11} = C_{12}$	121.20 (17)
$C_4 = C_3 = C_2$	120.0	C_{10} C_{11} H_{11}	119.4
$C_{4} = C_{3} = H_{3}$	120.9	C_{12} C_{12} C_{12} C_{15}	119.4 125.72(17)
$C_2 = C_3 = C_4 = C_5$	120.9	$C_{13} = C_{12} = C_{13}$	123.72(17)
$C_3 = C_4 = C_3$	122.30(17) 118.94(19)	C15 - C12 - C11	116.35(10) 115.75(16)
$C_5 = C_4 = N_1$	110.04 (10)	$C_{12} = C_{12} = C_{14}$	113.73(10) 120.42(17)
C_{3}	118.80(18) 119.15(19)	C12 - C13 - C14	120.43 (17)
C_{0}	118.15 (18)	C12—C13—H13	119.8
C6—C5—H5	120.9	C14—C13—H13	119.8
C4—C5—H5	120.9	C13 - C14 - C9	121.41 (17)
C5-C6-C1	121.73 (18)	C13—C14—H14	119.3
С5—С6—Н6	119.1	C9—C14—H14	119.3
С1—С6—Н6	119.1	C12—O15—C16	118.13 (15)
N8—C7—C1	112.89 (16)	O15—C16—H16A	109.5
N8—C7—H7A	109.0	O15—C16—H16B	109.5
С1—С7—Н7А	109.0	H16A—C16—H16B	109.5
N8—C7—H7B	109.0	O15—C16—H16C	109.5
С1—С7—Н7В	109.0	H16A—C16—H16C	109.5
H7A—C7—H7B	107.8	H16B—C16—H16C	109.5
C9—N8—C7	119.94 (16)		
C6—C1—C2—C3	-0.5 (3)	C1—C7—N8—C9	178.22 (17)
C7—C1—C2—C3	-178.52 (19)	C7—N8—C9—C14	166.83 (19)
C1—C2—C3—C4	-0.1 (3)	C7—N8—C9—C10	-16.1 (3)
C2—C3—C4—C5	0.8 (3)	C14—C9—C10—C11	0.7 (3)

$C_2 = C_2 = C_4 = N_1$	170 66 (19)	N8 C0 C10 C11	176 45 (19)
$C_2 - C_3 - C_4 - N_1$	-1/9.00(18)	No-C9-C10-C11	-1/0.43(18)
O2—N1—C4—C3	-179.1 (2)	C9—C10—C11—C12	-0.1 (3)
O1—N1—C4—C3	-1.3 (3)	C10-C11-C12-C13	-0.7 (3)
O2—N1—C4—C5	0.5 (3)	C10-C11-C12-O15	-179.83 (17)
O1—N1—C4—C5	178.3 (2)	O15—C12—C13—C14	179.92 (17)
C3—C4—C5—C6	-0.8 (3)	C11—C12—C13—C14	0.9 (3)
N1-C4-C5-C6	179.63 (17)	C12—C13—C14—C9	-0.3 (3)
C4—C5—C6—C1	0.1 (3)	C10-C9-C14-C13	-0.5 (3)
C2-C1-C6-C5	0.5 (3)	N8—C9—C14—C13	176.68 (17)
C7—C1—C6—C5	178.53 (18)	C13-C12-O15-C16	7.4 (3)
C6—C1—C7—N8	138.5 (2)	C11—C12—O15—C16	-173.61 (18)
C2—C1—C7—N8	-43.5 (3)		

Hydrogen-bond geometry (Å, °)

 $Cg1 \ and \ Cg2 \ are \ the \ centroids \ of \ the \ nitrophenyl \ (C1-C6) \ and \ methoxyphenyl \ (C9-C14) \ rings, \ respectively.$

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N8—H8····O1 ⁱ	0.89 (2)	2.42 (3)	3.231 (2)	152.8 (19)
C16—H16B····O2 ⁱⁱ	0.96	2.47	3.372 (3)	155
C3—H3··· <i>Cg</i> 2 ⁱⁱⁱ	0.93	2.77	3.560 (2)	143
C6—H6···Cg2 ^{iv}	0.93	2.87	3.524 (2)	129
C16—H16 A ··· $Cg1^{v}$	0.96	2.96	3.830 (2)	151

Symmetry codes: (i) -x, -y, -z+1; (ii) x+2, y, z+1; (iii) -x, -y+1, -z; (iv) x-1/2, -y+1/2, z-1/2; (v) x+1, y, z+1.