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Over the last decades, cancer immunotherapies such as checkpoint blockade and
adoptive T cell transfer have been a game changer in many aspects and have improved
the treatment for various malignancies considerably. Despite the clinical success of
harnessing the adaptive immunity to combat the tumor, the benefits of immunotherapy
are still limited to a subset of patients and cancer types. In recent years, neutrophils,
the most abundant circulating leukocytes, have emerged as promising targets for anti-
cancer therapies. Traditionally regarded as the first line of defense against infections,
neutrophils are increasingly recognized as critical players during cancer progression.
Evidence shows the functional plasticity of neutrophils in the tumor microenvironment,
allowing neutrophils to exert either pro-tumor or anti-tumor effects. This review describes
the tumor-promoting roles of neutrophils, focusing on their myeloid-derived suppressor
cell activity, as well as their role in tumor elimination, exerted mainly via antibody-
dependent cellular cytotoxicity. We will discuss potential approaches to therapeutically
target neutrophils in cancer. These include strategies in humans to either silence the
pro-tumor activity of neutrophils, or to activate or enhance their anti-tumor functions.
Redirecting neutrophils seems a promising approach to harness innate immunity to
improve treatment for cancer patients.

Keywords: neutrophils, cancer, tumor microenvironment, myeloid-derived suppressor cells, antibody-dependent
cellular cytotoxicity, antibody therapy

INTRODUCTION

The new immunotherapies aimed at targeting of immunosuppressive checkpoint receptors, using
antibodies against the inhibitory programmed cell death protein 1 (PD-1)/programmed death-
ligand 1 (PD-L1) pathway or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) pathway, have
vigorously changed the landscape of anti-cancer immunotherapy in the last decades (1). This way
of harnessing capacities of the immune system to combat cancer has recently delivered the first
unprecedented clinical successes in the treatment of difficult-to-treat cancers, such as advanced
stage metastatic melanoma (2), and non-small cell lung carcinoma (3), as well as more recently in
other cancer types (4–6). Despite the encouraging efficacy seen for some cancer patients, where
durable responses are observed for several years, others either fail to respond to these therapies or
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acquire resistance over time (7). Another recent and successful
approach of cancer immunotherapy consists of the use of
modified T cells with chimeric antigen receptors, the so-
called CAR T cells. These have shown promising results for
patients with advanced B-cell cancers in the early days (8) and
more recently also in the case of other previously incurable
malignancies, due to their specificity for a cell-surface antigen
(9). Yet, these novel therapies still raise certain general concerns
to clinicians, as they have been associated with serious toxicities
(10). Although the current focus of cancer immunotherapies
is on targeting adaptive immunity to fight the tumor, these
therapies are limited to specific cancer types or need more
efficient therapeutic control to reduce adverse effects. Besides, the
cytotoxic anti-tumor capacities, as well as CAR T cell expansion,
can easily be hampered by the interaction with other immune
cells present in the tumor microenvironment (TME).

A different approach to immunotherapy in cancer focuses
on the innate immune system. Cells belonging to the innate
compartment are endowed with the capacity of reacting fast to
invading pathogens that enter the body by recognizing sets of
repeated patterns, as well as damage signals released from tissue
injuries. In this way, innate immune cells have the outstanding
talent of distinguishing self from non-self and respond to the
latter in an appropriate manner. In addition, such cells are also
able to distinguish self from “altered-self,” and this is the case
for cancer. Innate immune cells such as natural killer (NK)
cells, dendritic cells (DC), neutrophils, and macrophages are
first-line effectors for the elimination of cancer cells before an
adaptive immune response is mounted. In this way, NK cell-
based therapies (i.e., used in the form of adoptive cell transfer or
as CAR NK cells) (11), as well as DC-based therapies (i.e., used for

Abbreviations: ADCC/P, antibody-dependent cellular cytotoxicity/phagocytosis;
APC, antigen-presenting cell; CAR, chimeric antigen receptor; CCL, chemokine
(C-C) ligand; CCR, C-C chemokine receptor; CDC, complement-dependent
cytotoxicity; CGD, chronic granulomatous disease; CLL, chronic lymphocytic
leukemia; CSF-1R, colony-stimulating factor-1 receptor; CTLA-4, cytotoxic
T-lymphocyte-associated protein 4; CXCR, C-X-C chemokine receptor; DC,
dendritic cell; EGFR, epidermal growth factor receptor; ERK, extracellular
signal-related kinase; FATP2, fatty acid transport protein 2; Fcγ receptor,
IgG Fc receptor; FcαRI, IgA Fc receptor; FHL-5, familial hemophagocytic
lymphohistiocytosis type 5; fMLF, N-formylmethionyl-leucyl-phenylalanine;
G-CSF, granulocyte-colony stimulating factor; GM-CSF, granulocyte-macrophage
colony-stimulating factor; H2O2, hydrogen peroxide; HDN, high-density
neutrophil; HGF, hepatocyte growth factor; HLA, human leukocyte antigen;
ICAM, intercellular adhesion molecule; IFN, interferon; Ig, immunoglobulin; IL,
interleukin; IRS-1, insulin receptor substrate 1; ITAM/ITIM, immunoreceptor
tyrosine-based activation/inhibitory motif; LAD-1, leukocyte adhesion deficiency
type 1; LDN, low-density neutrophil; LOX-1, lectin-type oxidized LDL receptor
1; LPS, lipopolysaccharide; mAb, monoclonal antibody; Mac-1, macrophage-1
antigen; MDSC, myeloid-derived suppressor cell; MHC, major histocompatibility
complex; MM, multiple myeloma; MMP-9, matrix metalloproteinase-9; NADPH,
nicotinamide adenine dinucleotide phosphate; NE, neutrophil elastase; NET,
neutrophil extracellular trap; NFκB, nuclear factor kappa B; NK, natural killer;
NLR, neutrophil-to-lymphocyte ratio; PBMC, peripheral blood mononuclear
cell; PD-1, programmed cell death protein 1; PDGFR, platelet-derived growth
factor receptor; PD-L1, programmed death-ligand 1; PI3K, phosphoinositide 3-
kinase; PMN, polymorphonuclear leukocyte; PTK, protein tyrosine kinase; PTP,
protein tyrosine phosphatase; ROS, reactive oxygen species; Siglec, Sialic acid-
binding immunoglobulin-like lectin; SIRPα, signal regulatory protein alpha; TAN,
tumor-associated neutrophil; TGF-β, transforming growth factor-β; TLR, toll-like
receptor; TME, tumor microenvironment; TNFα, tumor necrosis factor α; Treg,
regulatory T cell; TRMP2, transient receptor potential cation channel, subfamily
M, member 2; VEGF, vascular endothelial growth factor.

vaccination against cancer) (12, 13) are currently being exploited
for the treatment of cancer. However, the clinical application and
efficacy of these therapies can be hampered as these approaches
are still in early stages of development. Alternatively, neutrophils
or polymorphonuclear (PMN) leukocytes, as the most abundant
cell type among the circulating white blood cells in humans, can
also be considered as compelling cells to address therapeutically.

NEUTROPHILS: FROM INNATE
EFFECTOR TO MYELOID SUPPRESSOR
CELLS

Neutrophils are commonly short-lived cells with a half-life in
the circulation of less than 24 h and one or more days in the
tissues depending on the extravascular milieu. Thus these cells
are renewed in the bone marrow at an estimated rate of 1011

cells per day. The percentage of neutrophils in blood in healthy
adults ranges from 50 to 70% (14), although these numbers
may differ under pathological conditions (15). The mobilization
of neutrophils from the bone marrow into the circulation is
defined by the secretion of various stimuli from the site of injury
or disease, to which they respond, resulting in variations in
neutrophil numbers in blood. For example, granulocyte-colony
stimulating factor (G-CSF), which is frequently produced by
certain tumors or by cell types surrounding the tumor (16, 17),
is able to skew the neutrophil retention/release balance in the
bone marrow and ultimately lead to an increased release of
neutrophils into the circulation (18). Moreover, chemokines, such
as IL-8, can also be produced by tumor cells and attract myeloid
cells, including neutrophils, to the TME, thereby affecting the
number of neutrophils in the tumor (19). To date, many studies
have looked at the neutrophil-to-lymphocyte ratio (NLR) to
determine the correlation between the number of circulating
neutrophils and cancer prognosis. In all cases, a high NLR has
been recognized as a bad prognostic marker for all cancer types
and stages of cancer (20–22). Moreover, the extent of intra-
tumoral neutrophils also seems to have an unfavorable prognostic
value in several cancer types (23–25). On the other hand, low
neutrophil counts in blood has been proven advantageous for
survival (26). Nonetheless, the option of persistent neutrophil
depletion cannot be regarded in the context of cancer since
prolonged neutropenia is considered a life-threatening condition
due to the indispensable role of neutrophils in the protection
of the host in the natural (mucosal) barriers against incoming
microbial pathogens.

In fact, neutrophils in cancer may represent a heterogeneous
population of cells, which can display different phenotypes
and perform opposing functions. In mice, neutrophils found
in tumor tissue have been referred to as tumor-associated
neutrophils (TANs), which were classified as either anti-tumor
neutrophils (N1), or tumor-promoting neutrophils (N2) (27).
In experimental models, several factors of the TME have
been suggested to determine the polarization of the recruited
neutrophils in the tumor toward one or the other phenotype
in vivo. Supportive evidence of such neutrophil subsets in
human cancer tissue is, however, lacking to date. Studies
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in cancer patients have reported that circulating neutrophils
can be classified into different subpopulations according to
their densities upon isolation and centrifugation. Normal or
high density neutrophils (HDNs) are associated with anti-
tumor activity, whereas neutrophils in the low-density fraction
(LDNs) are believed to expand in malignancy and display
myeloid-derived suppressor cell (MDSC) and other pro-tumor
activity. Similar to TANs, HDNs are capable of switching to
LDNs in response to factors in the surrounding environment
(28). Unfortunately, the current understanding of neutrophil
subpopulations is still limited and debated due to the lack of
specific molecular markers, non-uniform study approaches and
variable expertise. Nonetheless, it is clear that neutrophils are
being increasingly recognized as important players in cancer,
and that they can carry both pro- and anti-tumoral properties
depending on cancer type, stage and location of the disease (29).

In the following chapters, we aim to provide a summary
of the current knowledge and latest findings on pro- and
anti-tumor activities of neutrophils by describing the main
mechanisms of action and highlight some conceivable ways by
which we could silence tumor-promoting activity or redirect the
activity of pro-tumor neutrophils into cytotoxic effector cells to
help combat cancer.

ROLE OF NEUTROPHILS IN TUMOR
PROGRESSION

Promotion of Proliferation, Angiogenesis,
Invasion and Metastasis by Neutrophils
Neutrophils are capable of promoting tumor growth and
progression, and their presence is often associated with poor
clinical outcome (20). Mechanisms by which neutrophils have
been shown to mediate tumor progression include enhancing
proliferation, angiogenesis, invasion, metastasis, and immune
suppression (30). Neutrophils in the TME have the ability to
directly induce the proliferation of cancer cells, for example
via the serine protease neutrophil elastase (NE) (31, 32). NE
also plays a role in the migration and invasion of cancer cells
(33). Other neutrophil granule components such as matrix
metalloproteinase-9 (MMP-9) have been described to mediate
angiogenesis and tumor cell invasion via degradation of the
basement membrane (34). Additionally, a large body of literature
demonstrates a pro-metastatic function of neutrophils. In a
mouse breast cancer model, neutrophil-derived factors were
shown to drive cancer spread (35). Furthermore, neutrophils
have been suggested to promote cancer cell adherence, which
was shown to be dependent on neutrophil Mac-1 (αMβ2 or
CD11b/CD18), and thereby mediate metastasis in a murine
model of liver metastasis (36). Concordantly, human neutrophils
were shown to induce tumor cell migration and to interact with
melanoma cells via β2 integrin (37).

Also the involvement of neutrophil extracellular traps (NETs)
in cancer cell migration and extravasation is being investigated.
Upon activation, neutrophils form NETs composed of released
chromatin and granular proteins which trap and kill microbes

(38). The neutrophil chemoattractant IL-8, which is produced
in the TME, has been suggested to induce NET formation
(39). The presence of NETs in the TME of patients with
metastatic disease has been demonstrated, and additional studies
in murine models have further suggested their role in cancer
progression (40). NETs promoted cancer cell migration, invasion,
and angiogenesis in vitro (41). Multiple studies illustrated the
trapping of circulating murine tumor cells in NETs, which
facilitated their extravasation and metastasis (42–44). Increased
levels of NETs were also observed in patients suffering from
different types of locally infiltrating cancer (45, 46), which
was associated with adverse patient outcomes in colorectal
cancer (47).

Immunosuppression by Neutrophils
In mice, MDSCs represent a heterogeneous group of
pathologically activated immature myeloid cells with
immunosuppressive properties (48). MDSCs accumulate
under inflammatory conditions, including experimental cancer,
and are divided into two major subsets depending on their
lineage, either granulocytic (PMN-MDSCs) or monocytic (M-
MDSCs) (49). The presence of PMN-MDSCs in patients has
been shown to be associated with poor prognosis in different
types of cancer (50–52). In mice, PMN-MDSCs are characterized
as CD11b+Ly6G+ cells, while in humans the surface marker
definition is CD11b+CD15+CD14−CD33+CD66b+HLA-DR−
(53). However, based on these cell surface markers, PMN-
MDSCs overlap with all circulating neutrophils, making an
accurate discrimination between PMN-MDSCs and neutrophils
impossible. Also other markers proposed to be more specific in
identifying PMN-MDSCs, such as LOX-1 or CD10 (54, 55), have
not been confirmed to discriminate circulating PMN-MDSCs in
cancer patients (56).

While PMN-MDSCs were originally described as a
subpopulation of immature myeloid cells capable of suppressing
immune responses, mature neutrophils also have the ability
to limit T cell activity and promote immune evasion (28, 57),
but only upon cellular activation (56, 58). Thus the functional
similarities between PMN-MDSCs and neutrophils further
complicate the differentiation between the two populations.
Functional plasticity of neutrophils suggests that a shift in
neutrophil phenotype occurs, depending on signals from the
TME, which lead to the acquisition of immunosuppressive
activity or other pro-tumorigenic functions. To avoid confusion,
we will mostly refer to these cells as immunosuppressive
neutrophils. Such mature neutrophils with a T cell suppressive
phenotype have been identified in various human cancers and
are also associated with accelerated tumor progression and worse
clinical outcomes (49, 58), illustrating their clinical relevance as
potential targets to improve cancer immunotherapy.

Activation of Neutrophil Immunosuppressive Activity
Tumor cells and other cell types in the TME produce a wide
range of inflammatory mediators, many of which have been
demonstrated to contribute to the generation and recruitment
of neutrophils with pro-tumor activity. High levels of the
colony stimulating factor G-CSF released by tumors corresponds
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with the expansion of immunosuppressive neutrophils in
cancer patients (50). Likewise, mature neutrophils of G-CSF-
treated donors have been reported to display an activated
immunosuppressive phenotype (55). Other signals implicated
in the pathological activation of neutrophils include GM-CSF,
TNFα, IL-1β, VEGF, IL-6, and IL-8 (59). However, our latest
experiments in human neutrophils demonstrated that only
fMLF, TLR ligands such as LPS, and TNFα act as activators
of T cell suppressive activity in neutrophils (56, 60). The
presence of soluble factors in ascites and malignant effusions
from cancer patients was shown to induce a suppressive
phenotype of neutrophils in the TME, which was dependent on
complement factor C3 (58).

Mechanisms of Neutrophil Immunosuppressive
Activity
In order to limit T cell mediated anti-tumor immune responses,
suppressive neutrophils rely on several effector functions
originally linked to their role as killers of invading pathogens.
Degranulation refers to the process by which neutrophils release
various factors stored in intracellular granules into phagosomes
or the extracellular environment (61). Immunosuppression by
neutrophils has been linked to the metabolism of L-arginine,
which is converted into L-ornithine by arginase-1, an enzyme
present in gelatinase granules (62, 63). Elevated arginase-1 plasma
levels were observed in cancer patients, and the modulation of
T cell responses was shown to be dependent on arginase-1 (50,
64, 65) via the depletion of L-arginine, an amino acid crucial for
the expression of the T cell receptor ζ chain, which is in turn
needed for T cell activation (66–68). Additionally, L-arginine
shortage prevents the successful formation of immunological
synapses due to impaired dephosphorylation of cofilin, which is
an important player in the modulation of the actin cytoskeleton
and the formation of an immunological synapse (69, 70). The
dependence on arginase-1 and its regulation of the T cell
receptor ζ chain was demonstrated using PBMCs from healthy
donors (71, 72) and in cancer patients (64, 73). Accordingly,
suppression of T cell mediated responses by activated human
neutrophils was shown to depend on degranulation, which
was elegantly confirmed using neutrophils from rare familial
hemophagocytic lymphohistiocytosis (FHL)-5 patients, which
show defective granule mobilization due to mutations in the
STXBP2 gene (56, 74–76).

The nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase complex generates oxidative stress by the production
of reactive oxygen species (ROS) upon cellular activation, a
process which is up regulated in different types of cancer (77).
Hydrogen peroxide (H2O2) produced by the conversion of
superoxide (O2

−) suppresses T cell activation and proliferation
via several mechanisms (78, 79). H2O2 can induce T cell
apoptosis, or inhibit T cell activation by blocking NF-κB
activation or affecting the availability of the T cell receptor
ζ chain, which is essential for T cell activation, as described
above (80, 81). T cell activation is additionally impaired by the
interference of ROS with the regulation of cofilin (82, 83), as
was also described as an effect of L-arginine deficiency. While
L-arginine deficiency leads to impaired dephosphorylation of

cofilin, ROS induce a conformational change in cofilin through
its oxidation, both resulting in an inhibition of T cell response
(69, 82, 83). Furthermore, H2O2 could be involved in preventing
the metabolic switch from mitochondrial respiration to aerobic
glycolysis that is required for T cell clonal expansion and cytokine
production (84). Our data also indicate that ROS production
is required for the suppression of T cell activation by human
neutrophils (56). This was substantiated using neutrophils from
patients with chronic granulomatous disease (CGD), a rare
genetic defect in which neutrophils are incapable of ROS
production due to a mutation in a subunit of the NADPH oxidase
complex (85, 86).

T cell function could additionally be impaired by suppressive
neutrophils via the interaction between T cell PD-1 and PD-
L1 on neutrophils, which is known to block T cell proliferation
and cytokine production (87). Crosstalk between PD-1 and PD-
L1 plays an important role in T cell suppression in cancer
(88). Neutrophil expression of the immune checkpoint surface
molecule PD-L1 can be induced by IFNγ and GM-CSF or
hypoxic conditions (89–91). Increased PD-L1 expression as
well as suppression of T cell proliferation by neutrophils were
demonstrated in patients with hepatocellular carcinoma (92).
Moreover, inhibition of T cell function by neutrophils was
dependent on PD-1 expression by T cells and PD-L1 expression
by neutrophils. PD-L1+ neutrophils suppress T cell function
by interacting with PD-1 on T cells, thus limiting the anti-
tumor activity of T cells. This immune tolerance via neutrophil
PD-L1 appears to contribute to human gastric cancer growth
and progression (93).

In order for neutrophils to suppress T cell responses, the
formation of close cell-cell contact via the expression of integrin
Mac-1 on neutrophils is required (94). Singel et al. recently
demonstrated the requirement of cell-cell contact for T cell
suppression by human neutrophils activated by ovarian cancer
ascites (58). This is in line with our findings, which demonstrate
that suppression of T cells by neutrophils is dependent on
CD11b-mediated interactions (56). Consistently, neutrophils
from a patient with leukocyte adhesion deficiency type 1 (LAD-
1), which lack the expression of β2 integrins, including Mac-1,
were not capable of suppressing T cell proliferation (56). Blocking
ICAM-1 on T cells decreased, but did not fully abrogate T cell
suppression by activated neutrophils, indicating that additional
ligands of Mac-1 on T cells are important for the interaction
with neutrophils (56). In tumor-bearing mice, neutrophils were
shown to induce T cell apoptosis in a contact-dependent manner
(95). Similarly, an immunosuppressive myeloid cell population
induced apoptosis of activated T cells in breast cancer patients
(96). In our studies, live-cell imaging revealed intercellular
contacts between neutrophils and T cells resulting in neutrophils
containing pieces of T cell membrane (56), a process known as
trogocytosis (97). During co-culture of activated neutrophils and
T cells, a population of smaller T cells appeared, which could no
longer be activated to proliferate. In contrast to earlier findings
with respect to apoptosis induction, these small T cells displayed
neither of the two common cell death mechanisms, i.e., apoptosis
or necroptosis. Thus, the exact steps leading to T cell death upon
suppression by neutrophils remain to be further investigated.
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In addition to their own direct and suppressive effect
on T cells, neutrophils can also inhibit NK cell activation
in tumor-bearing mice (98, 99). Neutrophils suppressed
NK cell cytotoxicity, which resulted in defective antitumor
responses and promoted metastasis in mice (100, 101). Finally,
further contribution of neutrophils to the immunosuppressive
microenvironment within tumor tissue is made via the
development and induction of regulatory T cells (Tregs) (102).
Treg enrichment occurs due to reduced sensitivity of Tregs to
oxidative stress in the TME (103, 104), which ultimately accounts
for their preferential outgrowth and selection. Neutrophils also
recruit Tregs through the secretion of CCL17, as was shown
in murine tumors (105). Additionally, a positive feedback
loop between neutrophils and Tregs, mediated by the anti-
inflammatory cytokine IL-10, could support the immune
suppression (106, 107). Induction of Tregs by suppressive
neutrophils was demonstrated in patients with bladder
cancer (108).

In summary, neutrophils can directly and indirectly
mediate tumor progression via the promotion of proliferation,
angiogenesis, invasion, and metastasis, in which mechanisms
such as the release of granule components and NET formation
are important. Furthermore, neutrophils inhibit anti-tumor
responses by limiting T cell activation, which is dependent
on degranulation, ROS production and cell-cell contact.
Alternatively, neutrophils contribute to an immunosuppressive
TME by affecting other immune cells, such as NK cells and
Tregs. Apart from the pro-tumorigenic mechanisms by which
neutrophils are activated to “adopt” their tumor-enhancing,
immunosuppressive role, neutrophils can also exert strong
anti-tumor activity.

ROLE OF NEUTROPHILS IN TUMOR
ELIMINATION

The vast majority of studies support the positive correlation
of neutrophils with cancer progression by the mechanisms
described above. Nevertheless, recent data also point into the
opposite direction in which neutrophils can act as effector cells
and combat cancer leading to the eradication of tumor cells
(30, 109, 110). In fact, there are sufficient reasons to think of
neutrophils as promising effector cells against cancer. One of
the main advantages of this cell type is that they are found in
high levels in blood under normal conditions, and in addition,
their number can be incremented further upon in vivo treatment
with G-CSF and GM-CSF cytokines (111, 112). Another feature
that makes them unique is that neutrophils do not need ex vivo
culturing and expansion for a later infusion into the patient,
compared to most other immune cells used therapeutically,
such as T cells, NK cells or DCs (113). Siders et al. showed
that increasing the number of circulating neutrophils by a
mere injection of G-CSF turned them into excellent cytotoxic
cells that were able to kill alemtuzumab-opsonized cells in a
xenograft model of a CD52+ tumor (114). This, however, must
be regarded with caution as such effect may only be valid in
the context of antibody therapy, as was also shown in other

studies (115, 116). In other circumstances, the therapeutic effect
of G-CSF treatment may mainly mobilize neutrophils of an
immunosuppressive phenotype which are beneficial to the tumor,
as discussed earlier in this review (50, 55).

Direct Killing Properties of Neutrophils
Against Cancer
The mechanisms by which anti-tumor neutrophils induce
cytotoxicity of the tumor cells are, however, not yet clear.
Few studies demonstrated that the secretion of ROS through
the respiratory burst comes into play once neutrophils are
in direct contact with the tumor cells (117–119). Specifically,
neutrophil secretion of H2O2 induced a lethal influx of Ca2+,
mediated by the TRMP2 channel which ultimately killed the
tumor cell. Furthermore, a mechanism was identified by which
neutrophils isolated from healthy donors induced apoptotic cell
death of tumor cells upon physical contact mediated through Fas
ligand/Fas interaction (120). Although these contact-dependent
processes can, under specific circumstances, induce tumor cell
killing, the best well-established anti-tumor mechanism by which
neutrophils mediate tumor cell death is through Fc receptor-
dependent cytotoxicity against antibody-opsonized cells.

Antibody-Mediated Killing Properties of
Neutrophils Against Cancer
Therapeutic monoclonal antibodies (mAbs) have become
available for the treatment of cancer in the last decades and have
provided significant improvement in the treatment outcome for a
number of cancer subtypes. These mAbs can initiate direct tumor
cell killing, through the F(ab’)2 domains of the immunoglobulin
(Ig) interfering with the intrinsic function of the target cell (121,
122), or upon binding of the Fc part to the C1q component
of the complement system inducing complement-dependent
cytotoxicity (CDC) (123). Besides the direct mechanisms, the Fc
region of the mAb can also bind to activating Fc receptors on
innate immune cells which will in turn elicit indirect-mediated
killing via antibody-dependent cellular cytotoxicity/phagocytosis
(ADCC/P) of the opsonized cells (124–128).

The contribution of neutrophils in ADCC to eradicate
antibody-opsonized tumor cells in vitro was already
demonstrated some decades ago by Gale and Zighelboim
(129). A few years later, Barker and colleagues showed a
prominent role of neutrophils isolated from neuroblastoma
patients in mediating the ex vivo lysis of neuroblastoma cells
opsonized with anti-GD2 antibody. Interestingly, the cytotoxicity
induced by neutrophils was in all cases higher than was seen for
NK cells from the same donor (130). More recently, a number of
studies have demonstrated the cytotoxic capacity of neutrophils
in the context of antibody therapy in an in vivo setting of tumor-
bearing mice which showed once again the indispensable role
of neutrophils in achieving efficient antibody therapy responses
(114, 131, 132). Most importantly, a considerable amount of
literature has suggested the relevance of the anti-tumor capacities
of neutrophils in a clinical setting. More specifically, different
polymorphic variants found on the IgG Fc receptor IIa (FcγRIIa)
explained the variability seen in the clinical outcome of breast
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cancer (133, 134), colorectal cancer (135), and neuroblastoma
patients (136) in response to antibody treatment.

IgG Isotypes and Fcγ Receptor Involvement
Despite the fact that several Ig isotypes exist, as of yet, all
approved therapeutic antibodies for cancer treatment in the clinic
are IgG-based, particularly IgG1, IgG2, and IgG4 isotypes. The
relevance of the IgG backbone used for such antibodies has to do
with the different binding affinities to the several Fcγ receptors
that are in turn differentially expressed on a number of immune
cells (137, 138). This results in the induction of extremely diverse
and highly regulated antibody responses, as the distinct affinities
can also convey stronger or weaker effector functions by the
different Fcγ receptor-expressing cells (139).

Six classical Fcγ receptors can be expressed by the human
innate immune cells: FcγRI (CD64), FcγRIIa (CD32a), FcγRIIb
(CD32b), FcγRIIc (CD32c), FcγRIIIa (CD16a), and FcγRIIIb
(CD16b). From these, neutrophils constitutively express FcγRIIa
and FcγRIIIb, and the FcγRI only upon activation. Depending
on ethnic background, 15% of the population also expresses
low levels of neutrophil FcγRIIc (140). All these Fcγ receptors
on neutrophils can bind to the IgG opsonizing cancer cells
(138, 141) and have their own capacity to contribute to
ADCC activity. FcγRI and FcγRIIa/c are activating receptors
and their signals are transduced by an immunoreceptor
tyrosine-based activation motif (ITAM) that is either associated
with the common FcRγ chain in the case of FcγRI, or
present in the cytoplasmic tail of the Fcγ receptor itself
for FcγRIIa/c. Subsequently, Syk tyrosine kinases can bind
to these activating motifs and activate downstream signaling
pathways, initiating ADCC, phagocytosis, cell migration, and
degranulation processes (141, 142). FcγRIIIb, instead, is anchored
to the cell membrane through a glycosyl phosphatidylinositol
(GPI) molecule and lacks both transmembrane and cytoplasmic
domains, restricting it from having signaling capacities (143).
As mentioned above, resting neutrophils constitutively express
both low- and intermediate- affinity FcγRIIa and FcγRIIIb
in high levels (141). However, the high-affinity activating
FcγRI is not detectable on resting neutrophils but can be
up regulated upon activation of cells with G-CSF and IFNγ

as demonstrated by us (30, 144) and others (145, 146). In
addition, FcγRIIIb is actively shed from the surface of activated
neutrophils when stimulated by various stimuli, including G-CSF
and IFNγ (144, 147).

The specific contribution of each Fcγ receptor of neutrophils
to mediate ADCC, however, has been found to differ per cancer
type. With the use of blocking antibodies for the different
Fcγ receptors, several studies have reported FcγRIIa to be
the dominant receptor triggering neutrophil ADCC in solid
tumors. This was seen for EGFR+ cancer cells opsonized with
cetuximab (148), as well as for trastuzumab-coated HER2/neu+
human breast cancer SKBR3 cells (144, 149). Of interest,
although FcγRI is the high-affinity receptor for IgG1 antibodies,
no effect was found when monovalent Fc fragments were
used for blockade. This might be explained by the incapacity
to fully block the receptor by use of these monovalent Fc
fragments or due to the relatively low expression levels on

the surface of neutrophils (150). Nevertheless, contradicting
results were described regarding the potential of FcγRI on
neutrophils in mediating ADCC. It was shown that such
receptor can very well contribute to tumor killing in a number
of tumor types (151–154). With regard to the involvement
of FcγRIIIb in the killing of tumor cells in the context of
antibody therapy, we and others have shown this receptor to
be a negative regulator of neutrophil ADCC as it scavenges
available therapeutic antibody due to its high expression on
the neutrophil surface (144, 148). For hematological tumors
the evidence is slightly different. An in vivo study testing the
efficacy of a FcγRI bispecific antibody in a mouse model of
a rituximab-treated B-cell lymphoma reported the clearance
of the tumor cells by G-CSF stimulated neutrophils (155),
indicating that FcγRI may be the main receptor mediating
neutrophil ADCC in such context. Another level of complexity
of this receptor family comes from the several Fcγ receptor
polymorphisms described in humans that could affect the
degree of ADCC responses [extensively reviewed by Bruhns
and Jonsson (138)], which ultimately can influence clinical
responses to antibody therapy. It is, however, relevant to
acknowledge that Fcγ receptors are not the only feature that
makes neutrophils capable of killing cancer cells. Although falling
outside the scope of this review, integrins, Mac-1 in particular,
have also been shown to be indispensable in mediating ADCC
processes (149).

Neutrophil-Mediated Antibody-Dependent Killing
Mechanisms
Until recently, the mechanism by which ADCC leads to cell
death remained largely unclear. A large body of evidence has
reported that neutrophils have the ability to trogocytose, mainly
in the context of antibody therapy (156). In 2002, trogocytosis
was identified as an active mechanism that involves the transfer
of plasma membrane and their associated molecules from a
donor cell to an acceptor cell during intercellular contact (157).
Although the purpose of the process has remained unclear (97),
more recently, new evidence has accumulated to determine
the importance of trogocytosis. In the context of infection,
neutrophils were able to kill serum-opsonized Trichomonas
vaginalis parasite using trogocytosis (158). Additionally, the
tumoricidal effect of trogocytosis was shown in the study of
Velmurugan et al., where they demonstrated that macrophage-
trogocytosis led to efficient tumor cell death of trastuzumab-
opsonized breast cancer cells (159). Most recently, we reported
a direct association between neutrophil-mediated trogocytosis
and tumor cell killing in antibody-opsonized solid cancer cells
(149), by which the neutrophil takes “bites” from the plasma
membrane of the cancer cells. Hereby, the neutrophils cause
membrane damage eventually leading to a necrotic type of
cancer cell death. Furthermore, neutrophil-mediated antibody-
dependent destruction of cancer cells was found not to depend
on their classic antimicrobial effector mechanisms, such as
granule exocytosis (degranulation) and NADPH oxidase activity.
In particular, neutrophils from FHL-5 patients, as well as
neutrophils from patients with CGD, showed unexpectedly
intact killing of HER2/neu+ breast cancer cells in the presence
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of the therapeutic antibody trastuzumab (149). Together,
these findings support the idea of trogocytosis as a most
relevant process involved in tumor killing in the context of
antibody therapy.

Conversely, trogocytosis has also been described as a
mechanism to escape ADCC, ADCP, or CDC, mainly in
hematological cancers, as it involves the shaving of the target
antigen from tumor cells by the effector cells. This was shown
not only for chronic lymphocytic leukemia (CLL) upon rituximab
treatment, where a partial loss of CD20 from CLL B cells
accompanied trogocytosis events by neutrophils (160), but
also anti-CD38 therapy with daratumumab directed against
multiple myeloma (MM) which led to monocyte- and neutrophil-
mediated shaving of CD38 from MM cells (161). Moreover,
neutrophil-mediated trogocytosis might be the reason behind
the significant reduction in HER2/neu expression, seen in a
cohort of breast cancer in women treated with trastuzumab (162,
163). Therefore, depending on the circumstances, or perhaps
tumor type, trogocytosis can be regarded either as a process
initiating tumor killing or as a way for the tumor cells to evade
immune activity.

Role of Neutrophils Regulating Adaptive
Immune Response
For cancer therapy, it has now become clear that initiating
potent adaptive immune responses is fundamental to establish
long-term anti-tumor immunity. Although neutrophils have
historically been regarded as strict innate cells with end-stage
effector functions, new evidence has emerged manifesting their
involvement in modulating the adaptive immune compartment
(31, 32). At sites of infection, neutrophils were found to act as
danger sensors by communicating the presence of inflammation
or damage to DCs, which induces DC maturation, triggering in
turn strong proliferation and Th1 polarization of naive CD4+ T
cells (164, 165). In addition, neutrophils can also act as APCs
themselves. In vitro, activated neutrophils stimulated with GM-
CSF and IFNγ were able to present antigens to memory CD4+
T cells due to the acquisition of MHC-II molecule expression,
as well as costimulatory molecules such as CD86, OX40L and
4-1BBL at early stages of tumorigenesis (166–168). Moreover,
both human and mouse neutrophils were found to cross-present
exogenous antigens to naive CD8+ T cells thereby turning them
into cytotoxic T cells (169). Lastly, recent evidence suggests
that upon antigen capture at the periphery, neutrophils can
migrate to the lymph nodes in a CC-chemokine receptor 7
(CCR7)-dependent manner, under certain circumstances, as their
presence has been found in lymphoid organs in vivo (170–172).

In the context of cancer, however, neutrophils can mediate
opposite adaptive immune responses depending on the TME
or stage of the tumor in vivo. For some cancer mouse models,
neutrophil depletion led to a decrease in CD4 and CD8 T
cell activation, thereby enhancing tumor growth (173), while
in others their presence was able to suppress CD8 T cells
and promote metastasis (174). The evidence for the role
of neutrophils in inducing adaptive immune responses after
antibody therapy of cancer is, unfortunately, more scarce. Yet,

neutrophils were able to boost T-cell activation when combining a
Fc/IL-2+TA99 antibody with adoptive T-cell transfer in a B16F10
melanoma model achieving significant tumor control (175). In
general, neutrophils can not only play a role in innate immunity
but also guide and support adaptive immune responses through
cellular crosstalk.

TARGETING NEUTROPHIL ACTIVITY IN
CANCER THERAPY

The different functions that neutrophils acquire in the context
of cancer highlight their plasticity and ability to respond toward
various targets within and outside of the TME. In this review, we
have focused on the role of neutrophils in tumor progression or
tumor elimination and we have described the major mechanisms
that neutrophils utilize to achieve an efficient response. Although
mechanistically not yet completely understood, some reports (28,
176) suggest TANs in several mouse models of cancer to display
a gradual change during tumor progression, shifting from anti-
tumor properties at the early stages toward pro-tumorigenic
properties during the course of the disease.

As reviewed above, both immunosuppressive as well as anti-
tumor neutrophils share some common characteristics, i.e., their
need for activation through specific stimuli to be able to optimally
exert their function (27, 50, 59, 177). Another necessity for
neutrophils to perform their MDSC and anti-tumor function
is Mac-1-mediated close contact, either between neutrophil and
T cell in case of MDSC activity, or between neutrophil and
antibody-opsonized tumor cell in case of ADCC (56, 58, 94,
149). At the same time, the fact that classical anti-microbial
killing mechanisms, i.e., degranulation and ROS production, are
essential for MDSC function of neutrophils, yet dispensable for
neutrophil ADCC, shows that at least some of the required
cellular mechanisms for MDSC and ADCC neutrophil activity
are directly opposing (56, 149).

Together, in the following part of this review we will
elaborate on ways to modulate pro-tumorigenic function,
further enhance the anti-tumor response, or even redirect
tumor-promoting neutrophils toward anti-tumor neutrophils
(Figure 1). Interestingly, the first in vitro study showing a way
to polarize human neutrophils toward the distinct N1 or N2
phenotype has recently been published (178).

Limiting Pro-tumorigenic Capacity of
Neutrophils
Reducing Neutrophil Numbers
The first possibility to interfere with the tumor-promoting
role of neutrophils in cancer is the neutralization of these
cells. Antibody-mediated depletion of neutrophils resulted in
decreased metastasis in an intrasplenic model of liver metastasis
and in a metastatic breast cancer mouse model (36, 174).
Similarly, targeting of Ly6G+ cells in a murine model of
pancreatic ductal adenocarcinoma increased intra-tumoral T cell
accumulation and inhibited cancer progression (179).

The described promising results of antibody targeting in
mice called for a similar approach to be undertaken in
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FIGURE 1 | Potential ways to therapeutically target neutrophils in cancer by blocking their pro-tumor activity (1–4) or promoting their anti-tumor capacities (5–8). (1)
Reduction of neutrophil numbers in the TME, for example by using antibodies targeting CD33 present on immunosuppressive neutrophils. (2) Blocking the
recruitment of pro-tumor neutrophils to the TME, for example by inhibiting the chemokine receptor CXCR2. (3) Blocking of activation signals such as G-CSF or TNFα

necessary for neutrophils to acquire a pro-tumor or immunosuppressive phenotype. (4) Neutrophils require ROS production and degranulation to exert their
immunosuppressive role, which is dependent on close contact with T cells via Mac-1. Also, neutrophils rely on mechanisms such as NET formation and the release
of granule components such as NE to exert their pro-tumor activity. Targeting these downstream mechanisms would limit the pro-tumorigenic activity of neutrophils.
(5) Interfering with innate immune inhibitory checkpoints would restore antibody-mediated anti-tumor capabilities of neutrophils. (6) Targeting the recruitment and
function of downstream regulators of the inhibitory receptor would further enhance antibody-mediated anti-tumorigenic capacities of neutrophils toward tumor cells.
(7) The use of IgA-based therapeutic mAbs that can bivalently bind FcαRI on the neutrophil would induce stronger anti-tumor cytotoxic responses. (8) The use of
protein engineering techniques to modify the Fc region of IgG therapeutic antibodies would increase the affinity to the activating FcγRIIa, resulting in more potent
ADCC responses toward the opsonized tumor cells. Created with BioRender.com.

humans, in order to promote anti-cancer T cell responses.
Based on immunophenotyping and functional assays to detect
T cell suppression, the presence of suppressive neutrophils
was determined in blood obtained from patients with different
types of cancer, including prostate, lung, head and neck,
and breast. The immunotoxin Gemtuzumab ozogamicin was
used to deplete cells expressing CD33, identified as a surface
marker on suppressive cells across cancer types. This depletion
restored T cell proliferation, enhanced CAR T cell responses and
tumor cell death (180).

Furthermore, a small-molecule receptor tyrosine
kinase inhibitor has proven to successfully modulate the
immunosuppressive TME. Sunitinib inhibits signaling through
multiple receptor tyrosine kinases, including vascular endothelial
growth factor receptors (VEGFRs), platelet-derived growth
factor receptors (PDGFRα and PDGFRβ), stem cell factor

receptor (c-Kit) and colony-stimulating factor-1 receptor (CSF-
1R) (181). Treatment with sunitinib decreased the number of
suppressive cells, enhanced CD8 and CD4 cell tumor infiltration
and improved survival in tumor-bearing mice (182). In renal cell
carcinoma patients, sunitinib also reversed T cell suppression
and reduced Tregs at the tumor site (183). Moreover, treatment
with sunitinib in human renal cell carcinoma improved the
expansion of tumor-infiltrating lymphocytes (184).

Since neutrophils were shown to up regulate PD-L1,
neutrophils may also be affected by therapies targeting immune
checkpoints. For example ipilimumab treatment led to reduced
PMN-MDSC numbers and less immunosuppressive activity in
melanoma patients, which correlated with improved clinical
outcome (185–187). Thus, increasing clinical evidence supports
the notion that reducing neutrophil numbers in cancer could be
beneficial to patients.
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Targeting Neutrophil Recruitment and Activation of
MDSC Activity
An alternative approach to targeting the pro-tumor activity of
neutrophils is to inhibit their recruitment or activation. For
instance, IL-8 secreted by tumor cells is responsible for the
chemotactic recruitment of neutrophils to the TME via the
receptors CXCR1 and CXCR2 (39). Already applied in patients
suffering from other inflammatory diseases, inhibition of CXCR2
prevents the recruitment of immunosuppressive neutrophils
(188, 189). Recent studies in mouse models of cancer have also
shown promising effects of CXCR2 inhibition, which increased
effector T cell accumulation in tumors and enhanced responses to
immunotherapy, slowing tumorigenesis or preventing metastasis
(190–192). The effect of the CXCR1 and CXCR2 inhibitors
reparixin and SX-682 are currently being tested in clinical
trials in metastatic breast cancer patients (NCT02370238,
NCT03161431) (193).

Another example of the stimulation of anti-cancer responses
achieved by limiting neutrophil recruitment is the inhibition of
the receptor tyrosine kinase cMET (194). cMET is a receptor
for hepatocyte growth factor (HGF), which shows increased
levels and association with poor clinical outcome in human
cancer (195). Limiting neutrophil recruitment by blocking
cMET promotes the efficacy of adoptive T cell transfer and
checkpoint therapy in murine melanoma (196). Antagonists of
the HGF/cMET pathway have been developed and are being
tested in multiple types of human cancer (197).

In addition, targeting pathways leading to the pathological
activation of neutrophils could represent a strategy to limit
their tumor-promoting effects. IL-17 production by γδ T cells
was shown to induce G-CSF release in mice, resulting in
the accumulation of neutrophils with a T cell-suppressive
phenotype (174, 198). In human breast cancer, IL-17 and
γδ T cells have also been described as poor prognostic
factors (199, 200). Depletion of IL-17, G-CSF or γδ T cells
resulted in decreased T cell suppression, and the absence of
γδ T cells or neutrophils reduced metastases in a murine
breast cancer model (174). Currently, IL-17 specific antibodies
are being tested in psoriasis patients, but more preclinical
studies are needed before this could also be applied in cancer
patients (201).

In humans, G-CSF-mobilized neutrophils display
immunosuppressive activity (55). Interestingly, we reported
that neutrophil mobilization for granulocyte transfusion
purposes silenced the ability of neutrophils to suppress T cell
responses (202). The lack of MDSC activity was identified while
our findings demonstrated unaltered anti-microbial effector
activities, including motility, ROS formation, degranulation
and killing of bacteria and fungi (202, 203). This important
finding suggests that MDSC activity comprises common
effector functions combined with a distinct and unique
activity that is (only) involved upon MDSC induction. This
finding raises the possibility of using a selective approach
in patients to silence immunosuppressive neutrophils and
to thereby enhance T cell activity in tumors. Alternatively,
proteins of the complement system represent potential targets
to block the immunomodulatory and pro-tumor activity of

neutrophils, since the importance of C3 activation in T cell
suppression by neutrophils from cancer patients was nicely
illustrated (58).

Targeting Additional Pro-tumor Function of
Neutrophils
As described in previous sections, neutrophils rely on several
mechanisms to exert their pro-tumorigenic function. Interfering
with these downstream tumor-enhancing effects could provide
therapeutic benefit. For instance, increased uptake of fatty acids
by murine PMN-MDSCs was demonstrated to support their
immunosuppressive activity (204). Accordingly, PMN-MDSCs of
patients with head and neck, lung, or breast cancer displayed lipid
accumulation, along with increased expression of FATP2, a fatty
acid transporting protein (205). FATP2 deletion in mice resulted
in the loss of the ability to suppress T cell responses leading to a
delay in tumor progression. However, most findings from these
experimental studies were obtained in mouse models, which by
definition cannot be easily extrapolated to human cancer (206).

Other studies have focused on targeting NE, which contributes
to cancer progression through enhanced proliferation, invasion
and metastasis (31–33, 35–37, 207, 208). Suppression of NE
activity by the small molecule sivelestat resulted in reduced
tumor growth in murine models of colorectal and prostate
cancer (207, 208). The NE inhibitor sivelestat sodium hydrate
has been successfully applied in esophageal cancer patients,
although this study did not focus on tumor progression (209).
Furthermore, NETs may represent a target for reducing the
pro-tumor effects of neutrophils since their elimination by the
DNA degrading enzyme DNase I is a method that has been
established and is tested in clinical trials1, though not yet in
cancer (210). More clinical studies are necessary to investigate the
potential of targeting NE or NETs in human cancer patients. The
potential ways to limit pro-tumorigenic activity of neutrophils are
summarized in Figure 1; 1–4.

Promoting Anti-tumor Capacity of
Neutrophils
Releasing the Off-Switch
Although the above-mentioned approaches to modulate
MDSC activity or other pro-tumorigenic effector functions of
neutrophils are very promising, redirecting the toxic MDSC
activity against T cells toward an anti-tumorigenic role might
contribute and steer the effector functions away from neutrophils
as suppressor cells to effective tumor-killing in the TME. We
have already described the efficacy of neutrophils attacking
antibody-opsonized tumor cells, and there by we could speculate
that the presence of a mAb could already shift MDSC activity to
a certain extent by binding to the Fcγ receptor on their surface
and subsequently inducing a cytotoxic response.

Recent research has been focusing on further augmenting the
anti-tumor responses of neutrophils, i.e., by trying to switch off
the brakes. Neutrophils express a variety of inhibitory receptors
on their cell surface (211) providing potential therapeutic targets
for checkpoint-blockade therapy. One well-established example

1https://clinicaltrials.gov/

Frontiers in Immunology | www.frontiersin.org 9 September 2020 | Volume 11 | Article 2100

https://clinicaltrials.gov/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-02100 August 31, 2020 Time: 14:27 # 10

Furumaya et al. Targeting Neutrophils in Cancer

of successful checkpoint-blockade on neutrophils is CD47-
signal regulatory protein alpha (SIRPα) disruption (212). We
and others have already shown the potency of blocking the
interaction between CD47 and SIRPα on neutrophils, thereby
enhancing the neutrophil’s ADCC capacity against both solid and
hematological tumors in vitro and in vivo (213–215). Antibodies
targeting either SIRPα or CD47 have been recently described,
showing high efficacy and minimal to moderate toxicity effects
(216–218) and a number of clinical trials with these CD47-
SIRPα-interfering agents are ongoing1. In particular, Hu5F9-
G4 against CD47 was tested in combination with rituximab
for the treatment of patients with Non-Hodgkin’s lymphoma
in a phase 1b clinical trial (219) inducing durable complete
responses while no clinically significant toxicity events were
observed. At the moment, Hu5F9-G4 is tested in combination
with cetuximab for the treatment of colorectal cancers in a
phase 1b/2 clinical trial (NCT02953782). Pre-clinical data further
showed that blockade of the CD47-SIRPα checkpoint on innate
cells eventually activates an anti-tumor response in T cells,
bridging the innate with the adaptive immunity (220). Indeed,
macrophages were shown to function as APCs and thereby
activate the CD8+ T cell population while decreasing priming
of CD4+ T cells after anti-CD47-induced phagocytosis of tumor
cells (221). Also DCs are able to contribute to the therapeutic
effect of anti-CD47 treatment through cross-priming of CD8+
T cells (222). Results from additional future clinical studies will
demonstrate whether targeting the CD47-SIRPα axis in a clinical
setting indeed will activate both innate as well as adaptive anti-
tumor immunity.

Overall, most current studies considered macrophages or
NK cells to be the major effector cells in innate checkpoint-
blockade antibody therapy (223–225). Given that neutrophils are
endowed with similar inhibitory receptors, they can potentially
acquire a supporting anti-tumor response. Recent studies have
elucidated that Sialic acid-binding immunoglobulin-like lectins
or Siglec-blockade can augment the anti-tumor response both
by reinvigorating the innate cells and by depleting MDSCs
from the TME, thereby unleashing the T cells of the adaptive
immune system (180, 226–228). In another perspective, targeting
hypersialylation on tumor cells, a trait related to tumor
progression and therapy resistance, could also inhibit the Siglec-
sialoglycan axis and re-inforce the anti-tumor response (229).
The role of Siglec checkpoint-blockade has been highlighted
in neutrophils, where research on Siglec-9 or its murine
equivalent Siglec-E showed up regulation of the protein receptor
in the cytotoxic synapse formation between neutrophils and
carcinoma cells, while incubation of neutrophils with anti-
Siglec-9 mAbs resulted in significantly increased tumor cell
killing by neutrophils (230–233).

Enhancement of the anti-tumor response of neutrophils can
also be achieved by targeting signaling partners downstream of
the inhibitory receptors. Even better, combination of ligand-
receptor interaction disruption and simultaneous blockade of
a protein functioning downstream, could have a substantial
impact (234, 235). Protein tyrosine kinases (PTKs) and protein
tyrosine phosphatases (PTPs) are two important regulators of
immune cell responses. As they bind directly to the ITIM motif

of the cytoplasmic tails of inhibitory receptors, drugs targeting
their function could potentially amplify the neutrophil effector
function against tumor cells (236). Despite the above-mentioned
promising data on neutrophil effector function, evidence from
in vivo experiments will shed more light on the complexity of
neutrophil anti-tumor response.

Augmenting the On-Switch
A different perspective that could redirect pro-tumor and
immunosuppressive activity of neutrophils to improve their
cytotoxic responses toward cancer in the context of antibody
therapy, could be the use of alternative antibody isotypes
compared to the classical IgG1. Particularly, IgA antibodies,
which specifically bind the IgA Fcα receptor I (FcαRI or CD89)
present on cells of the myeloid lineage, including neutrophils
(237), are currently considered as a promising approach in
immunotherapy against cancer because of their superior ability
to induce neutrophil-mediated ADCC. This was reported for
a number of tumor-associated antigens such as Ep-CAM for
colon carcinoma, HER2/neu for breast carcinoma, EGFR for
epithelial, colorectal and renal cell carcinoma, HLA class II,
CD20 and CD30 for B-cell lymphoma, and carcinoembryonic
antigen as shown in in vitro studies (127, 128, 238–242). The
induction of such stronger cytotoxic responses upon an IgA
engagement of human neutrophils could be explained by the
higher avidity of FcαRI which binds bivalently to IgA, and
hence recruit more ITAMs to initiate a more robust signaling
to activate effector functions (242). Noteworthy, immature
neutrophils that were mobilized from the bone marrow after
G-CSF treatment triggered a more efficient ex vivo tumor cell lysis
in the presence of an IgA antibody compared to IgG (244, 245).
Based on this we speculate that the use of IgA antibodies could
unleash the cytotoxic potential of G-CSF mobilized immature
neutrophils in antibody therapy of cancer that otherwise would
be immunosuppressive, or even trigger re-polarization of PMN-
MDSCs, due to FcαRI constitutive expression (128). In an in vivo
setting, however, the use of IgA tumor-targeting antibodies
is restricted due to the lack of an FcαRI homolog in mice.
Nevertheless, the existing genetic engineering techniques have
allowed the creation of FcαRI transgenic mouse models, which
have been used to confirm the powerful capacity of IgA-mediated
tumor killing by myeloid cells in a few studies for EGFR+ tumors
(246, 247). An important limitation of IgA antibodies in vivo as
well as in humans is the short half-life compared to that of IgG
isotypes (15 h versus 4 days, respectively, in mice, and 5–6 days
versus 21 days, respectively, in humans) (237, 246, 248). Attempts
to extend the half-life of such promising antibodies or combine
them with immune checkpoint blockade therapy are currently
being studied (249, 250) and will bring new insights for human
application in the near future.

Alternatively, several other approaches to increase ADCC
activity of therapeutic antibodies are currently being studied.
The majority of these approaches involve glyco- and protein-
engineering of IgG1-Fc portions to improve the binding
affinities to the activating Fcγ receptors on immune effector
cells. On the one hand, it is now firmly established that
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the glycosylation patterns of the IgG-Fc region are essential
for the activation of downstream biological mechanisms of the
molecule. Consequently, interfering with such post-translational
modifications can drastically influence the effector functions
of the immune cells binding to it (137, 251). Specifically,
core-fucosylation modifications of the IgG-Fc part are the
ones showing a more significant effect (252), although Fc
galactosylation and sialylation can have an influence as well (253,
254). In particular, the removal of the core fucose from Fc glycans
of IgG1 was shown to increase the binding affinity to FcγRIIIa
on NK cells, which resulted in a significant enhancement
of ADCC activity for this particular effector cell type (255–
257). In the case of neutrophils as effector cells, a reduction
of the fucose content of the mAb actually abolished anti-
tumor activity instead, indicating that antibody fucosylation
differentially impacts cytotoxicity mediated by human NK cells
and neutrophils (148). A similar finding was described upon
deglycosylation of alemtuzumab (114). These observations may
be explained by the fact that human neutrophils only express
the decoy receptor FcγRIIIb, which was found to bind with
high affinity to low-fucose antibodies, thereby impeding antibody
efficacy. A better approach to specifically enhance neutrophil-
mediated ADCC responses could be achieved by interfering
with the amino acid sequences of the Fc region of the targeting
antibody. Specific mutations in this region lead to a higher
affinity of anti-EGFR mAbs to the activating FcγRIIa on
neutrophils rather than to the decoy FcγRIIIb, which resulted in
a restored ADCC activity by purified human neutrophils (257).
This approach should be considered to enable the successful
development of “next-generation” antibodies when targeting
neutrophils as promising effector cells. The most encouraging
ways to enhance the anti-tumorigenic activity of neutrophils are
depicted in Figure 1; 5–8.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Over time, neutrophils have been identified as important players
in cancer, having the unique capacity to either promote or
suppress tumor progression. In the present review, we have
first provided an overview of such opposing functions of
neutrophils that neutrophils can perform. Cancer progression
is mediated by neutrophils via several mechanisms, such

as the promotion of proliferation, angiogenesis, invasion
and metastasis, as well as via suppression of anti-tumor
T cell responses. Potential ways to limit the pro-tumor
activity of neutrophils include the reduction of neutrophil
numbers, or the inhibition of the recruitment or activation
of immunosuppressive neutrophils. Conversely, neutrophils can
efficiently act as effector cells toward cancer when triggered
in the presence of a therapeutic antibody opsonizing the
cancer cells, leading to tumor elimination. By releasing
the brakes that suppress neutrophils (i.e., interfering with
immune checkpoints) or by augmenting the affinity to the
opsonizing antibody of interest, the anti-tumorigenic capacities
of neutrophils can be significantly enhanced. As research
focuses more and more on exploiting neutrophils against
cancer, we anticipate that the aforementioned approaches
will prove to be highly valuable to suppress the pro-tumor
capacities of neutrophils and consequently fully unleash the
anti-tumor potential of neutrophils. However, the similarity of
these yet distinguished populations, may make the neutrophil-
specific targeting difficult to accomplish in vivo. The coming
years of neutrophil-related research will help understanding
neutrophil behavior, while by using new developments we might
witness a new era on harnessing neutrophil function against
tumor progression.
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