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Abstract

Motivation: The interactions among the constituent members of a microbial community play a

major role in determining the overall behavior of the community and the abundance levels of its

members. These interactions can be modeled using a network whose nodes represent microbial

taxa and edges represent pairwise interactions. A microbial network is typically constructed from

a sample-taxa count matrix that is obtained by sequencing multiple biological samples and identi-

fying taxa counts. From large-scale microbiome studies, it is evident that microbial community

compositions and interactions are impacted by environmental and/or host factors. Thus, it is not

unreasonable to expect that a sample-taxa matrix generated as part of a large study involving

multiple environmental or clinical parameters can be associated with more than one microbial net-

work. However, to our knowledge, microbial network inference methods proposed thus far assume

that the sample-taxa matrix is associated with a single network.

Results: We present a mixture model framework to address the scenario when the sample-taxa

matrix is associated with K microbial networks. This count matrix is modeled using a mixture of K

Multivariate Poisson Log-Normal distributions and parameters are estimated using a maximum

likelihood framework. Our parameter estimation algorithm is based on the minorization–maximiza-

tion principle combined with gradient ascent and block updates. Synthetic datasets were generated

to assess the performance of our approach on absolute count data, compositional data and nor-

malized data. We also addressed the recovery of sparse networks based on an l1-penalty model.

Availability and implementation: MixMPLN is implemented in R and is freely available at https://

github.com/sahatava/MixMPLN.

Contact: shibu.yooseph@ucf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microbes are found almost everywhere on earth, including in envi-

ronments deemed too extreme for other life forms, and they play

critical roles in many biogeochemical processes (Falkowski et al.,

2008; Whitman et al., 1998). Microbial communities are also found

in association with higher life forms, including plants and animals;

for instance, trillions of microbes live in or on the human body (al-

most as many human cells as there are in the body) (Sender et al.,

2016) and ongoing research continues to reveal the important roles

that many of these microbes play in human health (Huttenhower

et al., 2012; Qin et al., 2010). Microbial communities are typically

structured and composed of members of different species. The

microbes in a community do not exist in isolation, but interact with

each other and also compete for the available carbon and energy

sources. These interactions, along with resource availability and

environmental parameters (like temperature, pH and salinity)

(Hibbing et al., 2010; Williamson and Yooseph, 2012), determine

the taxonomic composition of the microbial community and the

abundance levels of its constituents. Knowledge of these interactions

is crucial for understanding the overall behavior of the microbial

community, and can be used to elucidate the biological mechanisms

underlying microbe-associated disease progression and microbe-

mediated processes (like biofilm formation).

The study of microbial communities has been greatly enabled

with the advent of high-throughput next-generation DNA sequenc-

ing technologies (Bentley, 2006; Margulies et al., 2005; Quail et al.,

2012). The taxonomic composition of a microbial community can

be obtained by sequencing the DNA extracted from a biological

sample that has been collected from the environment of interest.

This is achieved either using a targeted approach, involving the
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sequencing of a taxonomic marker gene [for instance, the 16S ribo-

somal RNA gene, which is found in all bacteria (Woese and Fox,

1977)] or using a whole-genome shotgun sequencing approach

(Venter et al., 2004). Both approaches generate taxa counts that are

compositional in nature, and that enable the estimation of the rela-

tive abundances of the constituent members of the community.

Microbial interactions can be modeled using a weighted graph

(or network), where each node in the graph represents a taxon (or

taxonomic group) and an (undirected) edge exists between two

nodes if the corresponding taxa interact with, or influence, each

other. The edge weight captures the strength of the interaction, with

its sign reflecting whether the interaction is positive or negative.

This framework can be used to model a variety of microbial interac-

tions, including competition and co-operation. While we do not con-

sider it here, a directed graph can also be used to represent

interactions, where the edge direction indicates the direction of in-

fluence (or causality).

Microbial networks are typically constructed from sample-taxa

count matrices. A sample-taxa count matrix is generated by

sequencing multiple biological samples (n samples) collected from

the environment of interest and identifying the counts of the

observed taxa (d taxa) in each sample.

As we discuss briefly below, microbial networks can be con-

structed using a variety of different approaches. To our knowledge,

all of these methods assume that the sample-taxa matrix is associ-

ated with a single underlying stochastic process (i.e. there is one

underlying network topology and set of edge weights). However,

this need not always be the case. In this paper, we consider an im-

portant extension to the network inference problem, whereby we de-

velop a mixture modeling framework for inferring K microbial

networks when the observed sample-taxa matrix is associated with

K underlying distributions. We are motivated by large-scale human-

associated and other environmental microbial community projects

that are now possible due to cost-effective sequencing. For instance,

human gut microbiome studies now routinely analyze large cohorts

of individuals and generate microbial community data from several

hundreds (to even thousands) of samples. An important research

question in this area involves the definition of a ‘core’ microbiome

associated with a particular host phenotype (Huttenhower et al.,

2012; Qin et al., 2010). It is well understood that the gut micro-

biome composition is greatly influenced by many factors including

diet and age, and thus it is not unreasonable to expect the associated

microbial network interactions to also be different when these fac-

tors vary (e.g. the gut microbial community interaction network in

vegetarian hosts can be expected to be different compared to the net-

work in non-vegetarian hosts). A similar situation also occurs in en-

vironmental studies where the microbial interactions are influenced

greatly by the physical and chemical gradients of the environment.

Often the collected metadata in these studies may not be compre-

hensive enough to discern these interactions in a supervised manner.

Our proposed mixture framework offers a principled approach to

identifying these multiple microbial interaction networks from a

sample-taxa matrix.

Several methods have been proposed for constructing a single mi-

crobial network from an input sample-taxa matrix (Layeghifard

et al., 2017). One approach involves using pairwise correlations

(Pearson or Spearman) between taxa to define the edge weights in the

graph. However, the computation of these correlation networks dir-

ectly from the observed count data can be misleading because of the

compositional nature of these data (Gloor et al., 2017). Furthermore,

for a microbial network with d nodes, while there are d � ðd � 1Þ=2
edge weights that need to be determined, the number of available

samples n is often not large enough, with the result that the system of

equations to determine all pairs of correlations is under-determined.

This later issue is typically handled by assuming that the network is

sparse [i.e. the number of edges is O(d)]. Methods based on latent

variable modeling have been proposed to infer correlation networks

(Fang et al., 2015; Friedman and Alm, 2012). These methods use log-

ratio transformations of the original count data (Aitchison, 1982) to

deal with the compositional nature of these data and subsequently

infer the correlation matrix (i.e. edge weights) under the assumption

of sparsity. Microbial networks have also been constructed using a

probabilistic graphical model framework (Jordan, 1999) that enables

the modeling of conditional dependencies associated with the interac-

tions. For instance, the assumption that the log-ratio transformed

count data follow a Gaussian distribution, results in a Gaussian

graphical model (GGM) framework. In this scenario, the graph struc-

ture represents the precision matrix (or inverse covariance matrix) of

the underlying multivariate Gaussian distribution. This graph has the

property that an edge exists between two nodes iff the corresponding

entry in the precision matrix is non-zero. A zero entry in the precision

matrix indicates conditional independence between the two corre-

sponding random variables. When the graph is assumed to be sparse,

the GGM inference problem can be solved using sparse precision ma-

trix estimation algorithms (Friedman et al., 2008). This approach has

been used to construct microbial networks from sample-taxa matrices

(Kurtz et al., 2015).

An alternate approach to constructing a microbial network, and

that which we adopt in this paper, is to model the vector of observed

taxa counts (in samples) using a multivariate distribution and to

infer the parameters of this distribution from the observed data

using a maximum likelihood framework. Any candidate multivari-

ate distribution for this approach will have to be flexible enough to

capture the underlying covariance structure to model the network

interactions (i.e. allow for both positive and negative covariances);

this rules out distributions like the multinomial or the Dirichlet-

Multinomial, which are popular choices for modeling microbial

count data in certain situations (Holmes et al., 2012; La Rosa et al.,

2012), but which cannot capture both types of interactions. The

Multivariate Poisson Log-Normal (MPLN) distribution (Aitchison

and Ho, 1989) can be used for modeling multivariate count data

and its covariance structure can capture both positive and negative

interactions. This distribution was used recently (Biswas et al.,

2015) to model counts in a sample-taxa matrix and infer an underly-

ing microbial network using an assumption of sparsity.

In this paper, we consider the following computational inference

problem: for a sample-taxa matrix X (containing absolute counts of

taxa) that is generated by a mixture model consisting of K MPLN

component distributions, estimate the mixing coefficients and the

distribution parameters of the K components. We note that the pre-

cision matrices of the K components define the K different microbial

networks. We formulate this inference problem using a maximum

likelihood framework, and estimate the various parameters of the

constructed likelihood function directly using a numerical optimiza-

tion method based on the minorization–maximization (MM) prin-

ciple (Lange, 2016; Wu et al., 2010; Zhou and Lange, 2010). We

extend this formulation based on an l1-penalty model and provide

algorithms to infer K sparse networks. We evaluate the performance

of our algorithms using both synthetic and real datasets. We also

evaluate the performance of our method on compositional data

obtained by subsampling from the true counts of the taxa. This

evaluation models the real-world scenario, where the sample-taxa

matrices that we have access to, contain only relative abundances of

the observed taxa.
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2 Materials and methods

Prior to describing our mixture modeling framework, we describe a

single MPLN distribution. In our discussions, we denote matrices

using upper-case letters, column vectors using bold letters (upper- or

lower- case) and scalar values using normal lower-case letters.

2.1 The model
Single MPLN distribution:

Consider an MPLN distribution with parameter set H ¼ ðl;RÞ,
where l represents its d-dimensional mean vector and R represents its

d�d covariance matrix. Then, a d-dimensional count vector X ¼
ðx1; :::;xdÞT generated by this distribution has the following property:

xjjkj � Pðekj Þ
ðk1; :::; kdÞT � Nd l;Rð Þ;

(1)

where PðcÞ denotes a Poisson distribution with mean c and Ndðl;RÞ
denotes a d-dimensional multivariate normal distribution with mean

l and covariance R. An MPLN distribution thus has two layers, with

the observed counts being generated by a mixture of independent

Poisson distributions whose (hidden) means follow a multivariate

normal distribution. If we use k ¼ ðk1; k2; :::; kdÞ to denote the latent

(or hidden) variable representing the Poisson means, then the prob-

ability density function pðXjHÞ of the MPLN distribution is given by

ð
R

d

Yd
j¼1

e�e
kj

ekjxj

xj!

e �
1
2ðk�lÞTR�1 k�lð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞddetðRÞ

q dk: (2)

Let X1;X2; :: . . . ;Xn denote n independent samples drawn from an

MPLN distribution, where each Xi is a d-dimensional count vector.

We use X ¼ ½X1X2:: . . . Xn� to denote the sample-taxa matrix gener-

ated from d taxa and n samples, and xij to denote the count of the j-th

taxon in Xi. We can estimate the parameter set H of this MPLN dis-

tribution using a likelihood framework by considering the d-dimen-

sional latent variables k1; k2; :: . . ., and kn associated with

samples X1;X2; ::, and Xn respectively; let matrix K ¼ ½k1k2:: . . . kn�
and kij denote the j-th entry in ki. The log-likelihood function

LðHjX;KÞ can be optimized using a simple iterative stepwise ascent

(or conditional maximization) procedure to compute H and K. The

estimated values of the parameters can be used to provide an approxi-

mation for pðXjHÞ as
Qn
i¼1

pðXijki;HÞ, where pðXijki;HÞ is defined as:

Yd
j¼1

e�e
kij

ekijxij

xij!

e �
1
2ðki�lÞTR�1 ki�lð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞddetðRÞ

q : (3)

An analogous approach based on optimizing the log-posterior

using an iterative conditional modes algorithm has been proposed

previously (Biswas et al., 2015).

Mixture of K MPLN distributions (MixMPLN):

In our framework, we consider a mixture model involving K MPLN

distributions. Let p1; :::; pK represent the mixing coefficients of the

K components (where
PK

l¼1 pl ¼ 1), and let pl and Hl denote the l-

th component distribution and its parameter set. A d-dimensional

sample vector X generated from this mixture has the following

distribution:

p Xjp1; :::; pK;H1; :::;HKð Þ ¼
XK

l¼1

plpl X jHlð Þ: (4)

For n independent samples X ¼ ½X1X2:: . . . Xn�, the probability

distribution is given by

p Xjp1; :::; pK;H1; :::;HKð Þ ¼
Yn
i¼1

XK

l¼1

plpl XijHlð Þ: (5)

The general log-likelihood function is thus

Lðp1; :::;pK;K1; :::;KK;H1; :::;HKjXÞ ¼

log
Yn
i¼1

XK

l¼1

plpl Xijkil ;Hlð Þ

0
@

1
A; (6)

where kil is the d-dimensional latent variable associated with Xi in com-

ponent l. We use a maximum log-likelihood framework to estimate the

parameters of the MixMPLN model from the observed data X by opti-

mizing the function Lðp1; :::;pK;K1; :::;KK; H1; :::;HKjXÞ.

2.2 Optimizing the log-likelihood function using the MM

principle
The MM principle is a general technique (Hunter and Lange,

2004; Lange, 2016) that has proven to be useful for tackling

function optimization problems (MM stands for minorization–

maximization in maximization problems and for majorization–

minimization in minimization problems). For our scenario, let

hðhÞ denote a function to be maximized. The MM principle pro-

poses to maximize the minorizer function gðhjhtÞ instead of maxi-

mizing hðhÞ directly; here, ht denotes a fixed value of

the parameter h. The function gðhjhtÞ is said to be a minorizer of

hðhÞ if:

hðhtÞ ¼ gðhtjhtÞ

h hð Þ � g hjht
� �

; h 6¼ ht:
(7)

Therefore, the first step in our MM approach is to find a minor-

izer function which has the required property. For this, we use the

following observation that follows from the concavity property of

the log function (Lange, 2016; Zhou and Lange, 2010) for m non-

negative values b1;b2; :: . . . ; bm:

log
Xm
i¼1

bi

 !
�
Xm
i¼1

bi
tPm

j¼1 bj
t log

Pm
j¼1 bj

t

bi
t bi

 !
: (8)

Equation (6) can thus be lower-bounded based on this

observation:

log
Yn
i¼1

XK

l¼1

plpl Xijkil ;Hlð Þ

0
@

1
A �Xn

i¼1

XK

l¼1

wil
tlog

pl

wil
t
pl Xijkil ;Hlð Þ

� �
;

(9)

where, weight wt
il is defined as follows:

wil
t ¼ pl

tplðXijkil
t ;Ht

lÞPK
l¼1 pl

tplðXijkil
t ;Hl

tÞ:
(10)

We use the function on the right-hand side of Equation (9) as the

minorizer function for our problem. Thus, we will define the new

objective function (L) to be maximized as follows:

Lðp1; p2; :::; pK;K1; :::;KK;H1;H2; :::;HKÞ

¼
Xn

i¼1

XK

l¼1

wil
tlog

pl

wil
t
pl Xijkil ;Hlð Þ

� �
¼
Xn

i¼1

XK

l¼1

wil
t log

1

wil
t

� �� �

þ
Xn

i¼1

XK

l¼1

wil
t log plð Þ
� �

þ
Xn

i¼1

XK

l¼1

wil
t log pl Xijkil ;Hlð Þð Þ
� �

:

(11)
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2.3 Steps of the MixMPLN optimization algorithm
We used a coordinate ascent approach in conjunction with a block

update strategy to optimize L. We present the details of parameter

initialization and subsequent iterative updates below.

2.3.1 Parameter initialization

The n samples X1X2:: . . . Xn are partitioned into K clusters (compo-

nents) using the K-means algorithm. Then, the samples assigned to a

component are used to estimate the parameters of that component using

the moments of an MPLN distribution (Aitchison and Ho, 1989), given

by the equations below; here, rij denotes the ij-th entry in R.

E xið Þ ¼ exp li þ
1

2
rii

� �
¼ ai

varðxiÞ ¼ ai þ ai
2fexpðriiÞ � 1g

covðxi; xjÞ ¼ aiajfexpðrijÞ � 1g

: (12)

2.3.2 Parameter estimation in iteration ðt þ 1Þ
The portion of function L in Equation (11) that is dependent on the

pi’s can be optimized.

L1ðp1; p2; :::; plÞ ¼
Xn

i¼1

XK

l¼1

wil
tðlogðplÞÞÞ: (13)

Since
P

l pl ¼ 1, we can optimize L1 by introducing a Lagrange

multiplier and identifying a stationary point of the subsequent

Lagrangian (Bilmes et al., 1998). This yields

pl
tþ1 ¼ 1

n

Xn

i¼1

wt
il; (14)

where wt
il is calculated using Equation (10).

Considering the part of the L function that is dependent on K
and H, we have the following term to maximize:

L2 K1; :::;KK;H1; :::;HKð Þ ¼
Xn

i¼1

XK

l¼1

wil
t log pl Xijkil ;HlÞð Þð Þ:
�

(15)

Expanding pl using Equation (3), we have:

L2ðK1; :::;KK;H1; :::;HKÞ

¼
Xn

i¼1

Xd

j¼1

XK

l¼1

�wil
tekijl þ

Xn

i¼1

Xd

j¼1

XK

l¼1

wil
tkijlxij

�
Xn

i¼1

Xd

j¼1

XK

l¼1

wil
tlog xij!

� �
� d

2

Xn

i¼1

XK

l¼1

wil
tlog 2pð Þ

þ1

2

Xn

i¼1

XK

l¼1

wil
tlog det R�1

l

� �� �

�1

2

Xn

i¼1

XK

l¼1

wil
tðkil � llÞ

TR�1
l kil � llÞ;
�

(16)

where kijl is the j-th entry in kil . We solve for the parameters separ-

ately using the partial derivation method. Calculation of the partial

derivative of L2 with respect to kijl gives us:

@

@kijl
L2 ¼ 0)

�ekijl þ xij � hðkil � llÞ;R�1
:jl i ¼ 0;

(17)

where ha; bi denotes the inner product of vectors a and b, and R�1
:jl

denotes the j-th column of R�1
l . We use the Newton–Raphson

method to estimate ktþ1
ijl from this equation, using values from

iteration t for R�1; l; and kij0 l (where j 6¼ j0). Partial derivation with

respect to ll gives us:

@

@ll

L2 ¼ 0)
Xn

i¼1

wil
tðkil � llÞ ¼ 0)

ll ¼

Xn

i¼1

wil
tkil

Xn

i¼1

wil
t

:

(18)

Thus, ll
tþ1 can be estimated from wil

t and kil
t11.

And finally, partial derivation with respect to R�1
l results in:

@

@R�1
l

L2 ¼ 0)

@

@R�1
l

(
1

2

XN
i¼1

wil
tlogðdetðR�1

l ÞÞ

�1

2
trace R�1

l

XN
i¼1

wil
tðkil � llÞðkil � llÞ

T

 !)
¼ 0:

(19)

We can solve this equation using matrix derivative rules to com-

pute an estimate for the covariance matrix Rl in iteration ðt þ 1Þ as:

Rtþ1
l ¼

Pn
i¼1 wil

tðkil
t11�ll

t11Þðkil
t11 � ll

t11ÞTPn
i¼1 wil

t
: (20)

2.4 Inferring sparse networks using an l1-penalty model
We extended the MixMPLN framework by incorporating an l1-

norm penalty as follows:

pðX jp1; :::; pK;H1; :::;HKÞ ¼
XK

l¼1

plpl XjHlð Þ þ qlkR�1
l k1

h i
; (21)

where kR�1
l k1 is the l1-norm of the precision matrix of the l-th com-

ponent, and q1; :::; qK are tuning parameters that can be selected in-

dependently. This framework allows for the inference of sparse

networks associated with the K components. For a fixed tuning par-

ameter of q and a multivariate Gaussian distribution, the problem of

selecting a precision matrix with the l1-norm penalty can be stated

as (Friedman et al., 2008):

argmax
R�1

flogðdetðR�1ÞÞ � traceðSR�1Þ � qkR�1k1g; (22)

where S denotes the empirical covariance matrix.

In our implementation of the extended MixMPLN framework,

we calculated the empirical covariance matrix for each component

using Equation (20) in each iteration. We used the ‘glasso’ and

‘huge’ packages in R to solve the sparse precision matrix selection

problem (Friedman et al., 2008; Zhao et al., 2012). We applied

three different strategies using each of the two packages. In

MixMPLNþ glasso(cross validation), we used cross validation to

determine the value of q (i.e. we picked that q value which gave the

best log-likelihood value among the subsamples). In MixMPLNþ
glasso (fixed tuning parameter), we used q ¼ 2d2=ðNkR�1

initk1Þ, as

proposed in Biswas et al. (2015). In this formulation, R�1
init is the esti-

mated precision matrix after the initialization step of MixMPLN. In

MixMPLNþ glasso(iterative tuning parameter), we used the same

formulation to initialize the q value, but then updated it in each iter-

ation based on the new estimated precision matrix in that iteration.
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In MixMPLNþhuge(StARS), we used the stability approach to

regularization selection (StARS) method (Liu et al., 2010). This

method selects the coefficient which results in the most edge stability

in the final graph) (Kurtz et al., 2015). The tuning parameter selec-

tion method in MixMPLNþhuge(fixed tuning parameter) and

MixMPLNþhuge(fixed tuning parameter) was the same as the cor-

responding implementations using glasso.

2.5 Performance evaluation and datasets
Synthetic sample-taxa count matrices were generated in order to as-

sess the performance of the various MixMPLN algorithms. We eval-

uated the convergence properties of the algorithms as a function of

increasing sample sizes. Since, in practice, sample-taxa count matri-

ces generated from biological samples are compositional in nature,

we also evaluated the effect of sampling from the true (or absolute)

counts, and the subsequent application of data normalization, on

network recovery and convergence. In addition, we also evaluated

the accuracy in recovering sparse networks. Finally, we applied our

mixture model framework to analyze a real dataset.

2.5.1 Datasets

Synthetic data generation: Each sample-taxa count matrix X was pro-

duced by combining samples generated from K component MPLN dis-

tributions, where component l generated nl samples (d-length count

vectors), and such that pl ¼ nl

n and n ¼ RK
l¼1nl. For each component l,

the d�d covariance matrix of its MPLN distribution was derived from

a randomly generated d�d positive definite precision matrix contain-

ing a fixed number of zero entries (as given by the sparsity level sp

which denotes the fraction matrix entries that are zero). The mean vec-

tor for each MPLN component was a random d-length vector. For a

sample-taxa matrix X generated this way, it is assumed that each entry

in the matrix is the true (or absolute) abundance of taxon j in sample i.

We refer to X as the original count matrix. To simulate compositional

count data and sequencing depth differences between the biological

samples, we generated a sampled data matrix XS from X by first nor-

malizing each entry in a sample (by dividing by sample size) and subse-

quently scaling that value by a sample-specific random number

Y 2 ½5000; 10000� (to model sequencing depth for the biological sam-

ple). Finally, to study the effect of data normalization, we applied

the trimmed mean of M-values (TMM) normalization procedure [from

the ‘edgeR’ package (Robinson and Oshlack, 2010)] to XS to generate

the TMM normalized data matrix TS.

Real data: We also applied our mixture modeling framework

to a sample-taxa count matrix produced by a recent microbiome

study (Yooseph et al., 2015) that explored connections between

gut microbiome composition and the risk of Plasmodium falcip-

arum infection. In this study, stool samples from a cohort com-

posed of 195 Malian adults and children were collected and

analyzed. The samples were assayed by sequencing the 16S ribo-

somal RNA gene to determine the bacterial communities they

contained. This generated a sample-taxa count matrix with 195

samples and 221 bacterial genera which we analyzed in this

paper.

2.5.2 Benchmarking criteria

Let Ad�d denote the true precision matrix and Bd�d an inferred (or

predicted) precision matrix. For evaluating the performance of our

algorithms on synthetic data, we used three different criteria to com-

pare the inferred precision matrices with the original precision

matrices that were used to generate the sample-taxa matrices.

Fig. 1. Performance on synthetic data with d ¼ 200; sp ¼ 0:7;K ¼ 1; 2; 3. (a) Relative difference between the predicted and true precision matrices. (b) Frobenius

norm of the difference. (c) Area under the ROC
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• Relative difference between two matrices A and B defined

as 1
d2

Pd
i¼1

Pd
j¼1

aij�bijj j
aijj j: bijj j.

• Frobenius norm of the difference between the partial correlations

of matrices A and B. Frobenius norm of a matrix M is defined

as kMkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

P
j Mij

2
q

. For a precision matrix C, its partial

correlation matrix P is calculated as P½i; j� ¼ �C½i; j�=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C½i; i� � C½j; j�

p
.

• Area under the ROC (AUC): this measure was used to assess the

recovery of the edges of the microbial network (i.e. identification

of the zero entries in the precision matrix). The AUC was calcu-

lated by applying varying thresholds to the original and esti-

mated precision matrices to define zero and non-zero entries. As

any non-zero entry in the estimated precision matrix represents

an edge in the graph, the specificity and sensitivity of detecting

an edge at different thresholds can be computed and used to plot

the receiver-operating characteristic curve (ROC).

For the above measures, smaller values for relative difference

and Frobenius norm indicate increased proximity to the ground

truth. Values closer to 1 for the AUC plots indicate increased

accuracy in reconstructing the network topology. When K >1, we

first matched the predicted precision matrix (of a component) to

the nearest true precision matrix from the set of K true precision

matrices. We used the Frobenius norm measure for this. After

pairing the true and predicted matrices, we report their mean

value statistics.

3 Results

We implemented the MixMPLN algorithms in R, and assessed their

performance using the synthetic datasets. For our assessments, we

Fig. 2. AUC values for the synthetic datasets generated using

d ¼ 200; sp ¼ 0:9;K ¼ 1; 2; 3

Table 1. Performance on synthetic data with d ¼ 200;

sp ¼ 0:9;K ¼ 1; 2; 3

n¼ 2d n¼ 5d n¼ 10d

One component Frobenius norm

MixMPLN 14.16 13.99 7.34

MixMPLNþ huge(StARS) 5.62 16.02 7.15

MixMPLNþ huge(fixed q) 4.86 2.87 2.08

MixMPLNþ huge(iterative q) 5.62 3.01 2.15

MixMPLNþ glasso(cross validation) 4.17 2.96 2.09

MixMPLNþ glasso(fixed q) 4.86 2.87 2.08

MixMPLNþ glasso(iterative q) 5.62 3.01 2.15

One component relative distance

MixMPLN 27.36 30.23 11.75

MixMPLNþ huge(StARS) 1.96 30.31 9.62

MixMPLNþ huge(fixed q) 3.10 1.04 0.72

MixMPLNþ huge(iterative q) 4.80 1.49 1.07

MixMPLNþ glasso(cross validation) 1.52 1.23 0.77

MixMPLNþ glasso(fixed q) 3.10 1.04 0.72

MixMPLNþ glasso(iterative q) 4.80 1.49 1.07

Two components Frobenius norm

MixMPLN 73.67 19.76 8.79

MixMPLNþ huge(StARS) 5.60 5.42 15.29

MixMPLNþ huge(fixed q) 27.24 5.28 3.48

MixMPLNþ huge(iterative q) 25.94 4.33 2.88

MixMPLNþ glasso(cross validation) 5.04 3.73 2.84

MixMPLNþ glasso(fixed q) 28.83 5.28 3.48

MixMPLNþ glasso(iterative q) 27.63 4.33 2.88

Two components relative distance

MixMPLN 14443.03 56.52 14.42

MixMPLNþ huge(StARS) 1.98 1.83 25.50

MixMPLNþ huge(fixed q) 957.78 4.68 2.52

MixMPLNþ huge(iterative q) 772.93 2.73 1.29

MixMPLNþ glasso(cross validation) 1.82 1.30 1.04

MixMPLNþ glasso(fixed q) 920.39 4.68 2.52

MixMPLNþ glasso(iterative q) 842.48 2.73 1.29

Three components Frobenius norm

MixMPLN 20.07 14.66 13.61

MixMPLNþ huge(StARS) 6.93 5.90 5.46

MixMPLNþ huge(fixed q) 19.15 8.58 6.04

MixMPLNþ huge(iterative q) 18.56 6.11 4.97

MixMPLNþ glasso(cross validation) 6.48 6.25 5.88

MixMPLNþ glasso(fixed q) 19.67 11.02 8.03

MixMPLNþ glasso(iterative q) 19.44 6.11 4.98

Three components relative distance

MixMPLN 48131.48 4571.65 24.22

MixMPLNþ huge(StARS) 8959.39 2.18 1.87

MixMPLNþ huge(fixed q) 16096.08 12.68 6.70

MixMPLNþ huge(iterative q) 5891.79 5.63 3.04

MixMPLNþ glasso(cross validation) 2.60 2.46 3.55

MixMPLNþ glasso(fixed q) 11828.42 2029.51 10.91

MixMPLNþ glasso(iterative q) 5836.67 5.63 3.32

i28 S.Tavakoli and S.Yooseph



generated sample-taxa count matrices X (and their corresponding

XS and TS matrices) for the following four sets of parameters:

• (d ¼ 30; sp ¼ 0:5; n ¼ d; 100000d½ �;K ¼ 1; 2; 3),
• (d ¼ 100; sp ¼ 0:7; n ¼ d;500d½ �;K ¼ 1; 2; 3),
• (d ¼ 200; sp ¼ 0:7; n ¼ d;500d½ �;K ¼ 1; 2; 3),
• (d ¼ 200; sp ¼ 0:9; d ¼ 2d; 5d; 10d;K ¼ 1; 2; 3).

For each dataset, each component mixing coefficient was 1=K.

In addition, five replicates were generated for each parameter com-

bination. In total, 465 datasets were generated and analyzed. The

datasets with sp¼0.9 were used to assess the performance of the

MixMPLN algorithms in recovering sparse networks.

First we evaluated the ability of the MixMPLN algorithm to re-

cover the true precision matrices with increasing sample size n. For

this, we used the original count data, the sampled data and the

TMM normalized data. Figure 1 shows the benchmark results for

the parameter combination of d ¼ 200; sp ¼ 0:7 and K¼1, 2, 3;

Supplementary Figures S1 and S2 show the corresponding results

for d ¼ 30; sp ¼ 0:5;K ¼ 1; 2; 3 and for d ¼ 100; sp ¼ 0:7;K ¼
1; 2; 3. The three benchmark criteria (relative difference,

Frobenius norm and AUC) show that the entries in predicted preci-

sion matrices approach their true values as the sample size n

increases. A strong convergence trend is seen using the original

count data (blue curves/bar chart), with the AUC values approach-

ing 0.97, 0.96 and 0.9 for K¼1, 2, 3 respectively. The drop in per-

formance with increasing K is not unexpected given the smaller

fraction of data available per component to infer the component

parameters. The figure also shows that the accuracy of recovery of

the true precision matrices is not as high when using the sampled

data (red curves/bar chart) and the TMM normalized data (orange

curves/bar chart). In addition, from our analysis, it is not immediate-

ly evident that applying a TMM type data normalization is advanta-

geous for the purpose of inferring the underlying covariance

structure of the network.

We also evaluated the performance of MixMPLN and its

l1-norm penalty variants in recovering sparse networks. Table 1 and

Figure 2 show the performance of these methods for d¼200, K¼1,

2, 3 and sparsity level sp¼0.9. Sample sizes of n ¼ 2d; 5d; 10d were

used in these evaluations. As can be seen, the performance for the

methods generally improve with increasing n, and the l1-norm pen-

alty variants perform better than the unpenalized MixMPLN model

on these data. The performances of the l1-norm penalty variants are

generally quite comparable to each other [with

MixMPLNþhuge(StARS) having a slightly lower performance

compared to the others].

Since MixMPLNþ glass(cross validation) performs better than

the other approaches for n ¼ 2d, we decided to apply this method

to analyze the real dataset. We used the silhouette method from the

‘factoextra’ R package (Kassambara, 2017) to compute the optimal

number of components from this sample-taxa matrix. Figure 3

shows the results of our analysis. We find that there is strong evi-

dence for two underlying (and different) microbial networks (K¼2

components) associated with this sample-taxa data. We assigned

component membership to the samples based on their final weights

wil [Equation (10)]. This resulted in Component 1 containing 158

samples and Component 2 containing 37 samples. The average age

Fig. 3. Application of MixMPLN þ glasso with cross validation to a real dataset. Green and red edges represent positive and negative entries respectively in the

estimated partial correlation matrices. (a) Graph of Component 1 which contains 158 samples; (b) graph of Component 2 which contains 37 samples. The thresh-

old to select the edges is 0.3; (c) Selection of the optimal number of the components
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of the individuals in Component 1 was 9 years while that of individ-

uals in Component 2 was 0.7 years. Our reconstructed networks are

consistent with the observation that infants have a different gut

microbiome composition compared to older children and adults

(Yooseph et al., 2015). The constructed networks include edges

involving bacterial groups like Bifidobacterium, Staphylococcus,

Streptococcus and Escherichia–Shigella that are known to be key

players in early gut microbiome development. Our method identifies

both positive and negative interactions between pairs of taxa (red

and green edges) for the chosen threshold of 0.3; Supplementary

Figure S3 shows the graph structures for other selected threshold

values. The biological significance of these interactions needs to be

investigated further.

4 Conclusion

We presented a mixture model framework and network inference

algorithms to analyze sample-taxa matrices that are associated with

K microbial networks. Future work will include the development of

Bayesian approaches for model selection for this problem.

Conflict of Interest: none declared.
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