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Abstract 

Background:  Knowledges graphs (KGs) serve as a convenient framework for structuring knowledge. A number of 
computational methods have been developed to generate KGs from biomedical literature and use them for down-
stream tasks such as link prediction and question answering. However, there is a lack of computational tools or web 
frameworks to support the exploration and visualization of the KG themselves, which would facilitate interactive 
knowledge discovery and formulation of novel biological hypotheses.

Method:  We developed a web framework for Knowledge Graph Exploration and Visualization (KGEV), to construct 
and visualize KGs in five stages: triple extraction, triple filtration, metadata preparation, knowledge integration, and 
graph database preparation. The application has convenient user interface tools, such as node and edge search and 
filtering, data source filtering, neighborhood retrieval, and shortest path calculation, that work by querying a backend 
graph database. Unlike other KGs, our framework allows fast retrieval of relevant texts supporting the relationships in 
the KG, thus allowing human reviewers to judge the reliability of the knowledge extracted.

Results:  We demonstrated a case study of using the KGEV framework to perform research on COVID-19. The COVID-
19 pandemic resulted in an explosion of relevant literature, making it challenging to make full use of the vast and het-
erogenous sources of information. We generated a COVID-19 KG with heterogenous information, including literature 
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Background
The impact of emerging diseases on public health has 
mandated an “all hands-on deck” scientific response [1–
4]. Machine learning and artificial Intelligence (AI) offer 
a means to rapidly generate and update knowledge from 
the exploding amounts of data from various scientific 
domains, including scientific literature, social networks, 
and high-throughput screening experiments. AI tech-
nologies, such as natural language processing (NLP), can 
help detect, predict, and facilitate a better understanding 
on human diseases [5–7]. However, one major limita-
tion of existing approaches is the lack of open-source and 
freely accessible tools for use by the broader biomedi-
cal research community. They may also suffer from the 
inclusion of non-informative generic information, due to 
their accumulation of noisy terms in the absence of rigor-
ous filtering, if focusing on specific scientific domains. In 
short, current literature mining tools for biomedical text 
curation are far from optimal; improved and open-source 
tools to exploit the rapidly growing, unstructured scien-
tific literature to study complex clinical characteristics of 
emerging diseases are urgently needed [8–10].

To improve the knowledge discovery on emerging dis-
eases, various research groups have started to leverage 
knowledge graphs (KGs), which help users better under-
stand the relationships among biomedical concept enti-
ties (e.g. molecules, organs, genes, drugs, and diseases) 
from scientific literature and available databases. To begin 
with, a KG consists of various entities joined by relation-
ships. Entities, regarded as nodes, can represent objects, 
individuals, or abstract ideas, whereas relations, regarded 
as edges, represent the nature of connection between 
nodes. Beyond a KG’s utility in simplifying information 
into entities and relations, KG embedding, visualization, 
and reasoning can be used for further knowledge acquisi-
tion [11–14]. When applied to biomedical domains, a KG 
can contain deep-curated connections—from molecu-
lar mechanisms to phenotypic manifestations of human 
diseases—to support hypothesis generation, hypothesis 
validation, and knowledge discovery in research studies. 

For example, curated relationships may include simple 
co-occurrence relationships such as known drug-disease 
associations, disease-disease co-morbidity, and protein–
protein interactions; they may also include more complex 
and descriptive relationships, such as ‘TREATS’, ‘INHIB-
ITS’, and ‘CAUSES’, using semantic networks.

Beyond literature, biomedical researchers also have 
access to annotated relationships from various biomedi-
cal knowledgebases and ontologies, such as protein–
protein interactions from STRING [15] and drug-target 
relationships from DrugCentral [16], to create more com-
prehensive KGs [17]. Downstream of their creation, KGs 
have been used to predict re-purposable drugs for a dis-
ease based on KG completion [18], generate drug repur-
posing reports [19], as well as facilitate the retrieval of 
scientific articles to answer questions based on the KG 
[20]. With relevant research continuously evolving, the 
KG framework will serve an effective tool to organize 
overwhelming scientific findings in a structured format 
that can advance scientific research based on currently 
available knowledge.

Taking the global pandemic of coronavirus disease 
COVID-19 as an example, the academic community has 
raced to publish scientific findings about the disease [21]. 
Because of the literature explosion, researchers are eager 
to be informed with the most relevant, focused, and con-
clusive findings from the massive amounts of COVID-
19 literature generated within a short period of time 
[22–24]. While many research efforts have been focused 
on improving the construction of KGs about COVID-
19 [17, 25, 26], there is less emphasis on the exploration 
and visualization of KGs for knowledge discovery, which 
is the case for COVID-19 as well [27]. For example, few 
COVID-19  KG papers have developed publicly acces-
sible tools that allow direct and interactive exploration 
over the KG, as opposed to running queries over it and 
returning results. Furthermore, few open-source tools 
have been developed specifically for the exploration and 
visualization of continuously updated KGs, despite the 

information from the CORD-19 dataset, as well as other existing knowledge from eight data sources. We showed 
the utility of KGEV in three intuitive case studies to explore and query knowledge on COVID-19. A demo of this web 
application can be accessed at http://​covid​19nlp.​wglab.​org. Finally, we also demonstrated a turn-key adaption of the 
KGEV framework to study clinical phenotypic presentation of human diseases by Human Phenotype Ontology (HPO), 
illustrating the versatility of the framework.

Conclusion:  In an era of literature explosion, the KGEV framework can be applied to many emerging diseases to sup-
port structured navigation of the vast amount of newly published biomedical literature and other existing biological 
knowledge in various databases. It can be also used as a general-purpose tool to explore and query gene-phenotype-
disease-drug relationships interactively.
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presence of many web services that serve static KGs gen-
erated by various means.

In this paper, we outline an open-source framework 
called Knowledge Graph Exploration and Visualization 
(KGEV), for interacting with KGs as a web application 
using React as the frontend, Flask as the backend, and 
Neo4j as the graph database. The framework facilitates 
the composition of KG data through the integration of 
relationships from literature with relationships from 
the various ontologies and databases, the formatting of 
the KG data for Neo4j import, and the deployment of 
the web application on a user’s own web server (or even 
a user’s own laptop). The web application itself allows 
direct exploration of the COVID-19 KG through an intui-
tive user search interface, as well as tools such as shortest 
path detection, fuzzy search, and various node and edge 
filters. Moreover, in addition to visualizing the COVID-
19  KG, literature evidence supporting relationships in 
the KG can be viewed and searched as well, making links 
in the KG more interpretable. Overall, our proposed 
framework supports KG visualization, data exploration, 
and hypothesis generation in a user-friendly manner. 
Although we demonstrate the powerful usage of our tool 
using a COVID-19 KG as a case study, the framework can 
be, and was intentionally designed to be, easily extensible 
to KGs for other emerging diseases or even general-pur-
pose KGs. To support this, we demonstrate a turn-key 
adaption of the KGEV framework to study clinical phe-
notypic presentations of human diseases, illustrating the 
versatility of the framework.

Methods
Literature data sources and processing procedure
The COVID-19 Open Research Dataset (CORD-19) [28] 
version 82 (last updated 2021–03-08), which is available 
publicly at https://​www.​kaggle.​com/​allen-​insti​tute-​for-​
ai/​CORD-​19-​resea​rch-​chall​enge, was used as the source 
from which information was extracted for the first stage 
of KGEV. Only text from abstracts were used. SemRep 
[29], a natural language processing tool used to mine tri-
ples (head, relationship, tail) from biomedical texts, was 
applied on the abstracts from CORD-19. SemRep ver-
sion 1.8 was used with default settings. SemRep was also 
used to normalize entities to concepts from the UMLS 
Metathesaurus using MetaMap 2018AB [30]. Only tri-
ples where both the head and tail entity had a confidence 
score of at least 800, as determined by SemRep, and 
appeared more than once were used. All SemRep rela-
tionship types were used with “INFER” and “SPEC” spec-
ifications removed as these relationship types are inferred 
relationships based on the other generated SemRep pre-
dictions. All SemRep semantic types were used and they 
were mapped to their respective semantic groups.

Since SemRep was not trained to recognize COVID-
19-/SARS-CoV-2-specific terminology, previously 
curated dictionaries [31] representing the concepts of 
COVID-19 and SARS-CoV-2 were used to standard-
ize these terminologies. Specifically, these dictionaries 
were used to extract COVID-19-/SARS-CoV-2-related 
terminology using a string-matching approach on origi-
nal texts detected by SemRep. Then, these terms were 
manually reviewed and mapped onto a small number of 
normalized COVID-19-/SARS-CoV-2-related subjects, 
which are specified in Additional file 1: Table S1.

Additional data sources from public databases
In addition to CORD-19, several other data sources were 
integrated into the KG (Additional file  2: Fig. S1). Dis-
ease-gene relationships were obtained from DisGeNET 
[32], drug-gene relationships were obtained from DGIdb 
[33], gene–gene/protein–protein relationships were 
obtained from STRING [15], gene/protein-gene ontology 
[34] (GO) relationships were obtained from Uniprot [35], 
and disease-phenotype and disease-gene relationships 
were obtained from the Human Phenotype Ontology [36] 
(HPO).

To integrate the relationships from these public data 
sources into the KG generated from CORD-19 triples, 
only relationships where both entities already exist in the 
KG were considered. Therefore, incorporating additional 
data sources is essentially done by adding additional 
edges between nodes in the KG. In order to perform this 
integration, entities in a data source need to be mapped 
to nodes in the KG. This node mapping is done by first 
mapping data source entities to their UMLS Concept 
Unique Identifier (CUI), using files from HGNC [37], 
Disease Ontology [38], and UMLS [39], and then map-
ping this CUI to the CUI of the KG nodes, which were 
outputted by SemRep in the CORD-19 relationship 
extraction step. The KGEV pipeline provides the flexibil-
ity to integrate on other node/entity attributes besides 
CUI.

KGEV pipeline
The KGEV pipeline involves five stages: triple extraction, 
triple filtration, metadata preparation, knowledge inte-
gration, and graph database preparation (Fig. 1). Briefly, 
the first stage involves extracting triples from biomedical 
literature, and the second stage involves filtering these 
triples and constructing the initial knowledge graph. The 
third stage involves extracting metadata for the triples. 
The fourth stage involves integrating triples from other 
data sources. The fifth and final stage is formatting the 
knowledge graph for import into the web server’s data-
base. These stages are described in more detail, and how 
they work for the COVID-19 use case, in the Results 

https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
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section, in the “COVID-19 as a use case for knowledge 
integration and KG development” subsection.

Development of web application
Our web application was built using three modern 
frameworks, which are React, Flask, and Neo4j. The 

frontend of our web application uses the React frame-
work, an open-source frontend JavaScript library for 
building user interfaces that is maintained by Facebook. 
In order to display the graph, we used cytoscape-js along 
with its React component, react-cytoscapejs. cytoscape-
js is an open-source graph/network JavaScript library for 

Fig. 1  KGEV framework stages. Stage 1: A literature mining tool is used to extract relationships from texts such as biomedical literature or 
clinical notes to produce triples (a head and tail entity linked by a relationship). In our COVID-19 case study, we used SemRep to extract triples 
from CORD-19 abstracts, which contains literature related to COVID-19. Stage 2: The extracted triples are filtered to keep only high-quality 
triples. In our case, we filtered by the SemRep confidence score and the number of times a triple appears in the data. We also normalized 
COVID-19-/SARS-CoV-2-related entities to a small number of topics. The triples from this step are used to construct the initial knowledge graph. 
Stage 3: Metadata is extracted from the texts that the triples originated from. This metadata, which includes information on the immediate text that 
supports the extracted triple and document-level information, is stored in a database. Stage 4: Data from other sources are integrated into the KG to 
fill in the gaps of the triples mined from the texts. In our COVID-19 case study we used eight additional data sources (see Methods for details). Stage 
5: The integrated triples are then formatted and stored in the database along with the metadata information. In our case, we used Neo4j as the 
database because its graphical representation of the data naturally fits the KG data structure
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network visualization and analysis. The backend of our 
web application was developed using Flask, a web frame-
work written in Python. It connects to the Neo4j graph 
database, which stores the KG data, using the py2neo 
Python package, a client library for working with Neo4j 
through a Python interface. We use Neo4j’s Cypher query 
language to run queries over the Neo4j data. Full-text 
indexing of nodes in the Neo4j database was used for effi-
cient searching. Neo4j-admin was used to import the tri-
ples data, text data, and article metadata into the Neo4j 
database. The web application is deployed as two Docker 
containers, one for the backend application and one for 
the frontend application.

Results
Overview of the Knowledge Graph Exploration 
and Visualization (KGEV) framework
In our framework for knowledge graph exploration and 
visualization (KGEV), the knowledge graph (KG) can be 
developed in five stages: triple extraction, triple filtration, 
metadata preparation, knowledge integration, and graph 
database preparation (Fig.  1). The first stage involves 
triple extraction from biomedical texts (such as pub-
lished literature on a specific disease, or all clinical notes 
on patients with a specific disease) using a natural lan-
guage processing tool. The second stage involves filtering 
the triples to obtain high-quality triples. The third stage 
involves extracting the high-quality triples’ metadata and 
formatting the data for import into the web application 
database. Depending on the number of texts used in the 
first stage, the resulting KG may be sparse (i.e. some enti-
ties may be mentioned only once, and some true edges 
between KG nodes may be missing). Therefore, the 
fourth stage involves integrations of relationships from 
other data sources, such as public databases, that have 
relationships between different entities in the KG. The 
fifth and final stage involves formatting the KG nodes and 
edges for import into the graph database to be used in the 
web application. We selected Neo4j as the graph database 
engine in our framework, because it is a transactional 
database with native graph storage and processing, and 
it is available in an open-source “community edition” in 
addition to the commercial edition.

Importantly, the pipeline and source code were 
designed for adaptive use. For example, for the first 
step, any NLP software tool that extracts relationships 
from text could be used, and the rest of the KG devel-
opment pipeline would still function. Additionally, the 
data sources for the fourth stage of the pipeline could be 
expanded as new data or knowledgebases becomes avail-
able or re-integrated as the data quality increases. Since 
the web application was designed so the KG content only 
depends on the graph database, as long as the data in the 

database are in the correct schema (Fig. 2), different KGs 
can be swapped in and out, with a simple change of the 
configuration to use a different Neo4j graph database. 
The adaptivity and scalability of the pipeline means that 
it can be applied to many different biomedical domains. 
In the sections below, we used COVID-19 as a case study 
to illustrate how the framework can help explore exist-
ing knowledge from literature and public databases, 
because COVID-19 is an emerging disease with a strong 
practical need for users to explore the vast amount of 
knowledge published within a short period of time. Fur-
thermore, we also demonstrated a turn-key adaption of 
the KGEV framework to study clinical phenotypic pres-
entation of human diseases, illustrating the versatility of 
the framework.

COVID‑19 as a use case for knowledge integration and KG 
development
As a case study, here we describe how we used the five-
stage procedure to study COVID-19 using the KGEV 
framework (Fig. 1). Rather than searching for papers rel-
evant to COVID-19 ourselves from PubMed or bioRxiv/
medRxiv preprint servers, we decided to use the COVID-
19 Open Research Dataset (CORD-19) instead [28]. As 
described in its website (https://​www.​kaggle.​com/​allen-​
insti​tute-​for-​ai/​CORD-​19-​resea​rch-​chall​enge), CORD-19 
is a continuously updated resource of scholarly articles 
about COVID-19, SARS-CoV-2, and related corona-
viruses. This freely available dataset is provided to the 
global research community to apply recent advances in 
NLP and other AI techniques to generate new insights in 
support of the ongoing fight against this infectious dis-
ease. In the current study, we used SemRep [29], a natural 
language processing tool used to mine triples, to pro-
cess the CORD-19 data and generate triples in the first 
stage. We ran SemRep on all abstracts from CORD-19 
version 82 (last updated 2021–03-08), and in total the 
dataset contained 309,175 unique abstracts, including 
170,722 abstracts with PMC IDs, and 233,312 abstracts 
with PubMed IDs. SemRep initially discovered a total of 
1,123,654 relationships, which consist of 50,185 unique 
entities normalized to Unified Medical Language Sys-
tem (UMLS), 31 unique relationship types, and 373,327 
unique triples.

In the second stage, we performed filtration of the tri-
ples to reduce the number of triples in subsequent steps. 
After keeping only high-confidence relationships and 
entities, the number of triples was reduced to 590,923, 
including 96,108 unique triples, 21,694 unique entities, 
and 31 unique relationship types. The triples were used 
to construct a KG, where the nodes are the head and tail 
entities from the triples and the edges are the relation-
ships between them. A total of 273 unique COVID-19-/

https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
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SARS-CoV-2-related entities were identified among the 
filtered SemRep triples, including 51 entities that were 
normalized to “COVID-19” and 21 entities that were nor-
malized to “SARS-CoV-2” (Additional file 1: Table S1).

In the third stage, metadata information was collected 
from the CORD-19 dataset. For each triple extracted 
from CORD-19, the following related metadata fields 
were collected: the supporting text/sentence from which 
the triple was directly extracted from, the CORD-19 ID 
of the article the triple came from, and the authors, title, 
journal, and publish date of the article. Additionally, 
we also downloaded the latest information on journal 
impact factors from SCI Journal Citation Reports, and 
integrated them as part of the metadata, because such 
information may sometimes be helpful to judge the reli-
ability of knowledge presented in biomedical texts. These 
data were imported into the web application database 
such that unique supporting texts were stored separately 
from triples, so they would not need to be loaded into 
memory unless a specific triple was queried. Moreover, 
articles were also stored separately with links from sup-
porting texts to articles, since multiple texts can come 
from the same article (Fig. 2). We emphasize that this is 
a major difference between our KGEV framework and 
other KG on COVID-19: for each triple relationship, we 

have the supporting text/sentence from which the triple 
was directly extracted from. Therefore, a human reviewer 
can read the supporting texts and decide whether the 
relationships are trustworthy based on their contexts in 
the biomedical literature. In other KGs on COVID-19, 
although a confidence score can be assigned to a specific 
relationship, users typically do not have the opportunity 
to review a paragraph of scientific text to judge whether 
the relationship is reliable.

In the fourth stage, integration of other data sources 
was performed. Although the CORD-19 dataset contains 
a very large number of abstracts that summarize recent 
findings, the KG created from solely CORD-19 abstract 
triples can be relatively sparse. While COVID-19 related 
entities are likely to be mentioned at least once in CORD-
19, and therefore appear as nodes in the KG, some true 
edges between KG nodes may be missing because of 
the limited size of the dataset. Therefore, we integrated 
knowledge of entity relationships from five other data 
sources: the Drug Gene Interaction Database [33], Dis-
GeNET [32], Human Phenotype Ontology (HPO) [36], 
STRING protein–protein interaction database [15], and 
Uniprot [35]/Gene Ontology (GO) [34], in addition to 
using HGNC [37], Disease Ontology [38], and UMLS 
[39] for entity standardization. These relationships were 

Fig. 2  Database schema for KGEV. The database has three types of entities: ITEMs, TEXTs, and DOCUMENTs. The properties stored for each item type 
are shown in the green panels. The “IN DOCUMENT” relationship connects a TEXT item (e.g. article sentence) to its corresponding DOCUMENT (e.g. 
article). ITEMs are connected through SemRep relationships (TREATS, CAUSES, INTERACTS_WITH, etc.) in our COVID-19 example. Given a SemRep 
triple (ITEM—> SEMREP RELATIONSHIP—> ITEM), corresponding/supporting texts can be retrieved by joining the Source Text ID property of the 
triple’s edge to the TEXT entity with that ID
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integrated by matching on the nodes obtained from 
CORD-19 triples and adding additional triples/relation-
ships to the existing nodes, where the relationship type 
is disease-gene, drug-gene, etc. In total we integrated 
142,124 new triples in addition to the 96,108 unique 
CORD-19 triples and the density of the KG increased 
2.48 times from 0.0408 to 0.101. Therefore, the final KG 
includes information from recently published literature 
(CORD-19), as well as decades of accumulated biomedi-
cal knowledge on genes, proteins, diseases, and pheno-
types. All these relationships are saved into a format that 
can be directly imported into Neo4j, so that we can visu-
alize the relationships and perform more complex graph 
queries using the graph query engines.

The fifth and final stage involved formatting for the KG 
nodes and edges for import into the Neo4j graph data-
base. All triples data, from CORD-19 and other data-
bases, were formatted into a common data format. This 
required creating a file listing the nodes in the KG and 

a file listing the edges in the KG, where each edge repre-
sents a specific instance of a triple in CORD-19 or other 
data source, along with the ID of the supporting text if 
the triple came from CORD-19, in order to retrieve the 
supporting texts if a unique triple is queried (Fig.  2). 
In total, there are 588,531 nodes and 1,122,436 edges, 
including text and article nodes and edges, in the final 
KG to be imported into Neo4j.

Demonstration of web application user interface 
and functionality
A web application was designed to serve as the frontend 
for visualizing and querying the KG (Fig.  3), with fea-
tures to make the user experience as fluid as possible. To 
make viewing information easier, both a graphical view 
displaying nodes and edges as well as a list view showing 
relationships were added. Additionally, interacting with 
edges and relationships allows the user to explore articles 
that support that relationship. To allow the user to filter 

Fig. 3  Web application user interface. (1) The left panel is a graph view that shows the nodes and edges returned from a search. Nodes and 
edges are labeled and color-coded for an effective user experience. A node can be clicked on to return more information on the entity, such as its 
UMLS Concept Unique Identifier (CUI), semantic group(s), and synonyms. Clicking an edge will bring up information on the triple, including the 
supporting texts, in the panel on the right, which the image demonstrates. (2) In addition to viewing the search results as a graph, one can use the 
list view to view the same nodes and edges in a table, which can be sorted. (3) The right panel will show information on the triple that was clicked 
on. The head, relationship, and tail of the triple are color-coded in the text for easy interpretation. Metadata information of the text can be seen by 
clicking “Paper details”. Hovering over highlighted text shows more information about the entity. (4) The right panel also has a tab to do the actual 
search. One can select the type of search, the node to search for, whether or not to use fuzzy search, what node filters to use, as well as (5) what 
edge filters to use, the edge direction, what data sources to use, and the confidence level (i.e. edge weight) required for each data source
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the data, a search feature was implemented with filters 
based on node labels, edge labels, node types, evidence 
sources, and relationship confidence for each source (i.e. 
edge weight). These features allow the user to tune the 
KG based on the entities and relationships of interest, 
as well as desired data/evidence sources, while setting 
a threshold to their strength of evidence. While the KG 
web application can be used for a breadth of purposes, 
in this section we will highlight three different types of 
searches and their use cases below. These searches and 
their results can be replicated by following the tutorial 
section of the KGEV website (http://​covid​19nlp.​wglab.​
org/​tutor​ial).

The first use case is a direct search, that is, finding evi-
dence that directly mentions a relationship between two 
entities. In this case, the user wants to retrieve texts men-
tioning a relationship between two known entities. For 
example, a user may want to find literature on the use of 
hydroxychloroquine to treat COVID-19. They can use the 
web application user interface to query the triple hydrox-
ychloroquine—> TREATS—> COVID-19 (Fig.  4). Upon 
clicking on the edge between the two nodes, the user 

interface shows texts where this relationship exists. The 
idea is that the supporting texts provide a brief summary 
of the relationship, and the user can be redirected to the 
full articles through the metadata pop-up. In this exam-
ple, while some of the supporting texts say that repurpos-
ing hydroxychloroquine to treat COVID-19 is appealing, 
there are texts that say there is no evidence to support its 
use and that it is controversial and poorly understood. 
The texts serve only to summarize where the triple was 
mentioned and retrieve relevant articles but may not pro-
vide the complete picture; a user can click “Paper details” 
and be redirected to read the full article in detail.

While it is useful to obtain texts and articles mention-
ing relationships of interest, the user may only have an 
idea of what to search for but not the exact triple. The 
second use case is a neighborhood search, which would 
be helpful in this case. Using neighborhood search, a user 
can obtain the neighborhood of a node, that is, all the 
nodes connected to the search node by an edge. Addi-
tionally, the neighborhood search can be run at a depth 
of two to include neighbors of neighbors. An example use 
case is if a user wants to explore possible treatments for 

Fig. 4  Direct search example. In this example, one may want to find articles supporting, disproving, or mentioning that hydroxychloroquine can 
be used to treat COVID-19. The panel on the right shows texts mentioning this relationship, and colors are used to make it obvious where the triple 
appears in the text, so it can be quickly validated by the user. By clicking on “Paper details” for any text, metadata information, including the article 
ID (CORD-19 ID), title, authors, publish date, and journal, will be shown as the figure demonstrates. The panel on the left shows the triple as a direct 
relationship between the two entities, and the head, relationship, and tail are all labeled

http://covid19nlp.wglab.org/tutorial
http://covid19nlp.wglab.org/tutorial
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COVID-19 generally rather than a specific drug. Using 
neighborhood search, the user can search for drugs that 
interact with genes that interact with ACE2, since SARS-
CoV-2 uses ACE2 for host cell entry [40]. Various fil-
ters in the user interface can be used to accomplish this 
search. This example search returns some drugs like sit-
agliptin, vildagliptin, and alogliptin that are DPP4 inhibi-
tors (Fig. 5). While DPP4 inhibitors have been tested as a 
treatment for COVID-19, the results are still inconclusive 
[41]. From CORD-19 we also extracted the relationship 
that flavonoids inhibit DPP4 as well, and the support-
ing text seems to suggest that it may be used to reduce 
the SARS-CoV-2 inflammatory response. This example 
shows how KGEV, with its integration of gene–gene rela-
tionships, gene-drug relationships and relationships from 
literature, can be used for knowledge exploration and 
hypothesis generation.

In addition to direct paths and neighborhood search, 
a user may be interested in exploring the relationship 
between two entities in more detail. The third and last 
type of search, shortest paths search, would be useful in 
this situation. In this case, the user is interested in under-
standing what entities mediate the relationship between 
two entities of interest. An example use case is to use the 
shortest paths search through the web application user 

interface to find the pathways that are shared by obesity 
and COVID-19 (Fig. 6). The shortest path search function 
does not necessarily need to return exclusively the short-
est path; it is also possible to return paths within a given 
length, for example, one to three edges long. An option 
for excluding direct paths is also available. Additionally, 
the nodes in the middle of the path can be filtered to look 
for certain types of mediators between the two entities of 
interest; in this example we only allow genes within the 
shortest path. The shortest paths result for this exam-
ple shows that pathways such as immune response may 
mediate the relationships between obesity and COVID-
19. One could hypothesize that obesity negatively affects 
the innate immune response, which predisposes COVID-
19, and there is some research in this area [42]. Again, 
we obtain useful information and formulate new hypoth-
esis through the integration of gene-phenotype, disease-
gene, and gene–gene relationships from databases and 
literature.

Turn‑key adaption of the KGEV framework to study 
phenotypic presentations of human diseases
Although we used COVID-19 as a use case above, the 
design of the KGEV web framework is flexible, so that it 
can be immediately repurposed to study other biomedical 

Fig. 5  Neighborhood search example. A neighborhood search with a depth of two was performed using ACE2 as the start node. The neighbors 
of ACE2 were filtered so they only represent genes that have a gene–gene relationship in STRING with an interaction score >  = 700, representing 
high confidence interactions. The second layer of edges represent drug-gene interactions from DGIdb (interaction score >  = 2) and CORD-19 (at 
least two sources of evidence). The right panel shows support texts for flavonoids inhibiting DPP4, a gene that interacts with ACE2. The graph in the 
figure represents a subset of the results; The full results can be viewed by following the search settings in the tutorial section of the KGEV website 
(http://​covid​19nlp.​wglab.​org/​tutor​ial)

http://covid19nlp.wglab.org/tutorial
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domains. To illustrate this, we took the annotation data-
base from the Human Phenotype Ontology (HPO), which 
links genes to clinical phenotypes and disease names. We 
then created a new graph database in Neo4j and re-con-
nected the web application to this new graph database via 
changing a simple parameter that indicates the database 
URL and port. As we showed in Fig. 7, the web applica-
tion can immediately display entity relationships in HPO, 
and users can immediately start searching biomedical 
questions such as “what are the diseases that have at least 
two of the three phenotypes: polydactyly, syndactyl, and 
cleft palate”. The query returns a list of clinical diseases 
(based on HPO) and displays them in a graphical format. 
While we recognize that the HPO website (https://​hpo.​
jax.​org/​app/) already includes the same functionality to 
search phenotypes for a given human disease, the search 
functionality in KGEV also allows users to easily find dis-
eases sharing two or more phenotypes, or phenotypes 
shared by two or more diseases. This example demon-
strates the versatility of the KGEV framework that can be 
easily adapted to many other general purposes.

Discussion
Knowledges graphs (KGs) serve as a convenient frame-
work for structuring knowledge by reducing information 
into a set of entities and their relationships. A number of 
computational methods have been developed to gener-
ate KGs from biomedical literature (for example, through 
natural language processing), and some researchers have 
leveraged the generated KGs for downstream tasks such 
as link prediction, neighborhood search, and question 
answering. However, there is a general lack of compu-
tational tools or web frameworks to support the explo-
ration and visualization of the KG themselves, which 
would facilitate interactive knowledge discovery and 
formulation of novel biological hypothesis. In this study, 
to address this issue, we created a framework for Knowl-
edge Graph Exploration and Visualization (KGEV), that 
allows researchers to explore a KG interactively, search 
for specific entities and relationships from multiple data 
sources, and quickly access information along with sup-
porting papers. Unlike other KGs, our framework allows 
fast retrieval of relevant texts supporting the relation-
ships in the KG, thus allowing human reviewers to judge 
the reliability of knowledge extracted. Beyond the utility 
of the visualization framework, the interactive web appli-
cation will aid researchers in understanding the work 
that has been done thus far while helping guide questions 
for future research projects. Our KG can prioritize: (1) 
primary relationships between biomedical entities, which 
are directly extracted from free unstructured text by the 
NLP approach, and (2) secondary relationships from 
existing knowledgebases, inferred from a variety of bio-
medical databases on genes, proteins, phenotypes, drugs, 
and diseases. Our incorporation of greatly expanded 
inputs, as compared with other studies, further allows for 
the comprehensive identification of known and hidden 
knowledge for use in subsequent steps.

Although we used COVID-19 as a case study here, 
the computational tools developed as part of the proto-
col can be applied to a broad range of emerging diseases 
in the future, to quickly gather scientific evidence from 
a sudden surge of literature information. We recognize 
that many COVID-19 literature mining web servers, 
such as the NIH’s LitCOVID [43] and Google’s COVID-
19 Research Explorer (https://​covid​19-​resea​rch-​explo​
rer.​appsp​ot.​com/), were developed to provide literature 
searching system and there exist COVID-19  KG web 
servers [20, 25, 26]. However, these tools are of lim-
ited use for researchers who need the flexibility to both 
explore the nodes and edges of the KG directly and the 
ability to quickly retrieve relevant biomedical texts, as 
well as open-source pipelines and resources to customize 
the knowledge graph and web application for their own 
needs.

Fig. 6  Shortest path search example. The search represents paths 
with a length of three edges between obesity and COVID-19 through 
nodes under the UMLS semantic group of “Genes & Molecular 
Sequences”. Direct paths are excluded. The edges represent 
disease-gene relationships from DisGeNET and gene-phenotype 
relationships from HPO to obtain obesity-associated genes, and 
gene–gene relationships from STRING (interaction score >  = 700, 
representing high confidence interactions) and CORD-19 (at least 7 
supporting texts). The search results represent some of the pathways 
through with obesity may be associated with COVID-19 risk. The 
graph in the figure represents a subset of the results; The full results 
can be viewed by following the search settings in the tutorial section 
of the KGEV website (http://​covid​19nlp.​wglab.​org/​tutor​ial)

https://hpo.jax.org/app/
https://hpo.jax.org/app/
https://covid19-research-explorer.appspot.com/
https://covid19-research-explorer.appspot.com/
http://covid19nlp.wglab.org/tutorial
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While the KG visualization framework facilitates data 
exploration and the retrieval of relevant biomedical lit-
erature, there are some limitations to this framework. 
First, the quality of the KG exploration and visualization 
depends on the quality of the data. The KG generation 
was relatively simple in our case study. While SemRep is 
a publicly accessible tool that is commonly used for rela-
tionship extraction, the relationships extracted by Sem-
Rep might not be optimized for a specific domain, such as 
COVID-19 [29, 44]. However, our framework is flexible 
enough that users can use other NLP tools to perform the 
relationship extraction from biomedical literature. Addi-
tionally, KG validation and refinement remain a challenge 
[45]. While the focus of KGEV is KG exploration and 
visualization rather than construction, the integration of 
data from alternative sources may lead to different rela-
tionships in the KG. For example, 13,962 gene-disease 
relationships from DisGeNET (curated gene-disease 
associations) were integrated into the COVID-19  KG 
while 709,156 gene-disease relationships were integrated 
when using all gene-disease associations in the Compara-
tive Toxigenomics Database (CTD) [46], including 12,325 

relationships overlapping with DisGeNET (Additional 
file 1: Table S2). KGEV does offer some tools for KG vali-
dation. With the ability to filter by confidence level per 
data source, the confidence level being provided by the 
data source or equal to the number of supporting texts 
from literature, one can adjust the rate of false positive 
edges in the KG. Additionally, one can use the KGEV 
pipeline to quickly and mechanistically construct and test 
KGs using alternative data sources.

Another limitation of the framework is that it requires 
users to have some a priori hypothesis or question in 
order to know what to search for in the KG. However, 
neighborhood and shortest path search can identify 
new nodes and links of interest for further exploration. 
Finally, while the web application can help answer simple 
questions through triple retrieval, such as “what treats 
COVID-19”, it may be more difficult to answer questions 
where the answer involves multiple entities and relation-
ships that are complex and dependent on each other. This 
issue can be addressed by improved approaches to trans-
late user questions in the web interface into appropriate 
graph database queries for the Neo4j backend.  Going 

Fig. 7  Turn-key adaptation of KGEV to study human disease phenotypes. The entire HPO database of disease-phenotype relationships was stored 
in a new Neo4j database, following the schema of the COVID-19 database (but without text information). Just by swapping the database, one 
can use the same user interface to query the KG, but on a different set of data. The figure shows an example of finding the shortest path between 
polydactyly, syndactyl, and cleft palate phenotypes to determine diseases that share at least two of the three phenotypes
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forward, it may also be useful to visualize algorithms and 
their output that are run on top of the KG, like node clus-
tering, link prediction, question answering, and allow for 
custom KG queries.

Despite the limitations discussed above, our KGEV 
framework can adequately describe a range of impor-
tant biomedical entities associated with diseases, relate 
phenotypes to genes to drugs using contextual relation-
ships, and thereby inform hypothesis generation and, 
ultimately, personalized treatment approaches for other 
emerging disease.

Conclusions
In an era of literature explosion, the KGEV framework 
can be applied to many emerging diseases to support 
structured navigation of the vast amount of newly pub-
lished biomedical literature and other existing biological 
knowledge in various databases. It can be also used as a 
general-purpose tool to explore and query gene-pheno-
type-disease-drug relationships interactively.
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