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Abstract: Precision medicine refers to a highly individualized and personalized approach to patient
care. Pharmacogenomics is the study of how an individual’s genomic profile affects their drug
response, enabling stable and effective drug selection, minimizing side effects, and maximizing
therapeutic efficacy. Rheumatoid arthritis (RA) is an autoimmune disease that causes chronic inflam-
mation in the joints. It mainly starts in peripheral joints, such as the hands and feet, and progresses to
large joints, which causes joint deformation and bone damage due to inflammation of the synovial
membrane. Here, we review various pharmacogenetic studies investigating the association between
clinical response to monoclonal antibody therapy and their target genetic polymorphisms. Numerous
papers have reported that some single nucleotide polymorphisms (SNPs) are related to the thera-
peutic response of several monoclonal antibody drugs including adalimumab, infliximab, rituximab,
and tocilizumab, which target tumor necrosis factor (TNF), CD20 of B-cells, and interleukin (IL)-6.
Additionally, there are some pharmacogenomic studies reporting on the association between the
clinical response of monoclonal antibodies having various mechanisms, such as IL-1, IL-17, IL-23,
granulocyte-macrophage colony-stimulating factor (GM-CSF) and the receptor activator of nuclear
factor-kappa B (RANK) inhibition. Biological therapies are currently prescribed on a “trial and error”
basis for RA patients. If appropriate drug treatment is not started early, joints may deform, and
long-term treatment outcomes may worsen. Pharmacogenomic approaches that predict therapeutic
responses for RA patients have the potential to significantly improve patient quality of life and reduce
treatment costs.

Keywords: pharmacogenomics; precision medicine; rheumatoid arthritis; monoclonal antibody;
genetic polymorphism

1. Introduction

Precision medicine is defined as the diagnosis and treatment tailored to the patient
based on their genotype, biomarkers, phenotype, or psychosocial characteristics to mini-
mize unnecessary adverse events and improve clinical outcomes [1,2]. Medicines manufac-
tured with the “one-size-fits-all” approach are effective in some patients and have no or
minor side effects, while others are ineffective and have strong side effects [3]. To overcome
the limitations of this one-size-fits-all framework in which all individuals presenting with
some constellation of symptoms receive similar treatment, the diagnosis and management
of various diseases are undergoing a paradigm shift to a personalized approach that pre-
vents or treats diseases by considering each patient’s characteristics [4]. The paradigm shift
towards precision medicine enables accurate disease prediction and prevention, reduces
individual side effects and inefficient prescriptions, and provides safer diagnoses and
treatments [5].

Over the past few decades, human genetics research has been fueled by cutting-edge
sequencing technologies that lead to a deeper understanding of the relationship between
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genetic variation and health [6]. Pharmacogenomics is an emerging application to adjust
drug selection and dosage considering a patient’s genetic characteristics [7]. It is one aspect
of clinical genomics that will have the earliest and broadest clinical implementation with
the potential to impact the treatment of all patients [8]. Although several pharmacogenetic
guidelines have been reported by international scientific consortia in recent years, the
application of pharmacogenomics in clinical care is still limited. Various major barriers
have been identified from basic pharmacogenomics research to implementation, and many
coordinated international efforts are underway to overcome them [9]. Studies of previously
neglected rare genetic variants and validation of their function and clinical impact through
preclinical models are essential to advance pharmacogenetic knowledge.

Another technological advancement related to precision medicine is the develop-
ment of “biopharmaceuticals”. The biopharmaceutical market is advancing faster than
all pharmaceutical markets, with innovations such as immunotherapy, antibody-drug
conjugates, and gene therapy [10]. Biopharmaceuticals rarely cause side effects and show
high specificity and activity compared to conventional drugs [11]. Their properties could
provide targeted therapies rather than symptomatic treatments, accelerating treatment for
conditions that cannot be treated with conventional synthetic drugs. [12]. Among biophar-
maceuticals, monoclonal antibodies are the most profitable and are used to cure a variety
of diseases, including autoimmune diseases, angiogenesis-related diseases, cardiovascular
diseases, inflammatory diseases, and cancer [13]. The top 10 best-selling biopharmaceuti-
cals in 2017 contained eight Abs. Among this list, the mAb adalimumab (ADA), a tumor
necrosis factor-alpha (TNF-α) inhibitor used to treat rheumatoid arthritis and related disor-
ders, was the most profitable product each year, generating global sales of approximately
USD 62.6 billion between 2014 and 2017 [14]. The number of newly registered mono-
clonal antibodies is predicted to steadily increase and dominate the biopharmaceutical
market [10].

Rheumatoid arthritis (RA) is an autoimmune disease that causes chronic inflammation
of the joints throughout the body. Mainly, the destruction of articular cartilage and bone
damage proceed due to persistent synovitis and infiltration of immune cells in the periph-
eral joints of the hands and feet [15]. As the disease progresses, chronic pain caused by
functional impairment and joint deformation causes physical disability, reduced quality of
life, and cardiovascular and other comorbidities [16]. Nonsteroidal anti-inflammatory drugs
(NSAIDs) used to treat RA do not interfere with joint damage and therefore do not cure the
disease. Glucocorticoids provide rapid symptom and disease correction but are associated
with serious long-term side effects [17]. Disease-modifying antirheumatic drugs (DMARDs)
used to coordinate disease progression through anti-inflammatory and immunomodulatory
actions are key to RA treatment [18]. Commonly used primary conventional synthetic
DMARDs to treat RA include methotrexate, hydroxychloroquine, and sulfasalazine. In
case of ineffectiveness, leflunomide or tacrolimus (calcineurin inhibitor) are used. In the
past, immunosuppressive agents such as azathioprine or cyclosporine, and parenteral gold,
penicillamine, and bucillamine were often used for general autoimmune diseases, but they
are now rarely prescribed due to the development of more effective and safer drugs [19].
When faced with the limitation that a sufficient therapeutic effect cannot be obtained with
the above therapeutic agents, biological DMARDs (TNF-α inhibitors, B-cell modulation,
and interleukin (IL)-6R blockade) or targeted DMARDs (Janus kinase inhibitors) may be
used alone or together with existing conventional synthetic DMARDs [20]. Most biological
DMARDs exhibit enhanced efficacy when combined with other conventional synthetic
DMARDs [21]. These drugs are designed to target inflammatory molecules, cells, and
pathways that cause tissue damage in patients with RA [22]. In this study, we summarized
the pharmacogenetic studies of mAb drugs among biological DMARDs of RA.

2. Adalimumab

The discovery of the role of certain cytokines, especially TNF-α, in the pathogenesis of
RA has dramatically changed disease treatment [23]. TNF-α is one of the major mediators
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abundantly expressed in the synovial fluid and synovium of patients with RA [24]. They
modulate immune responses that have a powerful impact on cellular and humoral immu-
nity [25]. For example, TNF-α can induce both cartilage degradation and bone resorption,
directly affecting osteocyte receptor activation of nuclear factor κB ligand (RANK-L) ex-
pression, and increasing osteoclast generation [26,27]. In addition, TNF-α contributes to the
pathogenesis of RA by inducing the production of other inflammatory cytokines, such as
interleukin (IL)-1β and IL-6, which promote inflammation in the synovial membrane and
attract and accumulate leukocytes [28,29]. In the past several decades, these TNF-α blockers
have shown excellent efficacy in improving the inflammation and joint destruction caused
by RA, and angiogenesis inhibition has been observed in various clinical trials [30–34].

ADA was approved by the Food and Drug Administration (FDA) in 2002 as an
anti-TNF-α drug made by producing a novel antibody protein by cloning “phage dis-
play” [35,36]. It is a fully recombinant human mAb that is structurally and functionally
indistinguishable from naturally occurring human IgG1 [37]. ADA specifically binds to
TNF-α and blocks interactions with p55 and p75 cell surface TNF receptors [38]. Many
clinical trials indicate ADA’s efficacy and safety for RA. As a blockbuster drug, the largest
number of biosimilars are already on the market or in development. Genetic polymor-
phisms associated with the ADA response are discussed in Table 1.

Table 1. Genetic polymorphisms known to affect adalimumab response in patients with rheumatoid
arthritis (RA).

Biological Agent Gene Polymorphism Clinical Outcome(s) Refs.

Adalimumab

FCGR2A rs1801274 Significantly associated with the clinical response
[39]DHX32 rs12356233

RGS12 rs4690093 Nominally significantly associated with
the response

IL-6 rs1800795 (−174 G/C) Significantly associated with a better response [40]
PTPN22 1858 C/T No effect on efficacy adalimumab [41]

TNF rs1800629 (−308 G/A) TNF-308 G/G genotype associated with better
clinical effect than TNF −308 A/G [42–45]

−238A/G, −308A/G and
−857C/T

TNF-α locus haplotype (−238G/−308G/−857C)
was associated with a lower response [46]

TNFR2 676 T/G TNFR2 676 T/T genotype associated with a better
clinical response than TNFR2 676 T/G [47]

DHX32, DEAH (Asp-Glu-Ala-His)-box polypeptide 32; FCGR2A, Fc fragment of immunoglobulin G receptor IIa;
IL-6, interleukin 6; PTPN22, protein tyrosine phosphatase non-receptor type 22; RGS12, regulator of G protein
signaling 12; TNF, tumor necrosis factor; TNFR2, tumor necrosis factor receptor 2.

2.1. FCGR2A

Fc receptor IgG immunoglobulins (FCGRs) can bind to extracellular IgG and cause
cell activation or inhibition [48]. Consequently, genetic mutations affecting the activity
of FCGRs are likely to affect the therapeutic efficacy of immunoglobulin-based therapies
such as anti-TNF drugs [49]. FCGR2A, which encodes an Fc receptor expressed in various
immune cells but mainly in macrophages and dendritic cells, is correlated with anti-TNF
treatment in RA treatment [50,51]. ADA, most commonly used to treat RA, has an IgG1
Fc portion capable of binding to FCGRs. Changes in Fc binding affinity may affect the
response to these biological therapies [52].

Avila-Pedretti et al. [39] studied whether genetic mutations at the Fc receptor FCGR2A
were associated with the response to the anti-TNF agent ADA. A total of 95 RA patients
treated with ADA were included and genotyped for the FCGR2A polymorphism rs1081274.
Response to ADA treatment was measured according to the European League Against
Rheumatism response (EULAR) criteria. They measured disease activity scores (DAS)
using 28 joint counts after 12 weeks of ADA treatment. There was a statistically signifi-
cant association with the genotype frequency of the FCGR2A polymorphism rs1801274
according to EULAR extreme clinical response to ADA treatment (odds ratio (OR) = 2.54;
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confidence interval (CI)95% = 1.9–5.4; p = 0.022). There have been several reports that RA
patients positive for anti-cyclic citrullinated peptide (CCP) have a differential and stronger
genetic background than anti-CCP-negative patients [53,54]. The association between the
FCGR2A polymorphism rs1801274 and the response to ADA in RA patients in the anti-CCP
positive group was investigated, and a significant relationship was confirmed (OR = 2.56;
CI95% = 1.18–5.54; p = 0.047).

2.2. DHX32

Additionally, Avila-Pedretti et al. [39] identified a microarray-based study in RA ana-
lyzing the transcriptome of synovial macrophages (GSE49604, n = 8 samples). They found
DEAH (Asp-Glu-Ala-His) box polypeptide 32 gene (DHX32) was positively correlated with
FCGR2A (average r2 = 0.93, p < 0.001). The DHX32 gene encodes a putative RNA helicase
and is involved in lymphocyte differentiation and activation [55,56]. In particular, RNA heli-
case is important for innate immune inactivation of viral RNA, which may contribute to the
development of autoimmune diseases such as RA [57,58]. They selected a single nucleotide
polymorphism (SNP) for DHX32 and determined its association with clinical response
to ADA treatment in the RA patient cohort. There was a significant association between
the DHX32 SNP rs12356233 and the clinical response to ADA (OR = 2.7; CI95% = 1.3–5.61;
p = 0.0064). Moreover, analysis of the anti-CCP positive group of RA patients still found a
significant association with ADA (OR = 2.65.; CI95% = 1.25–5.6; p = 0.0095).

2.3. RGS12

The regulator of G protein signaling 12 gene (RGS12), which is specifically expressed in
human osteoclasts, is essential for NF-κB inflammatory signaling and thus plays an impor-
tant role in the progression of RA [59]. Deletion of RGS12 attenuates inflammatory pain,
which may be due to dysregulation of the COX2/PGE2 signaling pathway [60]. In another
microarray-based study (GSE1050, n = 8 samples) in RA analyzing the transcriptome of
synovial macrophages, Avila-Pedretti et al. [39] found that the RGS12 gene was negatively
correlated with FCGR2A gene expression (average r2 = −0.96, p < 0.001). The RGS12 SNP
rs4690093 confirmed a nominally significant association between the clinical response to
ADA (OR = 0.4; CI95% = 0.17–0.98; p = 0.04). This effect was similar when analyzing the
anti-CCP positive group of RA patients (OR = 0.4; CI95% = 0.16–0.99; p = 0.049).

2.4. IL-6

Dávila-Fajardo et al. [40] conducted a study validating the reported association of the
IL-6 −174G/C polymorphism rs1800795 with the anti-TNF response in an independent
cohort of 199 RA patients. Patients were classified as good or moderate responders and
non-responders to the EULAR criteria at 6, 12, 18, and 24 months after treatment with TNF-
α inhibitors, including ADA. When comparing the allele frequencies of responders and
non-responders, there were slightly more patients with the −174G/C IL-6 polymorphism in
the responder group compared with the non-responder group, but this was not statistically
significant (p = 0.456). It was significantly associated with good or moderate EULAR
response at 12, 18, and 24 months (OR = 2.93; CI95% = 1.29–6.70; p = 0.011, OR = 5.17;
CI95% = 1.80–14.85; p = 2.27 × 10−3, and OR = 14.86; CI95% = 2.91–75.91; p = 1.18 × 10−3,
respectively). Their results confirm the role of the −174G/C IL-6 polymorphism as a genetic
predictive marker of responsiveness to anti-TNF therapy, including ADA.

2.5. PTPN22

Potter et al. [41] conducted a study to determine whether PTPN22 genetic susceptibility
mutations predicted response to ADA treatment in 68 RA patients. The difference in ADA
treatment response between autoantibody-positive and -negative patients was observed,
but there was no statistically significant difference using logistic regression analysis with
the EULAR response criteria. No association between drug response and shared epitope or
PTPN22 R620W (C1858T) polymorphism was demonstrated in ADA (p > 0.05). In summary,
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although genetic factors are likely to contribute to treatment response, the well-established
RA susceptibility loci, shared epitope, or PTPN22 are not included.

2.6. TNF

Cuchacovich et al. [42] conducted the first study to investigate the effect of the
−308 TNF-α polymorphism on the clinical response to ADA therapy in patients with
RA. They genotyped 81 RA patients for the −308 TNF-α polymorphism by polymerase
chain reaction-restriction fragment length polymorphism analysis. They then subdivided
patients into two groups (G/A and G/G genotype), and clinical responses were compared
using DAS28 at 8, 16, and 24 weeks. As a result, there were significantly more DAS28
responders in the G/G genotype group (88%) than in the G/A genotype group (68%) at
week 24. Additionally, the average DAS28 improvement of the G/G genotype group was
higher than that of the G/A genotype group at week 24 (2.5 and 1.8, respectively).

Seitz et al. [43] explored whether the −308 TNF-α promoter polymorphism affects
the therapeutic response to ADA-containing anti-TNF-α therapy in 54 RA patients. The
average improvement in DAS28 score after 24 weeks of anti-TNF-α therapy was 0.83 ± 0.15
in the A/A genotype group, 1.50 ± 0.16 in the A/G genotype group, and 2.72 ± 0.70 in
the G/G genotype group (p < 0.0001). These results confirmed that RA patients with the
TNF-α −308 G/G genotype responded better to anti-TNF-α treatment than RA patients
with the A/A or A/G genotype.

O’Rielly et al. [44] performed a meta-analysis of TNF-α −308 G/A polymorphism
rs1800629, predicting poor response to TNF-α inhibitors, including ADA, in RA patients.
The results were extracted based on DAS28 or achieving at least ACR 20 response. The
frequency of the A allele status was 119/531 (22%) in responders and 60/161 (37%) in
non-responders of nine studies [42,43,61–67]. Regardless of the prescribed TNF-α in-
hibitors, the odds for the A allele state were significantly reduced in responders versus
non-responders (OR = 0.43; CI95% = 0.28–0.68; p = 0.000245). These results indicate that
retention of −308 G/A polymorphism is predictive of a decreased response to TNF-α
inhibitors, including ADA.

However, not all patients respond well to TNF-α inhibitors, so Zeng et al. [45] addi-
tionally meta-analyzed 15 studies [42,43,46,61–72] with a total of 2,127 patients to evaluate
the TNF-α promoter −308 G/A polymorphism. Results showed that RA patients with the
G allele responded better to treatment (OR = 1.87; CI95% = 1.26–2.79; p = 0.002). A separate
meta-analysis of both studies showed that individuals with the A allele were associated
with a weaker response to anti-TNF-α treatment with ADA than those with the G allele.
In conclusion, individualized treatment can be suggested based on the TNF-α −308 G/A
polymorphic genotype of RA patients.

Miceli-Richard et al. [46] conducted a study to determine whether TNF-α gene poly-
morphisms (−238A/G, −308A/G, and −857C/T) are genetic predictors of the clinical
response to ADA in RA patients. A total of 380 patients were treated with ADA + methotrex-
ate (n = 182), ADA + other DMARD (n = 96), or ADA alone (n = 102), and the results were
recorded as DAS28, ACR response, and the Health Assessment Questionnaire-Disability
Index at 12 weeks of treatment. Of these, 152 RA patients had an ACR50 response at
12 weeks, but the three tested TNF-α polymorphisms were not significantly related to the
ACR50 response. The haplotype reconstruction of the TNF-α locus revealed the GGC
haplotype (−238G/−308G/−857C) was present in more than 50% of patients and was
significantly associated with a lower ACR50 response at 12 weeks only in the group treated
with methotrexate and ADA (p = 0.0041). These findings indicate that a single TNF-α locus
haplotype (−238G/−308G/−857C) present on both chromosomes is associated with a
lower response to treatment with methotrexate and ADA in patients with RA.

2.7. TNFR2

Ongaro et al. [47] assessed whether the polymorphisms 676T>G in the TNFR2 gene
could affect the clinical response in 105 RA patients who received anti-TNFα therapy with



J. Pers. Med. 2022, 12, 1265 6 of 23

ADA for one year according to the ACR criteria [73]. The percent improvement (20, 50, or
70%) of all efficacy variables included in the ACR score set represented patients with low,
medium, and high response grades, respectively. They analyzed the adjusted ORs obtained
by subdividing the number of patients by genotype by comparing ACR70 and ACR (50+20).
As a result, after three and six months of ADA treatment, the risk of belonging to the
ACR group for TG genotype patients was significantly increased by about three times
compared to wild-type (TT) genotype patients (OR = 2.90; CI95% = 0.95–8.89, and OR = 2.94;
CI95% = 1.15–7.56, respectively). Moreover, there was a significant increase in adjusted
ORs after 3 and 12 months of ADA treatment when they compared ACR70 and ACR20
responders (OR = 3.78; CI95% = 1.07–13.31, and OR = 4.30; CI95% = 1.16–15.99, respectively).
The OR values obtained for the ACR70 versus ACR (50+20) or ACR20 comparisons for
the GG genotype were not significant. Because the total number of patients with the GG
genotype was low (n = 8), individuals carrying the 676G allele were counted together
(TG+GG). This group of patients was similar to patients with the TG genotype in both
ACR70 versus ACR (50+20) or ACR20, with significant adjusted ORs after 12 months of
treatment (OR = 3.50; CI95% = 0.99–12.35). Therefore, the presence of one G allele tends to
be a less responsive phenotype during anti-TNFα therapy involving ADA. In conclusion,
the TNFR2 676 T/G genotype is associated with a low response to anti-TNFα therapy
containing ADA, so it can be a useful genetic marker for predicting various response grades
to anti-TNFα therapy.

3. Infliximab

Infliximab (IFX) is the first chimeric mAb (mouse/human) designed to block and
neutralize TNF-α, a major inflammatory cytokine [74]. Since its introduction in 1998, it
has revolutionized the induction and maintenance of treating RA and inflammatory bowel
disease, namely Crohn’s disease and ulcerative colitis [75,76]. IFX reduces serum levels of
inflammatory mediators and vascular endothelial growth factors as well as TNFα inhibition.
It also reduces the expression of chemokines in synovial tissues and decreases lymphocyte
migration to the joints in RA patients [77]. Genetic polymorphisms associated with IFX
response are summarized in Table 2.

3.1. FCGR2A and FCGR3A

Avila-Pedretti et al. [39] also studied the association between the FCGR2A polymor-
phism rs1081274 and clinical response to IFX in a total of 126 RA patients treated with IFX.
A comparison of the frequency of the FCGR2A polymorphism rs1801274 between a global
cohort of IFX-treated responders and non-responders showed no statistically significant
association between clinical response to FCGR2A polymorphism rs1801274 in patients
treated with IFX (OR = 0.76; CI95% = 0.44–1.32; p = 0.11). In contrast, the FCGR2A polymor-
phism rs1801274 was significantly associated with IFX response in the anti-CCP positive
RA patients group (OR = 0.62; CI95% = 0.32–1.22; p = 0.35).

Cañete et al. [78] evaluated the relationship between the functional SNP of the FCGR2A
gene and response to IFX treatment in 91 RA patients. The FCGR2A-RR genotype is a risk
factor for susceptibility to autoimmune diseases, as immune complexes are less efficiently
cleared from the circulation in RA patients, leading to tissue damage [82]. RA patients
with the low-affinity FCGR2A-RR genotype had a significantly better ACR20 response
(RR: 60% and HH-RH: 33.3%; p = 0.035), while EULAR good and moderate responses
only showed a significant trend after 30 weeks of IFX treatment (RR: 38.1% and HH-RH:
25.0%). They also showed an association between the low-affinity FCGR2A-RR genotype
and decreased DAS28 with three parameters, including C-reactive protein (3v-CRP), using
a linear model multivariate analysis. These results suggest that IFX can be eliminated less
efficiently in RA patients with low-affinity variants than in RA patients with high-affinity
variants (HH or RH). They also investigated the effect on the FCGR3A polymorphism and
the clinical response to IFX in patients with RA. After six weeks of follow-up, the low
affinity FCGR3A allele had a significantly higher ACR50 response (FF: 24.1% and VV-VF:
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2.2%; p = 0.003) and EULAR good response rate (FF: 44.8% and VV-VF: 22.9%; p = 0.040).
Changes in DAS28 3v-CRP during follow-up were similar to those found in ACR and
EULAR responses. In conclusion, the response to IFX treatment in RA patients is affected
by the FCGR3A genotype.

Table 2. Genetic polymorphisms known to affect infliximab response in patients with RA.

Biological Agent Gene Polymorphism Clinical Outcome(s) Refs.

Infliximab

FCGR2A
rs1801274 No effect on response to infliximab [39]

H131R FCGR2A-RR was associated with a better response
compared to RH or HH [78]

FCGR3A V158F FCGR3A-FF was associated with a better response
compared to VV or VF

RGS12 rs2857859 Nominally significantly associated with the response [39]
PTPN22 1858 C/T No effect on response to infliximab [41]

MHC MHC polymorphisms TNFa11;b4 associated with responders [79]

TNF

rs1800629 (−308 G/A) TNF-308 G/G associated with a better response than
TNF −308 A/A or A/G [61,63,64]

−308 G/A No effect on response to infliximab [67]
−308 G/A, −238 G/A,

489 G/A, −857 C/T [70]

rs361525 (−238 G/A) TNF −238G/A was associated with poorer response [71]
−238 G/G, +489 A/A TNF −238 G/G was associated with severe RA [80]
−308 G/A, −238 G/A No effect on response to infliximab

[81]

TNFR1 36 A/A, 676 T/G
TNFR1A 36 A/A was associated with better response

compared to G/G and TNFR1B 676 T/G was not
associated with response to infliximab

36 A/G No effect on response to infliximab
[70]

TNFR2 676 T/G
A combination of 676 T/G (TNFR2) and −857 C/T

(TNF-α) could be used for prognosis of clinical
response to infliximab

FCGR2A, Fc fragment of immunoglobulin G receptor IIa; FCGR3A, Fc fragment of immunoglobulin G receptor
IIIa; MHC, major histocompatibility complex; PTPN22, protein tyrosine phosphatase non-receptor type 22; RGS12,
regulator of G protein signaling 12; TNF, tumor necrosis factor; TNFR1, tumor necrosis factor receptor 1; TNFR2,
tumor necrosis factor receptor 2.

3.2. RGS12

Avila-Pedretti G et al. [39] identified RGS12 as having a strong correlation with
FCGR2A expression. Like the association between FCGR2A and clinical response of IFX,
they found a nominally significant association between RGS12 SNP rs2857859 and response
to IFX in anti-CCP positive RA patients (OR = 0.4; CI95% = 0.17–0.99; uncorrected p = 0.042).
This association was not significant after several test corrections.

3.3. PTPN22

Potter C et al. [41] evaluated the role of the PTPN22 R620W (C1858T) polymorphism as
a predictor of ADA as well as IFX treatment outcomes in 296 patients with RA. Compared
to rheumatoid factor (RF)-negative patients, RF-positive patients showed significantly
less improvement in DAS28 values after anti-TNF therapy, including IFX as well as ADA
and etanercept (OR =−0.48; CI95% = −0.87–0.08; p = 0.018). Moreover, patients positive
for anti-CCP antibody showed less improved DAS28 values compared to anti-CCP nega-
tive patients (OR = −0.39; CI95% = −0.71–0.07; p = 0.017). Additionally, the effects of RF
and anti-CCP antibodies were evaluated using multivariate linear regression combining
both antibodies with previously known predictors, such as baseline HAQ and concurrent
DMARD therapy and gender. As a result, RF and anti-CCP positivity did not better predict
the response to anti-TNF therapy, and there was no association between these two factors
and drug response (RF: R2 = 0.17; anti-CCP: R2 = 0.17; RF + anti-CCP: R2 = 0.17). Finally,
they performed a linear regression including the interaction between drug type and autoan-
tibody status to confirm that the predictive effects of RF and anti-CCP antibodies on IFX
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response were the same. The results showed that the effects of RF and anti-CCP antibodies
were demonstrated in RA patients treated with IFX, but the effects were not statistically
significant between the two drug types. As mentioned previously, an association between
the tested anti-TNF therapies, including ADA, IFX, etanercept, and the PTPN22 R620W
(C1858T) polymorphism, has not been demonstrated (OR = −0.11; CI95% = −0.36–0.15;
p = 0.41). Therefore, the presence of these antibodies accounts for only a small part of the
change in treatment response. PTPN22 does not affect IFX efficacy.

3.4. MHC

Martinez et al. [79]. studied the association of major histocompatibility complex (MHC)
polymorphisms with clinical response to IFX. They genotyped HLA-DRB1, HLA-DQA1,
HLA-DQB1, MHC class I chain-related gene A (MICA) transmembrane polymorphism alle-
les, and TNFa-e, D6S273, HLA–B–associated transcript 2 (BAT2), and D6S2223 microsatel-
lites in 78 RA patients who received IFX treatment. A control sample from 323 healthy
individuals was also included to detect the linkage disequilibrium between maker pairs.
The results showed no single allele associated with IFX response, including the TNFa/b
microsatellite allele linked to the TNF promoter polymorphism. The frequency of the
TNFa11;b4 mini-haplotype was increased (41% versus 16% in non-responders, p = 0.01) and
that of the D6S273_3 allele was decreased in the responders (32%) versus non-responders
(56%, p = 0.04). The D6S273_4/BAT2_2 pair was observed more frequently in the respon-
ders (46% versus 11% in non-responders, p = 0.001). This allele pair was only associated
with the responder group when compared to the control group (46% in responders versus
17% in controls, p = 0.00002). They did not identify statistically significant differences in
the frequency of MICA and D6S2223 polymorphisms and HLA-DRB1, HLA-DQA1, and
HLA-DQB1 alleles in responders and non-responders.

3.5. TNF

Mugnier et al. [61] evaluated whether the TNF-α promoter −308G/A polymorphism
affects the response to IFX treatment using DAS28 in 59 RA patients. After 22 weeks of IFX
treatment, in 42% of RA patients in the A/A or A/G groups and 81% of RA patients in
the G/G group, DAS28 showed significant improvements to 1.24 ± 1.74 and 2.29 ± 1.33,
respectively (p = 0.029).

Cuchacovich et al. [63] investigated the effect of a TNF-α promoter polymorphism
(G/A and G/G) circulating TNF-α levels on the IFX clinical response in 132 patients with
RA. They found that serum TNF-α levels increased in patients who progressively showed
significant improvement in all parameters with IFX treatment. This increase in TNF-α was
a result of quantification of both free and circulating TNF-α and immune complexes of
TNF-α bound to the anti-TNF-α monoclonal antibody [83]. When the two groups were
analyzed separately, they found a statistically significant correlation between the ACR50
improvement criteria and the increase in TNF-α levels over time only in RA patients from
the G/A group (p < 0.03).

Fonseca et al. [64] conducted a study of 22 RA patients to investigate the effect of the
polymorphism at position −308 of the TNF-α gene on IFX treatment. Of all patients, 68%
(n = 15) had the −308 GG genotype and 32% (n = 7) had the −308 AG genotype. After
treatment with IFX for approximately 25 months, the DAS28 score of −308 GG genotype
patients decreased, while the DAS28 score of −308 AG genotype patients slightly increased
(p < 0.01). The Health Assessment Questionnaire was more evolved in the GG genotype
group compared to that in the −308 AG group (p = 0.064).

Marotte et al. [67] studied the association between the TNF-α −308 polymorphism
and clinical response to IFX treatment in 198 patients with RA. They found that the TNF-α
−308 polymorphism was not associated with the ACR response to IFX. The circulating
TNF-α bioactivity level was higher in the A/A or A/G genotype group compared to that of
the G/G genotype group. However, the difference in TNF-α protein level according to the
genotype was not confirmed.
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Chatzikyriakidou et al. [70] conducted a study on the correlation between the TNFR1
gene polymorphism 36A/G, the TNF-α gene polymorphism −857C/T, −308G/A, −238G/A,
and 489G/A, and the therapeutic effect in 27 RA patients treated with IFX. However, inde-
pendent polymorphisms were not predictive of patient response to anti-TNF-α therapy.

Maxwell et al. [71] investigated the association between the response to infliximab by
eight SNPs and DAS28 in the TNF gene region. The TNF −308 gene polymorphism was
not related to the clinical IFX response, but it was negatively related to the TNF −238 G/A
polymorphism (p = 0.028).

Fabris et al. [80] conducted a study to investigate whether the −238 G/G or +489 A/A
TNF-α genotype in 66 patients with severe RA who received IFX differed from patients with
mild-moderate RA. Patients with severe RA had a −238 G/G genotype in 100% of cases,
whereas 92.8% of patients with mild-to-moderate RA and 92.5% of healthy individuals
had a −238 G/G genotype (OR = 11.7; CI95% = 0.6–216; p = 0.03). The +489 A/A geno-
type was less frequent in patients than in the control group (OR = 4.2; CI95% = 0.97–18.4;
p = 0.045). The −238 A/G genotype did not occur in patients with severe RA, and the mild-
to-moderate RA genotype had the same frequency as the control group. Thus, −238 G/G
homozygosity is associated with severe RA and the +489 A/A genotype may protect
against poor RA outcomes.

3.6. TNFR1 and TNFR2

As mentioned earlier, Chatzikyriakidou et al. [70] reported that five independent
polymorphisms were not predictive of patient response to IFX treatment. However, when
they performed complex genotyping of both TNFR2 and TNF-α gene polymorphisms, they
found a statistically significant difference between good and poor IFX responders in the
genotype association distribution of 676T/G and −857C/T (p = 0.008). Good responders
more frequently carried the TNFR2 allele 676T in homozygosity, with homozygosity of
the TNF-α allele −857C/T compared with poor responders. The combination of 676T/G
(TNFR2) and −857C/T (TNF-α) can be used to predict the efficacy of infliximab treatment.

Swierkot et al. [81] evaluated if five SNPs within the TNF-α and TNF receptor encoding
genes (TNFA: G−308A, G−238A, C−857T; TNFR1A G36A; and TNFR1B T676G) affect the
efficacy of TNF-α inhibitor therapy, including IFX, in 280 patients with RA. At 24 weeks of
treatment, 45% of all patients achieved low disease activity or remission. After six months,
lower disease activity or remission was observed more frequently in patients homozygous
for the TNFR1A 36 allele than in patients homozygous for GG (52% versus 34%, p = 0.04)
Additionally, at 24 weeks of treatment, the subgroup of RA patients homozygous for
the TNFA-856T variant had a significantly lower DAS28 score compared to RA patients
carrying the C allele (p = 0.045). No other polymorphisms were associated with EULAR
responses at 12 and 24 weeks of treatment. In conclusion, homozygosity for the TNFR1A
36A allele and of TNFA −857T variant was associated with better response to anti-TNF
therapy, including IFX.

4. Rituximab

B-cell targeting was first proposed as an RA treatment method in the 1990s based on the
hypothesis that autoantibodies, such as rheumatoid factor, promote the survival of B-cells
and thereby propagate chronic inflammation [84]. In addition, they can act as antigen-
presenting cells through interaction with T-cells, which can stimulate inflammation [85].
Synovial B-cells are mainly part of the B-cell–T-cell aggregates that are closely related to the
expression of factors such as A proliferation-inducing ligand (APPRIL), B-cell-activating
factor (BAFF), and chemokines [86]. These molecules are key components of humoral
adaptive immunity and are potential therapeutic targets for RA [87].

Rituximab (RTX) is a chimeric mAb with a specific affinity for CD20, which is ex-
pressed on most malignant B-cells [88]. It is approved to treat blood B-cell malignancies
and non-hematologic B-cell-mediated diseases such as RA [89,90]. RTX binds to CD20 via
a crystallizable fragment (Fc) and is reorganized in lipid rafts [91]. Thereafter, antibody-
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dependent cell-mediated cytotoxicity occurs due to the interaction of the Fcγ receptor
expressed on the surface of effector cells (macrophages, granulocytes, and natural killer
cells) with the Fc portion of RTX [92]. RTX in vivo mainly acts through immune-mediated
mechanisms, including complement-dependent cytotoxicity involving NK cells and phago-
cytosis by macrophages and neutrophils [93,94]. The mechanisms of action of rituximab
are only partly understood [95]. Table 3 described the genetic polymorphisms associated
with RTX response.

Table 3. Genetic polymorphisms known to affect rituximab response in patients with RA.

Biological Agent Gene Polymorphism Clinical Outcome(s) Refs.

Rituximab

FCGR2A rs1801274 FCGR2A rs1801274-T/T genotype was associated
with better clinical response to rituximab [96]

FCGR3A

rs396991 FCGR3A rs396991-G allele genotype was associated
with better response to rituximab

−158 V/F

FCGR3A −158 V/V was associated with a better
response than V/F or F/F [97]

FCGR3A −158 V allele was independently associated
with better response to rituximab [98]

FCGR3A −158 V/V and V/F was associated with a
better response than F/F [99]

FCGR3A −158 V/F was not associated with CDAI
response to rituximab [100]

BAFF −871 C/T BAFF −871 C/C was associated with a better
response than T/T [101]

IL-6 rs1800795 (−174 G/C) IL-6 −174 GG/GC genotypes was associated with
better responses than with −174 C/C genotypes [102]

TGFβ1 rs1800470, rs1800471 TGFβ1 SNPs was associated with good response to
rituximab [103]

BAFF, B-cell-activating factor; CDAI, Clinical Disease Activity Index; FCGR2A, Fc fragment of immunoglobulin G
receptor IIa; FCGR3A, Fc fragment of immunoglobulin G receptor IIIa; IL-6, interleukin 6; SNP, single nucleotide
polymorphism; TGFβ1, Transforming growth factor beta-1.

4.1. FCGR2A and FCGR3

Jiménez Morales et al. [96] aimed to evaluate the effects of FCGR2A rs1801274 and
FCGR3A rs396991 gene polymorphisms on response to RTX, EULAR response, remission,
low disease activity (LDA), and DAS28 improvement in 55 patients diagnosed with RA
and treated with RTX for 6, 12, and 18 months. Results showed that patients receiving RTX
and carrying the T allele for FCGR2A rs1801274 gene polymorphism had a higher EULAR
response at 6 months (OR = 4.86; CI95% = 1.11–21.12; p = 0.035), 12 months (OR = 4.66;
CI95% = 0.90–24.12; p = 0.066) and 18 months (OR = 2.48; CI95% = 0.35–17.31; p = 0.357), a
higher remission at 6 months (OR = 10.625; CI95% = 1.07–105.47; p = 0.044), and a higher im-
provement in DAS28 at 12 months (B = 0.782; CI95% = −0.15–1.71; p = 0.098) and 18 months
(B = 1.414; CI95% = 0.19–2.63; p = 0.025). In addition, patients carrying the FCGR3A rs396991-
G allele and receiving RTX had improved LDA (OR = 4.904; CI95% = 0.84–28.48; p = 0.077)
and DAS28 (B = −1.083; CI95% = −1.98–−0.18; p = 0.021) at 18 months. These results
suggest that the FCGR2A rs1801274 and FCGR3A rs396991 gene polymorphisms are good
predictors of response to RTX treatment.

Quartuccio et al. [97] studied whether the FCGR3A −158 V/F polymorphism could
affect the response to RTX in 212 RA patients. The FCGR3A genotype was not associated
with a good/moderate EULAR response after four months of RTX treatment (p = 0.09).
However, a significant difference between the VV and VF or FF genotypes was associated
with a good/moderate EULAR response after six months of RTX treatment (p = 0.015
and p = 0.018, respectively), but not between the VF and FF genotypes (p = 0.96). RA
patients with the VV genotype were associated with a good/moderate EULAR response
after six months of RTX treatment by univariate logistic regression analysis (OR = 4.4;
CI95% = 1.4–13.5; p = 0.01).
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Ruyssen-Witrand et al. [98] evaluated the association between single nucleotide poly-
morphisms in the FCGR3A gene and response to RTX treatment in 111 patients with RA
who did not respond to or tolerate anti-TNF therapy. Of all RA patients, 81% (n = 90) had
a response, 27% (n = 30) of which had a good response. Patients with RA carrying the
FCGR3A −158V allele showed a statistically significant association with a higher response
rate (OR = 4.6; CI95% = 1.5–13.6; p = 0.006). In multivariate analysis, V allele retention was
independently associated with response to RTX (OR = 3.8; CI95% = 1.2–11.7; p = 0.023).

Similarly, Pál et al. [99] assessed the relationship between the FCGR3A polymorphism
and the treatment outcome of RTX therapy in 52 RA patients. The distribution of FCGR3A
genotypes was: VV: 15% (n = 8); VF: 65% (n = 34), FF: 19% (n = 10). A DAS28 reduction
was shown in RA patients with three FCGR3A genotypes (VV: 1.98 ± 0.54, p = 0.008;
VF: 2.07 ± 0.23, p < 0.001; FF: 1.59 ± 0.52, p = 0.014). Significant differences in DAS28 reduc-
tion on RTX treatment were identified between the VF heterozygote and the FF homozygote
(p = 0.032) and between the heterozygote and VV+FF homozygotes (p = 0.017). More-
over, VV and VF patients achieved significant LDA compared to FF patients (VV: 62.5%;
VF: 64.7%; FF: 30%).

However, conflicting results have been reported. Sarsour et al. [100] also conducted
a study to determine if the FCGR3A polymorphism was associated with RTX efficacy in
patients with RA. Longitudinal patient outcomes were assessed using the Clinical Disease
Activity Index (CDAI) in 158 RTX-treated and 390 RA-treated TNF-α antagonists as controls.
Similar changes in CDAI were observed for the three FCGR3A genotypes in the RTX-treated
(VV: 4.56; VF: 7.44; FF: 4.75; p > 0.05) and TNF-α antagonist-treated patients (VV: 5.12;
VF: 6.77; FF: 4.36; p > 0.05). The FCGR3A genotype was not significantly associated with
treatment response in RTX-treated patients compared to TNF-α antagonist-treated patients
(p = 0.86).

4.2. BAFF

Ruyssen-Witrand et al. [101] also determined whether BAFF polymorphisms were
correlated with response to RTX treatment in 115 patients with RA. After 24 weeks of RTX
treatment, the BAFF −871 C/C genotype was associated with a higher EULAR response
rate than the T/T genotype (OR = 6.9; CI95% = 1.6–29.6; p = 0.03). In the multivariate analysis,
the C allele was independently related to the response to RTX (OR = 4.1; CI95% = 1.3–12.7;
p = 0.017).

4.3. IL-6

Fabris et al. [102] evaluated the effect of IL-6 −174 G/C polymorphism on response
to RTX. Treatment response was assessed using both EULAR and ACR criteria after six
months of RTX treatment in 142 RA patients. According to the EULAR criteria, patients
with the IL-6 −174 C/C genotype showed less of a response to RTX than those with the
GC/CC genotype (OR = 3.196; CI95% = 1.204–8.485; p = 0.0234), and similar results were
found when evaluating the response based on the ACR criteria.

4.4. TGFβ1

Daïen et al. [103] conducted a study on the association between the TGFβ1 SNPs and
responsiveness to RTX in 63 RA patients. Of these, 44 patients were defined as responders
and 19 as non-responders. Both TGFβ1-10 (rs1800470) and TGFβ1-25 (rs1800471) were
associated with clinical responses (OR = 1.6; CI95% = 1.2–2.3; p = 0.002 and OR = 1.6;
CI95% = 1.3–1.9; p = 0.025, respectively). Additionally, the combination of the two SNPs
elicited a much better RTX response (OR = 2.6; CI95% = 1.4–4.6; p = 0.008). In addition, they
researched the association between the RTX clinical response and genes coding for cytokines
involved in synovitis (IL-10: rs1800896; LTA: rs909253 and rs1041981; TNF-α: rs1800629,
rs80267959, and rs1799724; TNFR2: rs1061622) and genes related to RA susceptibility
(TRAF1: rs1081848; STAT4: rs7574865; TNFAIP3: rs6920220, and PTPN22L: rs2476601), but
no associations were noted.
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5. Tocilizumab

IL-6 plays a pivotal role in the aforementioned interaction between B-cells and T-cells.
It promotes differentiation of Ig-producing plasma cells, leading to hypergammaglobu-
linemia, associated with chronic inflammation, and also contributes to the sustained main-
tenance of B-cell subpopulation plasmablasts, known as precursors of plasma cells [104].
These surviving plasmablasts are a source of autoantibodies, such as anti-citrullinated
protein/peptide antibodies, and may accompany related autoimmune and chronic inflam-
matory diseases [105].

Tocilizumab (TCZ) is a humanized monoclonal antibody that acts as an IL-6R antag-
onist [106]. Potential immunological effects of TCZ include induction and expansion of
B-regulatory cells, decreased expression of pro-inflammatory cytokines and chemokine
genes, and increased expression of healing genes in synovial fluid [107]. It is approved for
use in juvenile idiopathic polyarthritis and giant cell arteritis [108]. TCZ may be used as
monotherapy in the treatment of adult patients with moderate-to-severe active RA who
have had an inadequate response to one or more DMARDs or TNF-α inhibitors [109]. We
show the genes related to the response of RA to tocilizumab in Table 4.

Table 4. Genetic polymorphisms known to affect tocilizumab response in patients with RA.

Biological Agent Gene Polymorphism Clinical Outcome(s) Refs.

Tocilizumab

FCGR2A rs1801274 Not associated with response to tocilizumab [96]

FCGR3A rs396991 FCGR3A rs396991-T/T genotype is associated with
better EULAR response to tocilizumab

HLA-
DRB1

rs11052877, rs4910008,
rs9594987, rs10108210,

rs703297, rs703505,
rs1560011, rs7055107

The shared epitope HLA-DRB1 had no association
with tocilizumab response [110]

IL-6R rs12083537, rs2228145,
rs4329505, rs11265618

rs12083537-A/A and rs11265618-C/C were
associated with higher LDA rates [111]

EULAR, European League Against Rheumatism; FCGR2A, Fc fragment of immunoglobulin G receptor IIa;
FCGR3A, Fc fragment of immunoglobulin G receptor IIIa; HLA-DRB1, human leukocyte antigen-beta chain 1;
IL-6R, interleukin 6 receptor; LDA, low disease activity.

5.1. FCGR2A and FCGR3A

Jiménez Morales et al. [96] evaluated the effects of FCGR2A rs1801274 and FCGR3A
rs396991 gene polymorphisms on response to TCZ. A retrospective prospective cohort
study was conducted on 87 patients with RA who received TCZ treatment for 6, 12, and
18 months. No association was found between the FCGR2A rs1801274 gene polymorphism
and response to TCZ. In contrast, patients carrying the FCGR3A rs39699-TT genotype had a
higher EULAR response (OR = 5.075; CI95% = 1.20–21.33; p = 0.027) at 12 months. Therefore,
patients carrying the genotype TT for rs1801274 FCGR3A would be better candidates for
TCZ treatment.

5.2. HLA-DRB1

The human leukocyte antigen (HLA)-DRB1 is the most strongly known genetic risk factor
for the complex genetic etiology of RA, a group of alleles referred to as the shared epi-
tope [112]. Wang et al. [110] performed the first genome-wide association study to identify
genetic factors related to TCZ response of 1,683 patients with RA in six clinical studies.
They identified putative associations with eight loci (rs11052877, rs4910008, rs9594987,
rs10108210, rs703297, rs703505, rs1560011, and rs7055107) previously involved as risk alle-
les for RA or not linked to responses to other therapies. None of these polymorphisms are
clearly associated with the IL-6 pathway, and there is no association between HLA-DRB1
(shared epitope) with TCZ response.
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5.3. IL-6R

Maldonado-Montoro et al. [111] examined the clinical parameters and rs12083537,
rs2228145, rs4329505, rs11265618 gene polymorphisms of IL6R on TCZ EULAR response,
LDA, and DAS28 improvement. They investigated a historic cohort of 77 patients with RA
who had been treated with TCZ for 12 months. Of all gene polymorphisms, none were
associated with EULAR response, remission, and DAS28 improvement. The AA genotype
for rs12083537 (OR = 1.4; CI95% = 1.13–2.01; p = 0.021) and the CC genotype for rs11265618
(OR = 1.3; CI95% = 1.13–1.77; p = 0.031) are predictors of good response LDA. As a result
of multivariate analysis, the AA genotype for rs12083537 (OR = 13.0; CI95% = 2.31–72.91;
p = 0.004) and the CC genotype for rs11265618 (OR = 12.15; CI95% = 2.18–67.81; p = 0.004)
were indicated. In conclusion, the IL6R polymorphisms AA genotype for rs12083537 and
CC genotype for rs11265618 were significantly associated with higher LDA rates.

6. Newer Monoclonal Antibody Drugs and Genetic Polymorphisms of Their Targets

To provide precision medicine to individuals with a better understanding of the
pathophysiology of RA, novel monoclonal antibody drugs that can treat RA through
various mechanisms are being developed [113]. The association between various SNPs
and response to biologic therapy in RA has been reported in several pharmacological
studies [114]. Studies on the association of genetic polymorphisms with new targets and
susceptibility to RA are being actively reported (Table 5).

IL-1, the first interleukin identified, is a major proinflammatory cytokine and a known
pathogenic factor of auto-inflammation, auto-immunity, or infection. It is mainly secreted
by macrophages, monocytes, and dendritic cells [156,157]. Canakinumab is a fully human
anti-IL-1β monoclonal antibody drug that selectively neutralizes the bioactivity of IL-
1β [158]. Another IL-11β monoclonal antibody, gevokizumab, was also studied in a phase
lla study [159].

IL-17 is a pro-inflammatory cytokine mainly secreted by T helper 17 (Th17) cells and
other T-cells [160]. This family includes six members from IL-17A to IL-17F [161]. IL-17
induces activation of the nuclear factor-κB, mitogen-activated protein kinases pathways,
and the phosphoinositide-3 kinase pathway, leading to many inflammatory genes, mainly
neutrophil-specific chemokines [162]. An excess of IL-17, which plays an important role
in host defense, is observed in many chronic inflammatory and autoimmune diseases,
including RA. It also contributes to tissue destruction [163]. Secukinumab and ixekizumab
are humanized monoclonal antibody drugs against IL-17A, and brodalumab is a human
immunoglobulin G2 monoclonal antibody drug against IL-17R. Several studies have re-
ported that they are effective in treating RA when administered to patients who have no
experience in biologic therapy or are resistant to anti-TNF therapy [164–167]. Recently, it
has been reported that bimekizumab, developed for the dual blockade of IL-17A and IL-17F,
effectively treats RA patients with an inadequate response to certolizumab pegol [168].

IL-23, a member of the IL-12 cytokine family, is a heterodimeric cytokine composed
of an IL-23 p19 subunit and an IL-12/30 p40 subunit. It is mainly secreted by activated
macrophages or dendritic cells [169]. They are known to induce differentiation of Th0
cells into Th17 cells and stimulate the production of pro-inflammatory cytokines such as
TNF-α, IL-1β, IL-21, and IL-17 [170]. Ustekinumab is a human IgG1 monoclonal antibody
drug that binds to the p40 subunit shared with IL-12 and IL-23 and blocks IL-12 and IL-23
signaling pathways through the inhibition of IL-12Rβ1 binding [171]. Guselkumab is the
first IL-23 inhibitor approved for the treatment of severe plaque psoriasis by selectively
targeting IL-23 [172]. However, the administration of both drugs to RA patients who did
not respond to methotrexate treatment did not result in significant clinical improvement
compared to the control group [173].
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Table 5. Newer monoclonal antibody drugs and genetic polymorphisms of their targets.

Biological Agent Polymorphism Clinical Outcome(s) Refs.

Canakinumab, Gevokizumab

IL-1α rs17561 [115]

IL-1β

rs16944 [115]

rs16944, rs1143634

[116]
[117]
[118]
[119]

IL-1Ra
(IL-1RN)

2018 C/T [117]
5111 T/C, 2017 T/C [115]

Secukinumab, Ixekizumab,
Bimekizumab

IL-17A

rs4711998, rs8193036, rs3819024, rs2275913, rs7747909 [120]
rs2275913, rs3804513, rs3748067, rs1974226 [121]

rs2275913
[122]
[123]

rs2275913, rs3819024, rs3819025, rs4711998, rs8193036,
rs8193037, rs3804513 [124]

rs2275913, rs3804513 [125]

rs2275913

[126]
[127]
[128]
[129]
[130]
[131]

rs2275913, rs3819024, rs4711998, rs8193036 [132]

rs2275913

[133]
[134]
[135]
[136]
[137]
[138]

IL-17F

rs763780, rs2397084 [121]
rs763780 [122]

rs763780, rs2397084 [123]

rs763780
[125]
[126]

rs763780, rs11465553, rs2397084 [127]

rs763780, rs2397084
[128]
[129]

rs763780 [130]

rs763780, rs2397084
[132]
[134]

rs763780 [135]
rs763780, rs2397084 [136]

rs763780 [138]

Brodalumab IL-17RC rs708567 [133]

Ustekinumab, Guselkumab IL-23R

rs11209026, rs134315, rs10489629, rs7517847 [125]
rs11209026, rs1343151, rs10489629 [128]

rs10889677 [130]
rs1004819, rs10489629, rs11209026, rs1343151, rs10889677,

rs11209032, rs1495965 [139]

rs10889677, rs2201841, rs1884444 [140]
rs1004819, rs7517847, rs10489629, rs2201841, rs1343151,

rs11209032, rs1495965 [141]

rs11209026, rs2201841, rs10889677 [142]
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Table 5. Cont.

Biological Agent Polymorphism Clinical Outcome(s) Refs.

Lenzilumab, Namilumab,
Otilimab, Gimsilumab GM-CSF

177 T/C [143]
545 G/A, 3606 T/C, 3928 C/T [144]

677 C/C [145]
3606 T/C, 3928 C/T [146]

677 A/C [147]
3928 C/T, 3606 T/C [148]

Denosumab RANKL

rs9533156, rs2277438, rs1054016 [149]
rs2277438 [150]

rs2277438, rs7984870 [151]
rs2277438, rs9533156 [152]

rs7325635, rs7988338
[153]
[154]

rs2277438, rs9533156 [155]

IL-1α, interleukin-1 alpha; IL-1β, interleukin-1 beta; IL-1Ra (or IL-1RN), interleukin-1 receptor antagonist; IL-17A,
interleukin-17A; IL-17F, interleukin-17F; IL-17RC, interleukin-17 receptor C; IL-23, interleukin-23 receptor; GM-
CSF, granulocyte-macrophage colony-stimulating factor; RANKL, Receptor activator of nuclear factors κB ligand.

Granulocyte-macrophage colony-stimulating factor (GM-CSF) belongs to the colony-
stimulating factor family of hematopoietic growth factors and is mainly produced by T-cells
and stromal cells [174]. They are essential for regulating the function of mature bone mar-
row cells, such as macrophages, and induce the expression of HLA class Il antigens in syn-
ovial cells of RA patients [175]. Drugs targeting cytokines such as lenzilumab, namilumab,
otilimab, and gimsilumab are being developed to block the GM-CSF pathway [176]. In
particular, mavrilimumab, a human IgG4 monoclonal antibody against GM-CSF receptor
α, showed an excellent clinical response and safety profile in RA patients [177].

The receptor activator of nuclear factor kappa B (RANKL) ligand belongs to the
TNF superfamily and is an activated T-cell generator that regulates dendritic cell survival.
Subsequent studies have reported that it is essential for osteoclast development [178,179].
Denosumab is a fully human anti-RANKL monoclonal antibody that competitively sup-
presses RANKL-RANK binding to inhibit osteoclast formation [180].

7. Conclusions and Future Challenges

Although the exact etiology of RA is still unknown, many researchers emphasize
that it is caused by a combination of genetic and environmental factors. Several novel
monoclonal antibodies that specify a target through various mechanisms have been devel-
oped and are showing excellent effects in the treatment of RA. In addition, recent review
papers on sex and gender differences in RA treatment [181] and on different types of oral
microbes involved in inducing RA progression [182] have suggested the possibility of more
precise customization of treatment for individual patients. However, pharmacogenomic
studies on the association between the new monoclonal antibody drugs and various genetic
polymorphisms are insufficient. Moreover, factors involved in immunity and inflammation
are very diverse, and there is currently no clear direction for personalized medicine [183].
Therefore, further research is essential, and this will increase the safety and efficacy of the
newly developed monoclonal antibody drugs, enabling more complete precision medicine.
This review reveals the complex genetic basis for the response to monoclonal antibody
drugs among biological DMARDs used to treat RA, and it may contribute to important
advances in understanding the molecular mechanisms involved in these therapies.
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147. Wilkowska, A.; Gleń, J.; Zabłotna, M.; Trzeciak, M.; Ryduchowska, M.; Sobjanek, M.; Nedoszytko, B.; Nowicki, R.; Sokołowska-
Wojdyło, M. The Association of GM-CSF-677A/C Promoter Gene Polymorphism with the Occurrence and Severity of Atopic
Dermatitis in a Polish Population. Int. J. Dermatol. 2014, 53, e172–e174. [CrossRef]

148. Abdelaal, E.B.; Abdelsamie, H.M.; Attia, S.M.; Amr, K.S.; Eldahshan, R.M.; Elsaie, M.L. Association of a Novel Granulocyte-
Macrophage Colony-Stimulating Factor (GM-CSF)-3928C/T and GM-CSF(3606T⁄C) Promoter Gene Polymorphisms with the
Pathogenesis and Severity of Acne Vulgaris: A Case-Controlled Study. J. Cosmet. Dermatol. 2021, 20, 3679–3683. [CrossRef]

149. Assmann, G.; Koenig, J.; Pfreundschuh, M.; Epplen, J.T.; Kekow, J.; Roemer, K.; Wieczorek, S. Genetic Variations in Genes
Encoding RANK, RANKL, and OPG in Rheumatoid Arthritis: A Case-Control Study. J. Rheumatol. 2010, 37, 900–904. [CrossRef]

150. Xu, S.; Ma, X.-X.; Hu, L.-W.; Peng, L.-P.; Pan, F.-M.; Xu, J.-H. Single Nucleotide Polymorphism of RANKL and OPG Genes May
Play a Role in Bone and Joint Injury in Rheumatoid Arthritis. Clin. Exp. Rheumatol. 2014, 32, 697–704.

151. Yang, H.; Liu, W.; Zhou, X.; Rui, H.; Zhang, H.; Liu, R. The Association between RANK, RANKL and OPG Gene Polymorphisms
and the Risk of Rheumatoid Arthritis: A Case-Controlled Study and Meta-Analysis. Biosci. Rep. 2019, 39, BSR20182356. [CrossRef]
[PubMed]

152. Abdi, S.; Bukhari, I.; Ansari, M.G.A.; BinBaz, R.A.; Mohammed, A.K.; Hussain, S.D.; Aljohani, N.; Al-Daghri, N.M. Association of
Polymorphisms in RANK and RANKL Genes with Osteopenia in Arab Postmenopausal Women. Dis. Markers 2020, 2020, 1285216.
[CrossRef] [PubMed]
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Jeka, S.; Bogunia-Kubik, K. Polymorphisms within the RANK and RANKL Encoding Genes in Patients with Rheumatoid Arthritis:
Association with Disease Progression and Effectiveness of the Biological Treatment. Arch. Immunol. Ther. Exp. 2020, 68, 24.
[CrossRef] [PubMed]
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