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Biological importance of OCT transcription factors
in reprogramming and development
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Abstract
Ectopic expression of Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells
(iPSCs). Attempts to identify genes or chemicals that can functionally replace each of these four reprogramming
factors have revealed that exogenous Oct4 is not necessary for reprogramming under certain conditions or in the
presence of alternative factors that can regulate endogenous Oct4 expression. For example, polycistronic expression of
Sox2, Klf4 and c-Myc can elicit reprogramming by activating endogenous Oct4 expression indirectly. Experiments in
which the reprogramming competence of all other Oct family members tested and also in different species have led
to the decisive conclusion that Oct proteins display different reprogramming competences and species-dependent
reprogramming activity despite their profound sequence conservation. We discuss the roles of the structural
components of Oct proteins in reprogramming and how donor cell epigenomes endow Oct proteins with different
reprogramming competences.

Introduction
The OCT protein family comprises eight transcription

factors that bind to specific target sequences to regulate
gene expression1–3. These factors play important roles in
the maintenance of cellular identity in different tissues
and in mediating cell fate decisions throughout embryonic
development4–6. Because Oct proteins regulate the
expression of hundreds of target genes that determine and
maintain cellular identity, ectopic expression of Oct pro-
teins is widely used as a means to redirect and reprogram
cellular identity7–13. Well-studied examples include
reprogramming of somatic cells into induced neural stem
cells (iNSCs) with Oct9 or into induced pluripotent stem
cells (iPSCs) with Oct47,10.
Arguably, the most studied Oct family member is Oct4,

not only because of its essential physiological role in early

development but also because of its unique transcriptional
functions in reprogramming biology5,14–17. Oct4 is the
only OCT protein that can induce pluripotency18–21,
which has been a somewhat surprising revelation since
OCT family members display profound sequence con-
servation. Notwithstanding, these observations have
fueled long-standing interest in understanding exactly
how OCT4 evokes pluripotency and why other Oct family
members do not have this effect.
Recent studies offer exciting new insights into the

biology of reprogramming both with and, interestingly,
without exogenously administered Oct4. It was shown
that reprogramming somatic cells to pluripotency can in
fact be achieved by completely abrogating ectopic Oct4
expression22,23. This result indicates that reprogrammed
cells acquire and establish a self-sustaining pluripotent
state that is evoked by endogenous Oct4 expression.
Importantly, it was shown that reprogramming without
the use of exogenous Oct4 significantly improves the
overall quality of the iPSCs because exogenous Oct4 can
disrupt imprinted gene expression and create off-target
effects23. Indeed, iPSCs generated without the use of
exogenous Oct4 display superior developmental potential
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as determined by a tetraploid complementary assy. These
observations, together with results from other recent
studies, revealed that the induction of pluripotency can be
achieved as long as endogenous Oct4 can be activated,
either directly or indirectly24–30. Essentially, it has become
clear that, while endogenous Oct4 expression is necessary,
exogenous Oct4 is sufficient but not necessary for
reprogramming somatic cells.
Along these lines, it was recently shown that virtually all

OCT proteins harbor reprogramming competence, and
they can activate the pluripotency network to different
degrees under optimal conditions31,32; these conditions
are differentially inferred by diverse donor cell epigen-
omes that differ not only between donor cell types but
also between species. It appears that reprogramming
competence not only can be significantly enhanced, for
example, by chemical intervention, but can also be syn-
thesized completely de novo via optimal combinations of
chemically altered donor cell epigenomes and exogen-
ously provided transcriptional regulators that activate the
pluripotency network under defined culture condi-
tions31,32. Here, we review our current understanding of
how Oct proteins function in the reprogramming process
and discuss the differential roles of exogenous and
endogenous Oct4 in reprogramming biology. We provide
an overview of factors that can replace Oct4 in murine
and human reprogramming and discuss how these
replacements enable the acquisition of pluripotency. We
elaborate on recent findings showing how reprogramming
can be achieved without administration of exogenous
Oct4 and share our view on how different reprogramming
competences of Oct proteins are differentially mediated in
different species.

POU proteins: an overview
The POU (Pit-Oct-Unc) protein family comprises 15

transcription factors that bind to specific target sequen-
ces33–36. POU proteins have diverse roles in a wide range
of cellular processes4–6 and are categorized into six classes
(POU I to POU VI) based on the sequence similarity of
their DNA-binding domains (DBDs)1,3. Only proteins in
the POU II, III and V classes, which predominantly bind
to the octamer motif (consensus sequence ATGCAAAT)
and its variants, are classified as octamer-binding (Oct)
proteins. Proteins in other POU classes (POU I, IV and
VI) display lower binding affinity for the octamer motif
and thus are classified as nonoctamer-binding proteins.
The Oct protein group constitutes eight family mem-

bers (Oct1, Oct2, Oct4, Oct6, Oct7, Oct8, Oct9 and
Oct11), and the numbering of each protein is based on the
position at which DNA probes used in electrophoretic
mobility shift assays (EMSAs) are bound2. Oct proteins
share a highly conserved bipartite DNA-binding domain
(DBD), consisting of two structurally independent

subdomains, a 75 amino acid N-terminal POU-specific
domain (POUS) and a 60 amino acid C-terminal POU
homeodomain (POUH)

1,3,4,37,38. Each POU domain can
bind a sequence of four base pairs in the major groove of
the cognate DNA sequence, thereby placing each POU
domain on either side of the DNA helix and effectively
encircling target DNA sequences37,38. A linker, which
varies in length and sequence between Oct proteins, is
flanked by these two POU domains4,6,37. This linker also
influences the binding specificity and conformation of Oct
proteins to DNA sequences, although it does not appear
to physically interact with the DNA sequence itself39,40.
Posttranslational modifications of POU domains, includ-
ing ubiquitylation, glycosylation, SUMOylation, phos-
phorylation and oxidation, also influence the binding
ability of Oct proteins to cognate DNA sequences41–45.
Oct proteins form homodimers or heterodimers with
other partner proteins on specific target sequences46–49,
adding an additional layer of target gene control. Oct
proteins harbor two transactivation domains (TADs) that
are located on each side of the DBD5. In contrast to DBDs,
TADs exhibit little sequence conservation and vary in
length between Oct proteins. TADs are known to play
important roles in the transcriptional stimulation of target
genes by interacting with basal transcription machinery
and other cofactors50,51.

Biological functions of Oct proteins in development
Oct proteins of the POU II class include Oct1 (also

known as Otf-1 and Pou2f1), Oct2 (also known as Pou2f2)
and Oct11 (also known as Skn-1 and Pou2f3)4–6. Although
they belong to the same class, their expression patterns and
functions are grossly different during embryonic develop-
ment. Oct1 is ubiquitously expressed and can be detected
in almost all cell types52,53, whereas the expression of Oct2
and Oct11 is largely restricted to specific cell types. Oct2 is
highly expressed in B lymphocytes and plays an important
role in normal germinal center reactions54–56. Oct11 is
highly expressed in skin epithelial cells and taste cells and
is critical for epidermal differentiation and the composition
of taste receptor cells57–59.
Oct4 belongs to the POU V class4–6. It is the best-

characterized OCT member because of its profound bio-
logical importance in early embryonic development, germ
cell maintenance, stem cell pluripotency and cellular
reprogramming5,14–17. Oct4 is highly expressed in totipo-
tent and pluripotent cells, including oocytes, early
cleavage-stage embryos, inner cell mass (ICM) of blas-
tocysts, epiblasts, embryonic stem cells (ESCs) and germ
cells60–62. Oct4 expression is regulated by two cis-
enhancer elements (distal and proximal enhancers) that
are located 2 kb upstream of its transcriptional start
site63,64. Interestingly, the activity of these enhancers dif-
fers between cell types. The proximal enhancer (PE) is
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active in epiblasts of postimplantation embryos and epi-
blast stem cells (EpiSCs), whereas the distal enhancer (DE)
is active in the ICM, ESCs and germ cells64–66. Reducing
the expression levels of Oct4 in ESCs triggers their dif-
ferentiation towards primitive endodermal, mesodermal
and trophectodermal cell lineages67,68. Oct4-deficient
embryos are viable to the blastocyst stage, but the ICM
cannot be formed in these embryos69. These observations,
together with the discovery of iPSC technology10,70, have
underscored the functional importance of Oct4 for both
the maintenance and establishment of pluripotency.
POU III factors (Oct6, Oct7, Oct8 and Oct9) are pro-

minently expressed in cells and tissues of the central
nervous system (CNS)1,71,72. They play critical roles in
neurogenesis and gliogenesis73–77. Interestingly, the
deletion of any one of these genes in mice does not lead to
severe phenotypes74,75,78. Distinct phenotypes are only
observed when two or three of POU III factors are
simultaneously deleted, indicating their functional
redundancy. The DBDs in POU III factors are highly
conserved, and consequently, these factors display similar
DNA-binding characteristics and DNA-dependent
dimerization features18,20,79,80, providing a molecular
explanation for their functional redundancy. Along this
line, overexpression of any POU III factor can convert
fibroblasts into neural lineage cells7–9,11–13. Thus, similar
to Oct4, POU III factors are not only essential regulators
of normal development but can also convert cellular
phenotypes upon ectopic expression.
Oct6 (also known as SCIP, Tst-1 and Pou3f1) is expressed

in Schwann cells, oligodendrocyte progenitor cells (OPCs)
and keratinocytes71,73–76,78,81. Furthermore, Oct6 play an
important role in the specification and differentiation of
neuroectodermal lineages82–85. It was shown that Oct6 is
expressed in ESCs72,86,87. However, we and others have
recently failed to detect Oct6 expression in the ICM, iPSCs
or ESCs32,83,88–91. Instead, its expression was detected in
epiblasts of E5.5–E6.5 postimplantation embryos and
EpiSCs32,83,88–91. Epiblasts and EpiSCs represent a more
developmentally differentiated state compared to the ICM,
iPSCs or ESCs and display gene expression characteristics
of gastrula-stage ectoderm66,92,93. To date, knockout studies
of Oct6 in epiblasts and EpiSCs have not been performed.
Therefore, the specific role and functionality of Oct6 in
epiblast formation and maintenance of the primed state of
pluripotency remain incompletely understood. However,
one can speculate that its role in embryonic development is
not as critical as that of Oct4 because homozygous Oct6-
knockout mice are born, although they die soon after birth
because of respiratory defects73,94.

Reprogramming of somatic cells to pluripotency
Yamanaka and Takahashi made a landmark discovery

showing that ectopic expression of Oct4, Sox2, Klf4 and c-

Myc can reprogram somatic cells into iPSCs10,70. These
four reprogramming factors work interdependently to
inactivate features of somatic cell identity and con-
currently to activate properties of pluripotent stem
cells95–98. During cell fate transition, cells undergo dra-
matic changes at the morphological, transcriptional and
epigenetic levels. Notably, only a small proportion of these
cells pass through all of these changes and eventually
became bona fide iPSCs. Therefore, the reprogramming
process is stochastic and inefficient99.
Various gain- and loss-of-function screenings have led

to the discovery of specific genes and molecular pathways
that inhibit or enhance the reprogramming pro-
cess19,26,31,100–112. For example, specific epigenetic mod-
ifications, including DNA methylation, H3K9 methylation
and H3K79 methylation marks, and/or the related
enzymes (e.g., DNMTs, HDACs, LSD1, and DOT1L) can
act as barriers to the reprogramming process. Therefore,
forced elimination of these epigenetic barriers either
through genetic inactivation or chemical inhibition can
enhance or improve the reprogramming pro-
cess31,100,102,103,106–109,112. In contrast, forced expression
of chromatin remodelers, such as Dppa2 and Dppa4, can
reset the epigenome of somatic cells to a pluripotent
configuration that enhances both reprogramming effi-
ciency and kinetics113. In addition, other transcription
factors, including Esrrb, Glis1, Nr5a2, Prdm14, Rarg,
Sall4, Tbx3, Foxa2, Foxf1, Foxh1, Lhx1 and T, can each
significantly enhance reprogramming when overexpressed
together with Oct4, Sox2, Kfl4 and c-
Myc19,26,101,104,105,110,111,114. Other studies have shown
that altering culture conditions and/or using different
donor cell types can result in completely different
reprogramming outcomes115–118. For example, adding
specific nutrients (e.g., vitamin C) to the culture medium
or inducing hypoxic cell culture conditions can greatly
enhance reprogramming efficiency116,118. Furthermore,
significantly higher reprogramming efficiency can also be
achieved with donor cells that contain inherent pheno-
typic plasticity and/or high replication potential115,117.
Despite the significant advances that have been made to

improve and understand the reprogramming process with
Oct proteins, critical questions have remained unan-
swered, e.g., Is exogenous Oct4 expression truly essential
for inducing pluripotency? More importantly, how are
reprogramming competences of Oct proteins actually
mediated and what are the structural bases that define
them? Finally, how or why do reprogramming compe-
tences of Oct proteins differ, particularly among species?

Exogenous Oct4, but not endogenous Oct4, is dispensable
for reprogramming
For many years and for several reasons, it has been

widely assumed that exogenously administered Oct4 is
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the most important and, in fact, indispensable factor for
the reprogramming process. First, while Sox2, Klf4 and c-
Myc can each be replaced by their respective family
members, Oct4 cannot be replaced by any of its para-
logs18–21. Second, and again in contrast to Sox2, Klf4 or c-
Myc, Oct4 alone can elicit reprogramming when specific
pathways or molecules are inhibited by compounds (e.g.,
VPA, a HDAC inhibitor, or CHIR-99021, a GSK-3 inhi-
bitor) or when a specific cell type is used as a donor cell
(e.g., NSCs)119–123. Finally, perturbation of key Oct4
functions by deletion of structural components or by
introduction of inactivating point mutations completely
abolishes the reprogramming process18,20,124,125.
However, the view that exogenous Oct4 is indispensable

for reprogramming has recently changed. Undoubtedly,
including Oct4 in reprogramming cocktails appears to be
the most efficient means to generate iPSCs. However,
recent studies have revealed that exogenous Oct4 can be
entirely omitted from reprogramming cocktails or can be
replaced by its family members, different transcription
factors or small molecules22,24–27,29–32,126–129. For exam-
ple, Nr5a1 (also known as Sf-1), Nr5a2 (also known as
Lrh1) or Sall4/Nanog can each functionally replace Oct4
and elicit reprogramming together with Sox2, Klf4 and c-
Myc24,26. Notably, these genes lie genetically upstream of
Oct4, such that their ectopic expression can directly
activate endogenous Oct4 expression, resulting in iPSC
generation24,130–132 (Fig. 1a). The DNA demethylase Tet1
can also functionally replace Oct4 in reprogramming25.
Ectopic expression of Tet1 mediates demethylation at the
regulatory regions of Oct4, consequently resulting in
activation of endogenous Oct4. These studies clearly
demonstrate that the induction of pluripotency in con-
junction with Sox2, Klf4 and c-Myc can be mediated
without exogenous Oct4 by the use of alternative factors
that are capable of directly activating endogenous Oct4
expression.
Interestingly, genes that do not directly regulate the

endogenous Oct4 locus can also elicit reprogramming in
conjunction with Sox2, Klf4 and c-Myc (Fig. 1b). These
genes include Gata1–6, Sox7, Pax1, Cebpa, Hnf4a and
Grb2, most of which, in normal physiological processes,
do not lie genetically upstream of Oct4 and are not
expressed in ESCs or iPSCs. Most of these factors nor-
mally function as lineage-specific transcription factors
and play important roles in cell fate determination of
mesodermal and endodermal lineages during embryonic
development29,30. A study aiming to decipher the mole-
cular mechanisms of Gata factor-based reprogramming
revealed that ectopic expression of Gata factors can acti-
vate Sall4, which in turn activates endogenous Oct4,
consequently resulting in iPSC generation without exo-
genously administered Oct430. Based on these observa-
tions, it has been speculated that activating endogenous

Oct4 expression indirectly may be a common way to elicit
reprogramming by all other lineage-specific transcription
factors. However, Nkx3.1 and Oct6, which are also
lineage-specific transcription factors, do not seem to fol-
low this mode of action. Indeed, we and others have
recently revealed that Nkx3.1 and Oct6 can directly bind
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Fig. 1 iPSCs can be generated by direct or indirect activation of
endogenous Oct4. a Direct activation of endogenous Oct4 by Oct4
upstream genes or chemical compounds. b Indirect activation of
endogenous Oct4 by lineage specifiers or polycistronic expression of
Sox2, Klf4, and c-Myc.
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to regulatory regions of Oct4 to regulate its expres-
sion32,126. Thus, these observations clearly suggest that
the indirect mode of action might not apply to the
reprogramming function of all other lineage-specific
transcription factors.
In addition to ectopic expression of genetic factors,

specific chemicals can also functionally replace exogenous
Oct4 and induce pluripotency in conjunction with Sox2,
Klf4 and c-Myc27,28. For instance, NSCs transduced with
Sox2, Klf4 and c-Myc and subsequently cultured in the
presence of BIX-01294, an inhibitor of the histone
methyltransferase G9a, give rise to iPSC colonies28 (Fig.
1a). G9a is critical for de novo DNA methylation at reg-
ulatory regions of Oct4133,134. Thus, BIX-01294 treatment
results in demethylation at regulatory regions of Oct4,
leading to activation of endogenous Oct4 expression28.
BIX-01294-mediated reprogramming does not seem to be
effective with mouse embryonic fibroblasts (MEFs), indi-
cating that inhibition of different molecular pathways is
required for eliciting reprogramming of different types of
donor cells. In MEFs, exogenous Oct4 can be functionally
replaced by various other small molecules, including for-
skolin (a cAMP agonist), 2-methyl-5-hydroxytryptamine (a
5-HT3 agonist) or D4476 (a casein kinase 1 inhibitor)27

(Fig. 1a). The precise molecular mechanism by which each
of these chemicals induces pluripotency in conjunction
with Sox2, Klf4 and c-Myc remains elusive. However, it is
likely that some, or perhaps all, of these chemicals induce
endogenous Oct4 expression either directly or indirectly
since iPSC colonies would otherwise not be formed. With
these studies, it has been established that exogenous Oct4
is dispensable for reprogramming, but endogenous Oct4 is
not, which is in agreement with the fact that endogenous
Oct4 is absolutely required for the establishment of plur-
ipotency in preimplantation-stage embryos69.

Reprogramming with Sox2, Klf4 and c-Myc alone produces
high-quality iPSCs
We and others recently showed that iPSC generation is

possible without exogenous administration of Oct4 or any
of its known replacers (Oct4 upstream genes, lineage-
specification transcription factors or chemicals) when
Sox2, Klf4 and c-Myc are connected together by the 2 A
peptide and ectopically expressed from a single poly-
cistronic vector in MEFs22,128. Integrative ChIP-seq and
RNA-seq analyses of cells undergoing reprogramming
with Sox2, Klf4 and c-Myc alone revealed that Sox2 and
Klf4 can directly bind and mediate the activation of
pluripotency genes, including but not limited to Sall4 and
Nanog, which in turn mediate the activation of endo-
genous Oct4 expression22,128. Interestingly, reprogram-
ming by Sox2, Klf4 and c-Myc alone is context-dependent
for various reasons. First, only polycistronic expression of
Sox2, Klf4 and c-Myc can elicit reprogramming22,128.

Monocistronic expression of Sox2, Klf4 and c-Myc does
not yield iPSC colonies, indicating that stoichiometric
cooperativity with these three reprogramming factors is
necessary for eliciting reprogramming. Second, iPSC
generation is possible by lentiviral and episomal delivery
of Sox2, Klf4 and c-Myc but not by retroviral delivery due
to rapid retroviral silencing that occurs in the early phase
of reprogramming. Interestingly, the simultaneous
expression of Sox2 and Klf4 activates retrovirus silencing
machinery (e.g., Trim28, Setdb1 and Chaf1a/b), which in
turn mediates retroviral silencing128. Finally, reprogram-
ming with Sox2, Klf4 and c-Myc alone is species-depen-
dent, such that reprogramming in this manner can be
achieved in mouse cells but not in human cells128. In
future studies, elucidating exactly why or how the func-
tion of these three factors differs between species will
provide important mechanistic insights that will further
help to define the molecular impediments to the repro-
gramming process.
The poor quality of iPSCs yields from reprogramming is

a key limitation that precludes the development of iPSC-
based applications in regenerative biomedicine. It has
been shown that the quality of iPSCs can be directly
influenced by the stoichiometric expression of repro-
gramming factors (e.g., Oct4high/Klf4high/Sox2low/c-
Myclow), supplements of cell culture media (e.g., vitamin
C) and/or the choice of reprogramming factors (e.g.,
Sall4/Nanog/Esrrb/Lin28a or Oct4/Sox2/Klf4)135–137.
Although reprogramming with c-Myc together with Oct,
Sox2 and Klf4 provides larger yields of iPSCs, c-Myc
exerts a detrimental effect on imprinted loci, resulting in
significantly reduced developmental potential135. Intrigu-
ingly, we recently discovered that the quality of iPSCs is
dramatically reduced by exogenously expressed Oct4128.
In fact, iPSC lines generated by polycistronic expression
of Sox2, Klf4 and c-Myc without Oct4 produced all-iPSC
mice much more efficiently than iPSC lines generated by
conventional polycistronic expression of the four factors.
By comparing transcriptomes and epigenomes between a
series of iPSC lines generated with the two different
reprogramming cocktails, i.e., with and without exogen-
ous Oct4, we came to the decisive conclusion that ectopic
Oct4 expression reduces iPSC quality by anomalously
activating off-target genes unrelated to pluripotency and
disrupting imprinted gene expression128. Considering the
immense usage of iPSCs in various biomedical applica-
tions, investigations into whether iPSC lines generated
without exogenous Oct4 by alternative factors are of good
quality are warranted.
It has been shown that obtaining high-quality iPSCs is

strongly correlated with lower reprogramming effi-
ciency135,136. Consistently, reprogramming without Oct4
but with Sox2, Klf4 and c-Myc produces fewer iPSC
colonies with slower reprogramming kinetics, but the
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majority of the iPSC lines derived from these colonies are
of superior quality, as assessed by molecular profiling and
their contribution to tetraploid complementation128.
Thus, the theme that “less is more” appears to hold true
for reprogramming biology. Reprogramming systems that
yield iPSCs with high efficiency and fast kinetics come
with the price of generating a high proportion (too high)
of low-quality iPSCs.

Transactivation domains and donor-cell epigenomes are
tightly linked to reprogramming competences
Despite the iPSC quality drawbacks that can occur by

reprogramming with exogenous Oct4, it is by far the
strongest pluripotency inducer. The observation that
Oct4 cannot be functionally replaced by other Oct family
members in murine reprogramming18,20,21,31, although
Oct proteins share profound sequence conservation, has
fueled interest in understanding what makes Oct4
uniquely competent in inducing pluripotency. We and
others have compared the structures and biochemical
properties of Oct proteins to better understand the
molecular basis of the reprogramming processes. Inter-
estingly, despite their high similarities in protein
sequences, the DNA-binding profiles of Oct proteins and
their DNA-dependent dimerization with Sox2 are
remarkably different18,20,80. Specifically, Oct4 pre-
ferentially forms heterodimers with Sox2 through the
canonical SoxOct motif (CATTGTTATGCAAAT),
which is highly enriched in enhancers of pluripotency
genes, including Nanog, Fgf4, Utf1 and Pou5f118,46,47,80.
In contrast, other Oct proteins, such as Oct6 and Oct7,
preferentially form homodimers through the more
palindromic octamer recognition element (MORE;
ATGCATATGCAT) motif, which is predominantly
found in the regulatory regions of neural genes, includ-
ing Neurog1, Olig1 and Ascl118,47–49. The formation of
Oct4-Sox2 heterodimers through SoxOct motifs appears
to be necessary for inducing pluripotency because
mutations that disrupt Oct4-Sox2 heterodimer forma-
tion abolish reprogramming competence18,138,139. Oct6
and Oct7 can also bind to the SoxOct motif in EMSAs,
albeit with low efficiency18,80. However, ChIP assays with
ESCs, neural precursor cells (NPCs) and cells under-
going reprogramming failed to detect Oct6 and Oct7
binding to the SoxOct motif13,20,32,77,80,140. The dis-
crepancy of these results might be due to the different
experimental settings and sensitivities of these two dif-
ferent assays. Notwithstanding, these studies clearly
indicate that Oct proteins display differential DNA-
dependent dimerization properties and DNA-binding
profiles, providing an explanation for why they display
different reprogramming competences and, more speci-
fically, why Oct4 cannot be functionally replaced by its
family members in murine reprogramming.

To support this idea, through structural modeling, we
found that methionine at position 151 is critical for the
homodimerization of Oct proteins through the MORE
motif18. This amino acid is contained in POU III factors
(e.g., Oct6) but not in Oct4. Therefore, amino acid sub-
stitution of methionine 151 with serine (Oct4S151M)
increases its ability to form homodimers through the
MORE motif18. In contrast, amino acid substitution of
methionine to serine in residue 151 of Oct6 (Oct6M151S)
reduced its ability to form homodimers through the
MORE motif18. Although the binding propensities of
these two mutants to the MORE motif were significantly
altered, their respective binding propensity for the SoxOct
motif was not substantially changed compared to that of
their wild-type counterparts18. As such, Oct4S151M still
produced iPSC colonies similar to wild-type Oct4 and
Oct6M151S was unable elicit reprogramming similar to
wild-type Oct618. These findings indicate the binding
preference of Oct proteins for MORE is not the key to
their reprogramming competences. Previously, it was
shown that two amino acids at residues 7 and 22 in the
POU-specific domain of Oct4 are essential to form an
Oct4-Sox2-DNA ternary structure141. Interestingly,
changing these amino acids by substituting aspartic acid
with lysine at residue 7 and lysine with threonine at
residue 22 in Oct6M151S (OCT6 M151S/D7K,K22T) enables
this engineered Oct6 mutant to bind to the SoxOct motif.
Consequently, it is capable of producing iPSC colonies18.
However, the reprogramming efficiency of this mutant
was extremely low. Thus, other structural features in
addition DNA-dependent dimerization are required to
mediate Oct6-mediated reprogramming efficiently in
murine cells.
In mouse ESCs, Oct4 mutants in which both N-TAD

and C-TAD are deleted show severe phenotypes and
cannot maintain a pluripotent state142. Interestingly,
only one TAD in Oct4 is needed to maintain the
functionality of Oct4, since mouse ESCs in which either
the N-TAD or C-TAD of Oct4 is deleted maintain
pluripotency142. However, when the reprogramming
competences of Oct6-Oct4 domain-swapped chimeras
were tested, the chimeric proteins (O466 and O664) in
which either N- or C-TADs of Oct4 was introduced
into the corresponding site of Oct6 did not acquire
reprogramming activity32. However, when both N- and
C-TADs of Oct4 were introduced into corresponding
sites of Oct6, the chimeric protein (O464) induced the
formation of iPSC colonies32. Overall, these observa-
tions reveal interconnected functional features of TAD
and DBD, which together are crucial for mouse cell
reprogramming and pluripotency maintenance: differ-
ential DNA-dependent binding propensities through
the DBD and functional features of the TAD that are yet
to be discovered.
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OCT6 is a pluripotency inducer and acts as a pioneer
transcription factor in human reprogramming
Oct4 has been used for iPSC generation from cells

obtained from a number of different species, including
mice, humans, rats, monkeys and gorillas10,70,143–145,
underscoring the universality and conserved fundamental
function of Oct4 for inducing pluripotency. Notably, most
studies addressing the possibility of replacing Oct4 for
reprogramming have been performed with mouse
cells24–26,29,30. However, because of its ever more
increasing significance for biomedicine, there is great
interest in determining whether Oct4 replacers can
function similarly in cells from other species, especially
humans. Until recently, Nxk3.1 was the only known factor
that can induce pluripotency in addition to Oct4 in both
human and mouse cells126. Nr5a1, Nr5a2, Tet1, Sall4,
Nanog and Gata3 can all replace Oct4 in reprogramming
murine cells to pluripotency. However, these paralogs fail
to produce iPSC colonies in conjunction with Sox2, Klf4
and c-Myc in human cells32, clearly indicating their
mouse-specific reprogramming competence. A potential
explanation for these divergence outcomes might involve
the differences in the chromatin structures and epigen-
omes in human and mouse cells. This is because the
accessibility of reprogramming factors to target sites differ
between human and mouse cells146–149. Thus, the
reprogramming competences of these Oct4 replacers are
likely differentially regulated depending on the epigenetic
state of the donor cells. In agreement with this concept,
we recently showed that creating an epigenetically per-
missive environment for human donor cells through a
combinational treatment of compounds that affect chro-
matin modifications, including DNA methylation and
histone methylation, enabled the generation of iPSC
colonies upon administration of Nr5a1, Nr5a2, Tet1,
Sall4, Nanog and Gata331. Together, these findings trig-
gered our hypothesis that other factors which can replace
Oct4 specifically in human reprogramming might exist.
By executing a functional screening of 100 tested can-

didate genes, we surprisingly found that Oct6 can induce
pluripotency in conjunction with Sox2, Klf4 and c-Myc in
human cells32. This observation was especially intriguing
because Oct6 cannot generate iPSC colonies from mouse
cells18,20,21. Notably, human and mouse Oct6 proteins
share 98.89% identity, and both proteins can elicit
reprogramming of human cells but not of mouse cells32.
Therefore, its species-dependent reprogramming compe-
tence is not mediated by sequence variations of ortholo-
gous Oct6 proteins but by the differences in mouse and
human cell epigenomes. Indeed, if the levels of specific
epigenetic modifications, including H3K27 methylation,
H3K79 methylation, H3K4 methylation and H3K9
methylation, are modulated, ectopic Oct6 expression
enables iPSC generation from mouse cells31.

Although Oct4 and Oct6 are functionally interchange-
able for inducing human pluripotency, OCT6-mediated
reprogramming is significantly slower and less efficient
than that mediated by OCT432. Comparative RNA-seq
analysis of TRA-1–60+/CD31− cells collected over the
time course of reprogramming with Oct4 and Oct6
revealed that the mesenchymal-to-epithelial transition
(MET) was not different. This finding supports the
argument that Oct proteins do not affect or delay the
MET process during reprogramming. However, the acti-
vation of pluripotency genes is remarkably delayed in
Oct6-mediated reprogramming32. Integrative ChIP-seq
and RNA-seq analyses revealed that the delayed activation
of pluripotency genes in Oct6-based reprogramming is
largely due to the delayed binding of Oct6 to regulatory
regions of corresponding genes32. Consequently, Oct6-
mediated reprogramming is relatively inefficient and slow.
Importantly, Oct6 can directly bind to the Oct4 locus,
underscoring the concept that endogenous Oct4 expres-
sion is essential to the reprogramming process. Therefore,
Oct6 lies genetically upstream of Oct4, at least in humans.
In mice, Oct4 and Oct6 are coexpressed in EpiSCs and
epiblasts32,83,88–91. Therefore, in future studies, it will be
important to investigate whether and how Oct4 is regu-
lated by Oct6, or vice versa, in these specific cell types to
better understand the species-specific impediments of
reprogramming with these factors.
Oct4 fulfills the criteria of being a pioneering tran-

scription factor, such that it can engage nucleosomal
DNA and thereby initiate regulation of its target genes
that promote a change in cell fate148–150. To date, exactly
how this pioneering activity is achieved remains poorly
understood. We recently showed that the pioneering
activity of Oct4 depends on functional synergism between
Oct4 C-TAD and Oct4 DBD32. The absence of Oct4 C-
TAD significantly abolishes the ability of Oct4 to bind
pluripotency gene enhancers, and more importantly, its
function is only possible when it is connected to the Oct4
DBD. In fact, introducing Oct4 C-TAD to corresponding
sites of Oct6 does not change the binding of Oct6 to
pluripotency gene enhancers and its reprogramming
competence32. Intriguingly, in contrast to Oct4, Oct6
displays its pioneering synergistic activity with its DBD
through the N-TAD. Interestingly, the Oct4 C-TAD can
be functionally replaced by the Oct6 N-TAD but not the
Oct6 C-TAD32. Similarly, when the N-TAD of Oct6 is
connected with Oct4 DBD, the binding ability of these
chimeras to enhancers of pluripotency genes dramatically
increases. It has been shown that the N-TAD of Gata3 is
critical for Gata3-mediated chromatin remodeling and its
pioneering activity151. The C-TAD of Ebf is also required
for its pioneering activity and B cell reprogramming152.
Furthermore, the C-TAD of Hnf3 (also known as FoxA) is
critical for its pioneering function153. Overall, these
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observations support our conclusion that the C-TAD of
Oct4 and the N-TAD of Oct6 are critical for their pio-
neering activities and reprogramming competences.

Concluding remarks
Reprogramming somatic cells to pluripotency is, in fact,

a complicated process, and this process does not rely on a
single molecular pathway. Our recent findings together
with those of other studies clearly suggest that molecular
pathways and roadmaps to reach pluripotency can be
diverse, depending on the epigenetic state of the donor
cells and the exogenously provided transcription factors.
Therefore, modulating epigenomes by chemical inter-
vention and introducing different combinations of tran-
scription factors in different donor cell types and also in
different species might further enhance our under-
standing of reprogramming mechanisms.
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