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Abstract: The adenosine A2A receptor antagonist SCH58261 has been reported to have
anti-inflammatory effects. However, its role in chronic periodontitis (CP)-induced cognitive im-
pairment, which is associated with Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS),
remains unclear. This study investigated the role of SCH58261 in mice with CP-induced cognitive
impairment. C57BL/6J mice were used to develop CP model by injecting 0.5 mg/kg P. gingivalis
LPS into the palatal gingival sulcus of maxillary first molars twice a week for four weeks. The mice
were divided into control, P. gingivalis LPS (P-LPS), P-LPS + SCH58261, and SCH58261 groups. The
passive avoidance test (PAT) and Morris water maze (MWM) were used to assess cognition in mice.
Furthermore, CD73/adenosine, neuroinflammation, glutamate transporters, and glutamate were
assessed. Compared with the P-LPS group, 0.1 and 0.5 mg/kg SCH58261 increased latency and
decreased error times in PAT, but increased platform crossing number in MWM. SCH58261 inhibited
microglial activation, and decreased pro-inflammatory cytokines and glutamate levels, but increased
GLT-1 and PSD95 expression in the hippocampus. This was the first report of SCH58261 treatment
for CP-induced cognitive impairment, which may be related to its anti-inflammatory activities and
anti-glutamate excitatory neurotoxicity. This suggests that SCH58261 can be used as a novel agent to
treat cognitive impairment.

Keywords: cognition; glutamate; Porphyromonas gingivalis; SCH58261

1. Introduction

Chronic periodontitis (CP) is a chronic infectious disease where plaque microorgan-
isms act as the initiating factor. CP has a prevalence rate of >50% in adults [1]. It can cause
a systemic inflammatory response and various diseases such as cardiovascular disease,
respiratory disease, and central nervous system (CNS) diseases [2–4]. However, effective
treatments against CP are lacking.

Porphyromonas gingivalis is common Gram-negative anaerobic bacteria associated with
CP. Lipopolysaccharide (LPS), which is located on the outer membrane of Gram-negative
bacteria, is involved in a major pathological pathway of P. gingivalis [5]. LPS derived
from P. gingivalis has been confirmed to induce immune cells to release inflammatory
factors, reactive oxygen species, and nitric oxide, resulting in cell death, apoptosis [6,7],
and ultimately, cognitive dysfunction [5,8].
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Adenosine is an endogenous purine nucleoside that regulates numerous physiological
functions by activating the four G protein-coupled receptors A1, A2A, A2B and A3 [9,10].
CD73 (ecto-5-nucleoditase) plays an important role in the immune inflammatory response
against various diseases. Specifically, CD73 is the rate-limiting enzyme that involved in the
catabolism of adenosine triphosphate (ATP) to produce adenosine [11]. A recent study on
experimental autoimmune encephalomyelitis (EAE) suggested that theta-burst stimulation
provides neuroprotection in EAE mice by downregulating the CD73 expression [12]. A2A
receptor (A2AR) is a widely studied receptor associated with CNS diseases owing to
its high affinity for adenosine [13]. For instance, Rebola et al. reported that the A2AR
antagonist SCH58261 prevents LPS-induced neuroinflammation in the hippocampus [14].
Nevertheless, the relationship between CD73 and A2AR and its role in CP remains obscure.

Glutamate is associated with learning and memory [15]. Sufficient glutamate levels
are necessary to maintain learning and memory; however, excessive glutamate can lead
to excitatory neurotoxicity and ultimately cause neuronal damage, resulting in cognitive
impairment [16]. The extracellular glutamate level is regulated by reuptake through
glutamate transporter-1 (GLT-1) and glutamate and aspartate transporter (GLAST). In
addition, TNF-α downregulates the GLT-1 levels via the TNF-α receptor [17]. To the best
of our knowledge, the function of glutamate in CP-induced cognitive impairment has not
been reported yet.

In the present study, we hypothesized that the overexpression of CD73 leads to
increased adenosine production, thus inducing an inflammatory response. Furthermore,
the excessive release of inflammatory factor (e.g., TNF-α) leads to decreased glutamate
transporter expression, causing an increase in the glutamate level and subsequent cognitive
dysfunction.

2. Materials and Methods
2.1. Animals

Male C57BL/6J (8 weeks old, 20–25 g) were purchased from Vital River Laboratory
Animal Technology Co., Ltd. (Beijing, China) and used in the present study. Mice were
housed in a temperature (21 ± 1 ◦C) and humidity (50% ± 5%) controlled room with a 12 h
light/dark cycle and free access to food and water. Mice acclimatized to the environment
for two weeks before experiment. The experimental protocol was approved by the Animal
Ethics Committee of Tongji Medical College of Huazhong University of Science and Tech-
nology (ethics approval number: TJH-202003175), and all experiments were performed in
accordance with the Guiding Principles for the Care and Use of Animals in Research, the
ARRIVE 2.0 guidelines [18].

2.2. Chronic Periodontitis (CP) Model and Experimental Protocol

According to previous reports [8], P. gingivalis LPS was purchased from InvivoGen
company (San Diego, CA, USA, tlrl-pglps) and injected into the palatal gingival sulcus of
maxillary first molars twice a week for four weeks at a dose of 0.5 mg/kg to construct CP
mice model. The behavioral tests were performed in the light phase.

Experiment I: 24 mice were randomly divided into two groups: control group and
P-LPS group. The P-LPS group was given 0.5 mg/kg P. gingivalis LPS, while the control
group was given an equivalent volume of saline. In this case, 28 days after administration of
the treatment, cognitive function of the mice after recovery of motor activity were evaluated
by open field test (OFT), Morris water maze test (MWM) and passive avoidance test (PAT).
After behavioral tests, the mice were sacrificed for molecular biological detection.

Experiment II: 48 mice were randomly divided into four groups: P-LPS group, P-
LPS + 0.02 mg/kg A2AR antagonist SCH58261 (P-LPS + 0.02 SCH) group, P-LPS + 0.1 mg/kg
SCH58261 (P-LPS + 0.1 SCH) group and P-LPS + 0.5 mg/kg SCH58261 (P-LPS + 0.5 SCH)
group. According to previous reports [19,20], three different doses of SCH58261 (Sel-
leckchem, TX, USA, S8104) were injected intraperitoneally once a day for four weeks.
Behavioral tests were same as experiment I.
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Experiment III: 48 mice were randomly divided into four groups: control group, P-LPS
group, P-LPS + 0.1 mg/kg SCH58261 (P-LPS + 0.1 SCH) group and 0.1 mg/kg SCH58261
(0.1 SCH) group. Behavioral tests and molecular biological assay were same as experiment
I and II. The diagram of the experiments was shown in Figure 1.

Figure 1. Time-line diagram of study design. Experiment I: P. gingivalis LPS was injected into the
palatal gingival sulcus of maxillary first molars twice a week for four weeks at a dose of 0.5 mg/kg to
construct CP mice model. OFT, MWM and PAT were performed on the days 29, 30–35, and 36–37
after P. gingivalis LPS administration, respectively. On the day 38, mice were sacrificed for molecular
biological detection. Experiment II: the CP mice model was established with P. gingivalis LPS along
with daily intraperitoneal injections of SCH58261 (0.02, 0.1 and 0.5 mg/kg) for four weeks. The
behavioral tests were the same as Experiment I. Experiment III: the CP mice model was established
with P. gingivalis LPS along with daily intraperitoneal injections of SCH58261 (0.1 mg/kg) for four
weeks. The behavioral and molecular biological tests were the same as Experiment I. OFT, Open
Field Test; MWM, Morris Water Maze; PAT, Passive Avoidance Test.

2.3. Behavioral Tests
2.3.1. Open Field Test

The OFT was used to evaluate locomotion and anxiety-like behavior of the rodents [5,10].
The open field chamber was placed in a quiet and dim environment, and mice were placed
in the center of chamber and allowed to explore freely for 5 min. There is a camera on top
of the chamber to record the motion trail of the mice. The chamber was divided equally
into 16 compartments, and the middle 4 compartments were defined as the central zone.
Based on the tendency of mice to move along the chamber walls, the time spent in the central
compartment was used to reflect the anxiety level of mice. In addition, total distance was
recorded to reflect the locomotion of mice.

2.3.2. Morris Water Maze Test

The MWM is performed for hippocampus-dependent tests of spatial navigation and
reference memory of rodents [21]. The MWM consists of a cylinder (diameter 1.2 m and
height 0.5 m) and the water temperature is maintained at 22 ◦C. The MWM is divided
equally into four parts with different visual cues and one part was named as target quadrant,
in which a platform was placed one centimeter below the water surface. In the place
navigation test (four trials per day), mice were placed in the maze from one quadrant facing
the wall of the pool and allowed to explore for 90 s, and the time to locate the platform
was defined as escape latency. Spatial probe test was performed on the day after the place
navigation test. After the platform was evacuated, the mice were placed from the quadrant
opposite to the target quadrant, and the time spent in the target quadrant and the number
of platform crossings were recorded.
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2.3.3. Passive Avoidance Test

The PAT was performed to assess passive avoidance learning in mice [22]. The device
was divided into light and dark compartments according to the mice’s preference for dark
environments. The mice will receive an electric shock (0.6 mA, 2 s) when entering the dark
compartment.

Training test was performed on the first day. Mice were placed in the light compart-
ment and after 10 s the partition between the light and dark compartments was opened.
The mice were free to explore for 5 min and the time to enter the dark compartment was
defined as the latency. A retention test was executed 24 h later. The latency to the dark
compartment and the number of electrical shocks (error times) were recorded within 5 min.

The data of the above three behavioral tests were recorded and analyzed by the
software (ANY-maze tracking system).

2.4. Western Blotting

Radioimmunoprecipitation lysis buffer (Beyotime, Shanghai, China, P0013B) with pro-
tease phosphatase mixture were used to lyse hippocampus tissues. Lysates were centrifuged
(12,000× g, 10 min, 4 ◦C), and protein quantification of supernatants was performed with
BCA kit. Protein samples were separated by 10% SDS-PAGE and transferred onto PVDF
membranes, and subsequently blocked with 5% Albumin Bovine V for 1 h at room temper-
ature. The membranes were immunoblotted with primary antibodies overnight at 4 ◦C:
GLAST (1:1000, Santa Cruz Biotechnology, Santa Cruz, CA, USA, sc-515839), GLT-1 (1:1000,
Santa Cruz, sc-365634), postsynaptic density (PSD) 95 (1:1000, Santa Cruz, sc-32290) and
β-actin (1:1000, Santa Cruz, sc-47778). The membranes were washed with TBST for three
times and incubated with HRP-conjugated secondary antibody for 1 h at room temperature.
The strips were detected by Molecular Imager VersaDoc MP 5000 System and analyzed
with ImageJ software (Version 1.50i, National Institutes of Health, Bethesda, MD, USA).

2.5. Enzyme-Linked Immunosorbent Assay (ELISA)

The levels of CD73 (Abbexa, Cambridge, UK, abx117254), TNF-α (Boster Biological
Technology, Wuhan, China, EK0527), IL-1β (Boster, EK039) and IL-6 (Boster, EK0411) in
the hippocampus were quantified by ELISA kit in accordance with the manufacturer’s
instructions.

2.6. Measurement of Adenosine and Glutamate Concentration

Hippocampus tissue was homogenized in PBS and centrifuged at 10,000× g for 10 min
at 4 ◦C. Next, the supernatants were collected and assayed without dilution via the Adeno-
sine Assay Kit (Cell Biolabs, Inc., San Diego, CA, USA, MET-5090) according to the manu-
facturer’s instructions. Glutamate was analyzed by a colorimetric enzyme method using a
kit (Sigma Aldrich, St. Louis, MO, USA, MAK004), following the company’s instruction
sheet, and presented as µmol/mL.

2.7. Quantitative Real-Time PCR (qRT-PCR)

The hippocampus was homogenized, and RNA was isolated according to the To-
tal RNA Kit (Beyotime, R0032). Total RNA concentration and purity were detected by
a NanoDrop spectrophotometer. RNA was reverse transcribed into cDNA using the
cDNA Synthesis Kit (Beyotime, D7170M). The sequences of these primers were as fol-
lows: PSD95: 5′-GACAACCAAGAAATACCGCT-3′ (forward) and 5′-GCTTCTAGGG
TGTCCGTGTT-3′ (reverse); GLT-1, 5′-CCAAGCTTGGATCACTGCCCTGG-3′ (forward)
and 5′-CCAGCCCCAAAAGAGTCACCCACAA-3′ (reverse); β-actin, 5′-AACGCAGCT
CAGTAACAGTCC-3′ (forward) and 5′-GTACCACCATGTACCC AGGC-3′ (reverse). RT-
PCR analyses were performed using the SYBR Green qPCR Mix (Beyotime, D7260) accord-
ing to the manufacturer’s protocol: 95 ◦C for 3 min followed by 40 cycles of 95 ◦C for 5 s
and 60 ◦C for 30 s. β-actin was used as an internal control, and relative gene expression
was calculated using the 2−∆∆Ct method.



Molecules 2022, 27, 6267 5 of 13

2.8. Immunofluorescence

Under deep isoflurane anesthesia, the hearts of mice were exposed by dissecting the
chest cavity. PBS was used for perfusion to remove blood from the circulation, followed by
4% formaldehyde. After the skull was removed, the brain was placed in 4% formaldehyde
for 24 h at 4 ◦C, followed by 30% sucrose dehydration for 48 h. Cryostat microtome was used
to coronally cut the brain into 30 µm section. The sections were washed three times with
PBS, and transferred to blocking buffer for 1.5 h at 37 ◦C. Next, the sections were incubated
with rabbit anti-Iba1 (1:200, Abcam, Cambridge, UK, ab178847) and PSD95 (1:100, Santa
Cruz, sc-32290) overnight at 4 ◦C. After washing in PBS for three times, the sections were
incubated with Cy3 labeled goat-anti-rabbit and goat-anti-mouse secondary antibodies
for 1.5 h at 37 ◦C, followed by DAPI staining for 10 min at room temperature. Washing
the sections with PBS three times and mounted in 70% glycerol. Virtual microscopy slide-
scanning system was used to capture images, and the images were cropped and analyzed
by ImageJ software (Version 1.50i, National Institutes of Health).

2.9. Statistical Analysis

GraphPad Prism 7 (GraphPad, New York, NY, USA) was used for statistical analyses.
Quantitative data are expressed as the mean ± standard error of the mean (SEM). The
normality of the data was analyzed by Shapiro-Wilk test, and the analysis showed that
the data were normally distributed. Differences between two groups were assessed using
an unpaired two-tailed Student’s t-test. Analysis of variance (ANOVA) was used to test
differences between three or more groups, followed by Bonferroni’s post hoc test. p-value
less than 0.05 was considered statistically significant.

3. Results
3.1. Effects of P. gingivalis LPS on Mouse Behavior

As shown in Figure 2, there were no significant differences in the total distance
(Figure 2A) and time spent in the center (Figure 2B) between the control and P-LPS groups.
These results indicated that P. gingivalis LPS did not affect the locomotion and anxiety levels
in mice.

Figure 2. Effects of P. gingivalis LPS on the behaviors of mice. Total distance (A) and time spent
in the center (B) were recorded in the OFT on the day 29 after P. gingivalis LPS. Latency to the
dark compartment (C) and error times (D) were recorded on the days 36–37 after P. gingivalis LPS.
Swimming speed (E), escape latency (F), number of platform crossing (G) and time spent in the
target quadrant (H) were recorded in the MWM test. (I) MWM typological trajectories. All data are
expressed as the mean ± SEM (n = 12 per group). * p < 0.05 and ** p < 0.01 vs. the control group.

In the training phase of PAT, there was no difference in the latency to dark compartment
(Figure 2C) between the control and P-LPS groups, which indicated no difference between
these two groups before P. gingivalis LPS treatment. The associated memory was retained
despite electric shock. As observed in the retention phase of PAT, the P-LPS group showed
a decreased latency to the dark compartment compared with the control group (Figure 2C).
In addition, the P-LPS group showed more error times in the dark compartment than the
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control group (Figure 2D). These results demonstrated that P. gingivalis LPS damages the
passive avoidance learning in mice.

During the place navigation test of MWM, the mice were trained for 5 consecutive days,
four trials per day. No significant difference was noted in the swimming speed between the
control and P-LPS groups (Figure 2E). Compared with control group, the escape latency
significantly increased in the P-LPS group from days 3 to 5 (Figure 2F). During the spatial
probe test phase, the platform crossing number (Figure 2G) and time spent in the target
quadrant (Figure 2H) significantly decreased in the P-LPS group compared with the control
group. Taken together, these data indicate that P. gingivalis LPS negatively affects memory
in mice. Figure 2I is the movement route of mice in probe trial.

3.2. Effects of P. gingivalis LPS on the Adenosine, Inflammatory Factor, Glutamate Transporter,
and PSD95 Levels

As shown in Figure 3, P. gingivalis LPS increased the levels of adenosine, CD73, TNF-α,
IL-1β, and IL-6 (Figure 3A–E) in the P-LPS group compared with the control group. These
data demonstrate that P. gingivalis LPS-induced neuroinflammation maybe associated with
increases in the levels of adenosine and CD73, which participate in inflammation and
neurodegeneration [23]. According to a previous study, GLT-1 is downregulated by TNF-
α [24]. Therefore, we detected the proteins levels of GLT-1 and found that P. gingivalis LPS
decreases the GLT-1 level (Figure 3F,H) and increases glutamate level (Figure 3J) in the
hippocampus of the P-LPS group compared with the control group. In addition, P. gingivalis
LPS significantly decreased the levels of PSD95 (Figure 3F,I), which may be associated
with neuronal damage caused by the increased glutamate level. However, there was no
difference in the levels of GLAST (Figure 3F,G) between the control and P-LPS group. These
results indicate that the increased level of glutamate, induced by P. gingivalis LPS may be
associated with decreased GLT-1 but not GLAST.

Figure 3. Effects of P. gingivalis LPS on the levels of inflammation factors, glutamate transporters
and PSD95. The concentration of adenosine (A) was determined by fluorescence method. CD73 (B),
TNF-α (C), IL-1β (D) and IL-6 (E) in the hippocampus of mice were detected by ELISA. The levels of
GLAST (F,G), GLT-1 (F,H) and PSD95 (F,I) in the hippocampus of mice were detected by Western
blot. The concentration of glutamate (J) was detected by colorimetric enzyme method. All data are
expressed as the mean ± SEM (n = 6 per group). * p < 0.05 and *** p < 0.001 vs. the control group.
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3.3. A2AR Antagonist Alleviates P. gingivalis LPS-Induced Cognitive Impairment in Mice

In the OFT, there were no differences in the total distance (Figure 4A) and time spent
in the center (Figure 4B) among the four groups. This demonstrates that SCH58261 (0.02,
0.1 and 0.5 mg/kg) did not affect the locomotion and anxiety levels in mice.

Figure 4. A2AR antagonist alleviates P. gingivalis LPS-induced learning and memory impaired in
mice. Total distance (A,J) and time spent in the center (B,K) were recorded in the OFT on the day 29
after P. gingivalis LPS. Latency to the dark compartment (C,L) and error times (D,M) were recorded
on the days 36–37 after P. gingivalis LPS. Swimming speed (E,N), escape latency (F,O), number of
platform crossing (G,P) and time spent in the target quadrant (H,Q) were recorded in the MWM test.
(I,R) MWM typological trajectories. All data are expressed as the mean ± SEM (n = 12 per group).
* p < 0.05 vs. the control group; # p < 0.05, ## p < 0.01, ### p < 0.001, + p < 0.05 and ++ p < 0.01 vs. the
P-LPS group.

As shown in Figure 4, no difference was observed in the latency to the dark compart-
ment (Figure 4C) between the four groups during the training phase of PAT. In the retention
phase of PAT, SCH58261 (0.1 and 0.5 mg/kg) significantly increased latency to the dark
compartment (Figure 4C) and decreased the error times (Figure 4D) compared with the
P-LPS group.

There was no significant difference in the swimming speed between the four groups
(Figure 4E). In the place navigation test of MWM, SCH58261 (0.1 and 0.5 mg/kg) decreased
the escape latency compared with the P-LPS group from days 3 to 5 (Figure 4F). In the spatial
probe test phase, SCH58261 (0.1 and 0.5 mg/kg) significantly increased the number of
platform crossings (Figure 4G) and time spent in the target quadrant (Figure 4H) compared
with the P-LPS group. These results demonstrate that SCH58261 (0.1 and 0.5 mg/kg)
alleviates spatial memory impairment-induced by P. gingivalis LPS. Therefore, 0.1 mg/kg
SCH58261 was the selected for the subsequent behavioral tests and molecular biological
assay.
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To investigate the effect of 0.1 mg/kg SCH58261 on the behaviors of control mice, we
set up groups control, P-LPS, P-LPS + 0.1 mg/kg SCH58261 and 0.1 mg/kg SCH58261 for
behavioral tests. Ultimately, we found no significant effect of 0.1 mg/kg SCH58261 on the
behaviors of the control mice (Figure 4J–R).

3.4. A2AR Antagonist Alleviates P. gingivalis LPS-Induced Inflammation in the
Mouse Hippocampus

The microglia marker Iba1 was used to reflect activation of CNS inflammation [25]. In
this study, P. gingivalis LPS significantly increased the density of Iba1 in the hippocampus,
whereas SCH58261 decreased it (Figure 5A–D). Furthermore, SCH58261 decreased the
levels of TNF-α, IL-1β and IL-6 (Figure 5E–G) in the hippocampus of mice in the P-LPS + 0.1
SCH group compared with the P-LPS group. These data suggest that SCH58261 inhibits
neuroinflammation in the hippocampus of mice.

Figure 5. A2AR antagonist alleviates P. gingivalis LPS-induced inflammation in the hippocampus of
mice. The level of Iba1 was detected by immunofluorescence (A,B) and Western blot, respectively
(C,D). The concentration of TNF-α (E), IL-1β (F) and IL-6 (G) in the hippocampus of mice were
detected by ELISA. All data are expressed as the mean ± SEM (n = 6 per group). * p < 0.05 and
*** p < 0.001 vs. the control group; # p < 0.05, ## p < 0.01 and ### p < 0.001 vs. the P-LPS group.

3.5. A2AR Antagonist Alleviates P. gingivalis LPS-Induced GLT-1 and PSD95 Declines in the
Mouse Hippocampus

As shown in Figure 6, SCH58261 significantly restored the P. gingivalis LPS-induced de-
creases in the GLT-1 protein (Figure 6A,B) and mRNA (Figure 6D) levels. Moreover, SCH58261
decreased the glutamate level (Figure 6F) and increased the protein (Figure 6A,C,G,H) and
mRNA (Figure 6E) levels of PSD95 in the P-LPS + 0.1 SCH group compared with the P-
LPS group. Excess glutamate leads to increased Ca2+ influx in the neurons by activating
N-methyl-D-aspartic acid receptor (NMDAR), resulting in calcium overload and neuron
injury induction [26]. Therefore, we speculated that SCH58261 upregulates the levels of PSD95
by decreasing the glutamate level.
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Figure 6. A2AR antagonist alleviates P. gingivalis LPS-induced GLT-1 and PSD95 decline in the
hippocampus of mice. The protein levels of GLT-1 (A,B) and PSD95 (A,C,G,H) in the hippocampus
of mice were detected by Western blot and immunofluorescence, while the mRNA of GLT-1 (D)
and PSD95 (E) were detected by qRT-PCR. The concentration of glutamate (F) was detected by
colorimetric enzyme method. All data are expressed as the mean ± SEM (n = 6 per group). ** p < 0.01
and *** p < 0.001 vs. the control group; # p < 0.05, ## p < 0.01 and ### p < 0.001 vs. the P-LPS group.

4. Discussion

The present study assessed the neuroprotective capabilities of A2AR antagonist SCH58261
in CP-induced cognitive impairment. A CP mice model was developed by injecting P. gingivalis
LPS into the palatal gingival sulcus of maxillary first molars according to a previous study [8].
As evident from the OFT, MWM and PAT results, P. gingivalis LPS successfully induced
cognitive impairment but not anxiety behaviors in mice. In addition, we found increased
levels of adenosine, CD73, inflammatory factors and glutamate and decreased levels of GLT-
1 and PSD95 in the CP mice with cognitive impairment. The intraperitoneal injection of
SCH58261 decreased the levels of inflammatory factors and glutamate and increased the
levels of GLT-1 and PSD95 in the hippocampus of CP mice, ultimately alleviating cognitive
impairment. To the best of our knowledge, this study is the first to report the neuroprotective
effects of the A2AR antagonist SCH58261 mediated by decreasing the glutamate level in the
hippocampus of CP mice with cognitive impairment.

The P. gingivalis mainly resides in periodontitis plaque, which acts as a reservoir of
toxic substances that became transmitted throughout the body [27]. P. gingivalis LPS, a
highly toxic substances of P. gingivalis, reportedly induces cognitive impairment after and
intraperitoneal [5] or local injection [8]. In the present study, P. gingivali LPS was injected
into palatal gingival sulcus of maxillary first molars to develop a mouse model of CP. P.
gingivali LPS induced cognitive impairment in mice but did not affect locomotion and
anxiety behaviors. This observation is consistent with those of the abovementioned studies.

CP is accompanied by systemic inflammation and CNS inflammatory response [28].
Therefore, alleviating the inflammatory response is an effective approach in the treatment
of CP. Adenosine is present in all mammals and is mainly released by the nerve endings
and glial cells [29]; it can be converted to ATP through the action of CD73 [13]. The levels of
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adenosine are generally low in physiological conditions, but can increase considerably with
CNS damage (e.g., cerebral ischemia and hypoxia) [30]. A recent study has suggested that
the CD73 level increases in Parkinson’s disease (PD) models, and limiting CD73-derived
adenosine prevents neuroinflammation and improves motor behaviors in PD models [23].
In the present study, the levels of adenosine, CD73 and inflammatory factors increased
in the hippocampus of CP mice. Therefore, increased expression of inflammatory factors
may be associated with an increased level of CD73 level. Adenosine/A2AR signaling
reportedly regulates inflammation [14,31]; hence, we used the A2AR antagonist SCH58261
to verify the relationship between CD73 and neuroinflammation. We found that SCH58261
inhibited microglial activation and decreased the levels of TNF-α, IL-1β and IL-6, ultimately
alleviating cognitive impairment in CP mice. These results indicate that an increased level
of CD73 promotes neuroinflammatory response by activating A2AR. Moreover, other
studies have shown that A2AR inactivation promotes microglial inflammatory responses
and accelerates disease progression in EAE [32]. Therefore, adenosine/A2AR regulates
CNS inflammatory response in a context-dependent manner [33].

Glutamate, the most abundant CNS excitatory neurotransmitter, is involved in various
physiological regulatory pathways, including neuronal regeneration, synaptic plastic-
ity formation and apoptosis [34]. Although glutamate is an important neurotransmitter
for maintaining learning and memory, excessive glutamate levels may induce neuronal
damage, known as excitatory neurotoxicity [15]. The levels of glutamate in plasma and
cerebrospinal fluid were significantly higher in depressed patients and correlated with
the severity of depressive symptoms [35,36]. Clinical evidences demonstrated that ke-
tamine (a potent NMDA receptor antagonist) and esketamine may be effective in treating
depression [37]. GLT-1 expression was reduced in the hippocampus of depressed mice, and
ketamine improved depression-related symptoms by upregulating GLT-1 expression [38].
Extracellular glutamate level is dependent on its uptake by glutamate transporters (GLT-1
and GLAST) [39]. According to previous study, TNF-α suppresses the expression of gluta-
mate transporters by regulating NF-κB [24]. In the present study, we found an increased
glutamate level, decreased expression of GLT-1, but not GLAST, in the hippocampus of CP
mice. Conversely, the GLAST, rather than GLT-1, level was reduced in the hippocampus of
mice with postoperative cognitive dysfunction [40]. This variability in results might have
resulted from different disease models and warrants further relevant studies. SCH58261
restored the decrease in GLT-1 level and subsequently decreased the glutamate level, which
indicated that SCH58261 alleviates cognitive impairment in CP mice by relieving excita-
tory neurotoxicity. TNF-α induces astrocytes to A1-type (neurotoxicity) polarization [41],
which impairs the number of synapses and ultimately leads to cognitive impairment [25].
Therefore, we cannot exclude the direct protective effect of SCH58261 on cognitive function,
which is mediated through the inhibition of inflammatory responses.

PSD95 cross-talks with NMDAR and its related protein molecules in the signaling
pathway, forming a receptor-signaling molecule-regulatory molecule-target molecule com-
plex. This complex can participate in the formation and maintenance of synaptic junctions
through the interaction of pre- and postsynaptic adhesion molecules. Furthermore, the
complex plays a key role in mediating and integrating NMDAR signaling [42]. Glutamate
accumulation leads to excessive activation of NMDAR, resulting in a sustained increase
in the intracellular Ca2+ concentration, leading to Ca2+ overload resulting in neuronal
apoptosis and even death [43]. Thus, we speculated that decreased PSD95 expression is
related with glutamate accumulation-induced neuronal death and TNF-α decreased the
expression of PSD95 by inducing astrocytes to A1-type as mentioned earlier [25].

Current limitations of this study are as follows. First, the use of CD73 knockout mice
enabled more rigorous confirmation of the role of CD73. Moreover, we could not rule out
the role of other adenosine receptors as only A2AR antagonist SCH58261 was used. Second,
this study specifically explored the role of the hippocampus, but no other brain regions
(e.g., prefrontal cortex) that may play an important role in cognitive impairment [44].
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5. Conclusions

In the present study, A2AR antagonist SCH58261 exerted anti-inflammatory and anti-
glutamate excitatory neurotoxicity by blocking CD73/adenosine/A2AR pathway, ulti-
mately improving the cognitive impairment caused by CP. This study imply that A2AR
antagonist may has therapeutic potential for the treatment of cognitive impairment, espe-
cially cognitive impairment induced by neuroinflammation and excessive glutamate.
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