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Background: Lymph-vascular space invasion (LVSI) is an unfavorable prognostic factor in cervical cancer. Unfortunately,
there are no current clinical tools for the preoperative prediction of LVSI.
Purpose: To develop and validate an axial T1 contrast-enhanced (CE) MR-based radiomics nomogram that incorporated a
radiomics signature and some clinical parameters for predicting LVSI of cervical cancer preoperatively.
Study Type: Retrospective.
Population: In all, 105 patients were randomly divided into two cohorts at a 2:1 ratio.
Field Strength/Sequence: T1 CE MRI sequences at 1.5T.
Assessment: Univariate analysis was performed on the radiomics features and clinical parameters. Multivariate analysis
was performed to determine the optimal feature subset. The receiver operating characteristic (ROC) analysis was per-
formed to evaluate the performance of prediction model and radiomics nomogram.
Statistical Tests: The Mann–Whitney U-test and the chi-square test were used to evaluate the performance of
clinical characteristics and LVSI status by pathology. The minimum-redundancy/maximum-relevance and recursive
feature elimination methods were applied to select the features. The radiomics model was constructed using logistic
regression.
Results: Three radiomics features and one clinical characteristic were selected. The radiomics nomogram showed favor-
able discrimination between LVSI and non-LVSI groups. The AUC was 0.754 (95% confidence interval [CI], 0.6326–0.8745)
in the training cohort and 0.727 (95% CI, 0.5449–0.9097) in the validation cohort. The specificity and sensitivity were 0.756
and 0.828 in the training cohort and 0.773 and 0.692 in the validation cohort.
Data Conclusion: T1 CE MR-based radiomics nomogram serves as a noninvasive biomarker in the prediction of LVSI in
patients with cervical cancer preoperatively.
Level of Evidence: 4
Technical Efficacy: Stage 2
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CANCER OF THE CERVIX, accounting for almost
12% of all female cancers, is the fourth most common

cancer. There were an estimated 528,000 new cases and
266,000 deaths each year, making it the second leading cause
of cancer death among women in developing countries,
including China.1

Lymph-vascular space invasion (LVSI) is defined as the
presence of carcinoma cells within the lymphatic and/or
blood vessels,2 and is a crucial step in the dissemination of
tumor cells.3 LVSI is now widely accepted as the major high-
risk factor.4,5 More fertility-sparing operations could be
applied to treat nulliparas with early-stage cervical cancer6–8 if
the presence of LVSI could be determined before surgery.

Magnetic resonance imaging (MRI) has been an essen-
tial part in diagnosing and staging of cervical carcinoma and
assists in determining the tumor size, location, degree of inva-
sion into adjacent organs, and lymph node metastasis.9

“Radiomics” refers to the process of converting medical
images into high-dimensional data from the high-throughput
extraction of quantitative imaging features, and subsequently
analyzes the data for decision-making.10–12 Objective and
quantitative imaging descriptors can improve the accuracy in
diagnosis, evaluation of prognosis, and prediction of thera-
peutic response.10 According to previous studies, radiomic
mineable quantitative data could serve as predictive or prog-
nostic biomarkers.13–16 In the field of oncology, especially in
lung cancer, radiomics is mostly used to facilitate the
improvement diagnostic accuracy as well as making treatment
decisions.16–19 Therefore, the objective of our study was to
build and evaluate an MR-based radiomics nomogram that
incorporates a radiomics signature and clinical parameters for
preoperatively predicting the LVSI of cervical cancer.

Materials and Methods
Patients
This retrospective analysis of imaging data was approved by the
Institutional Ethics Committee. Informed consent was not required
for this study. A total of 105 patients with cervical cancer treated
between December 2013 and September 2017 were enrolled. All
patients met the following inclusion criteria: 1) pathologically con-
firmed cervical cancer; 2) pretreatment evaluation of 1.5T MRI scan
(Signa HDxt; GE Medical Systems, Milwaukee, WI); 3) preopera-
tive contrast-enhanced T1-weighted MRI 1 month before cervical
biopsy; and 4) availability of clinical characteristics, such as age, red
blood cell (RBC) count, white blood cell (WBC) count, platelet
(PLT) count, alkaline phosphatase (ALP), squamous cell carcinoma
antigen (SCC), cancer antigen 125 (CA-125), cancer antigen
199 (CA-199) and carcinoembryonic antigen (CEA). Patients were
excluded from this study for the following reasons: i) history of pre-
operative therapy (neoadjuvant chemotherapy or radiotherapy); ii)
absence of preoperative contrast-enhanced MR in this hospital; iii)
diagnosed with other tumor diseases at the same time; and iv)
incomplete clinical data. Finally, 105 patients were included in our

study. We divided these patients into two independent cohorts: The
training cohort constituted of 70 patients treated between December
2013 and November 2016, whereas the validation cohort consisted
of 35 patients treated between November 2016 and September
2017, and the ratio of training cohort to validation cohort was 2:1.

MRI Acquisition and Segmentation
For image segmentation and feature selection, axial contrast-enhanced
T1-weighted Digital Imaging and Communications in Medicine
(DICOM) images that had been archived in the Picture Archiving and
Communication System (PACS) (Winning Soft 2.0, Shanghai, China)
before any preprocessing or standardization were used. MRI of the
abdomen and pelvis was acquired during the routine clinical workup
using a 1.5T MR system (Signa HDxt; GE Medical Systems) with a
pelvic array coil. Axial contrast-enhanced T1-weighted images were
acquired with repetition time / echo time (TR/TE) = 4.10/1.95 msec,
field-of-view (FOV) = 400 × 320 mm, number of excitations/averages
(NEX) = 0.75, slice thickness = 4 mm, and spacing = 2 mm.

We used ITK-SNAP (v. 3.6.0; www.itksnap.org;open source
software) for segmentation of manual MR images. Regions of inter-
est (ROIs) of tumors were manually segmented by a radiologist
(H.W. with 20 years of experience), and a senior radiologist (G.Z.
with 27 years of experience in gynecology MRI interpretation) to
validate each processed segmentation.

Radiomics Feature Extraction
All feature extraction methods20 were implemented in Python
(v. 3.6.5; https://www.python.org/). Since contrast-enhanced images
have some impact on imaging features, in Pyradiomics the image was
normalized by centering it at the mean with standard deviation to
eliminate the influence of the different ranges of gray values. Radiomic
features were extracted from ROIs, including first-order features,
shape-based features, and texture features. The detailed information
about radiomic features is shown in the Supplementary Material.
Combined with preoperative clinical parameters, the number of these
features could be further reduced during the feature selection process.

Data Analysis
The statistical analysis program was written in the R language
(v. 3.5.0; https://www.r-project.org/), and all statistical hypothesis
tests were two-sided.

Feature selection and model construction were only performed
on the training cohort, and the validation cohort only for evaluating
the model performance. All the cutoff values of receiver operating
characteristics (ROCs) were determined by the principle of maxi-
mum Youden index.

Feature Selection
Since some of the features were relevant but redundant, we used the
minimum redundancy maximum relevance (mRMR) method to
select the features. The mRMR method trades off between relevancy
and redundancy, and it not only calculates the mutual information
between the two features, but also the mutual information between
the feature and the label.21 Univariate analysis was used for the
retained features; features significantly associated with LVSI status
were selected. A Mann–Whitney U-test was performed on the con-
tinuous features, and a chi-square test was performed on the discrete
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features. Finally, the recursive feature elimination (RFE) was per-
formed as a multivariate analysis method to select the LVSI-related
features. RFE constantly eliminates unimportant features to obtain
the optimal feature set by calculating the importance of features.22

MRI Model and Radiomics Nomogram Construction
To investigate the LVSI status information contained in the MRI,
an MRI model was constructed by using only the radiomics features
extracted from the MRI. A logistic regression model was constructed
to predict the LVSI status by fitting the selected radiomics features.

The radiomics model was constructed by combining the MR-
based radiomic features and clinical parameters. To facilitate the
study, a radiomics signature was constructed using a linear combina-
tion of selected radiomics features according to the respective coeffi-
cient generated by the radiomics model formula.

For convenience of clinical application, a radiomics nomogram
was constructed from the logistic regression model to predict the risk
of LVSI. The radiomics nomogram is a visual representation of the
radiomics model, where both have equal levels of prediction

performance. The predictors of LVSI in the radiomics nomogram
included the radiomics signature and selected clinical parameters.

Validation of Prediction Model and Radiomics
Nomogram
ROC curve analysis was performed to illustrate the model perfor-
mance in the training cohort and validation cohort. Meanwhile, we
calculated the area under the curve (AUC), specificity, and sensitivity
to further evaluate the performance of the MRI model and radiomics
nomogram. To determine the clinical value of the radiomics nomo-
gram, decision curve analysis (DCA) was performed by quantifying
the net benefits for a range of threshold probabilities in the whole
cohort.

Results
Patient Characteristics
Clinical characteristics of patients are given in Table 1. There
was no significant difference between the training and

TABLE 1. Characteristics of Patients in the Training and Validation Cohorts

Training cohort (n = 70) Validation cohort (n = 35)

Characteristic
LVSI(+)
(n = 29)

LVSI(-)
(n = 41) P

LVSI(+)
(n = 13)

LVSI(–)
(n = 22) P

Age, mean ± SD, years 49.34 ± 8.55 46.54 ± 9.66 0.387 54.54 ± 10.42 48.59 ± 10.69 0.194

WBC, mean ± SD, × 109/L 6.03 ± 0.96 6.64 ± 1.86 0.211 6.09 ± 2.83 6.57 ± 3.19 0.408

RBC, mean ± SD, × 1012/L 4.02 ± 0.47 4.30 ± 0.59 0.002* 3.96 ± 0.38 4.16 ± 0.66 0.028*

PLT, mean ± SD, × 109/L 253.62 ± 93.16 253.84 ± 75.15 0.587 216.00 ± 62.77 236.77 ± 80.88 0.413

ALP, mean ± SD, U/L 78.57 ± 27.33 78.69 ± 21.50 0.971 75.38 ± 23.80 78.05 ± 26.61 0.973

SCC, No (%) 0.800 0.204

Normal 11(37.9) 18(43.9) 4(30.8) 13(59.0)

Abnormal 18(62.1) 23(56.1) 9(69.2) 9(41.0)

CA-125, No (%) 0.081 0.987

Normal 24(82.8) 40(97.6) 11(84.7) 20(90.9) 0.987

Abnormal 5(17.2) 1(2.4) 2(15.3) 2(9.1)

CA-199, No (%) 0.684 1.000

Normal 26(89.7) 39(95.1) 12(92.3) 19(86.4)

Abnormal 3(10.3) 2(4.9) 1(7.7) 3(13.6)

CEA, No (%) 0.366 1.000

Normal 24(82.8) 38(92.7) 12(92.3) 19(86.4)

Abnormal 5(17.2) 3(7.3) 1(7.7) 3(13.6)

P value was derived from the univariate association analyses between each clinical parameter and LVSI status.
LVSI, lymph-vascular space invasion; WBC, white blood cell; RBC, red blood cell; PLT, platelet ;ALP, alkaline phosphatase; SCC, squa-
mous cell carcinoma antigen; CEA, carcinoembryonic antigen; SD, standard deviation.
*P < 0.05.
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validation cohorts (P = 0.2908, χ2 test), with LVSI positivity
38.7% and 43.3%., respectively.

Radiomics Feature Extraction and Selection
The original feature set for the radiomics model included nine
clinical parameters and 1392 radiomics features extracted from
T1 CE MR images, and was constructed further by selecting
the upcoming installment. The original feature set for the MRI
model contained only 1392 radiomics features. First, the
mRMR method was performed to remove the relevant and
redundant features, and the top 1% features remained. In uni-
variate analysis, P < 0.05 was considered to indicate a statisti-
cally significant difference. After performing the RFE method,
three radiomics features and one clinical parameter were finally
selected to fit the logistic regression model (Fig. 1). Note that
the output of the model represents the LVSI risk score. If the
risk score is greater than zero, the model will consider the cor-
responding case to be LVSI-positive.

Development of Radiomics Signature and
Radiomics Nomogram
The radiomics nomogram was plotted for clinical use based
on the formula (Fig. 2) generated from the radiomics model.
The formula was as follows:

risk score = RBC× −0:763 +wavelet HLL firstorder10
Percentile× 0:590
+wavelet HLL firstorder Mean× 3:868
+ original shape Flatness× 1:10−0:815

As mentioned above, the radiomics signature consists of
the above three radiomics features, and the formula after
combining the radiomics signature was as follows:

risk score = RBC× −0:763 + radiomic signature−0:815

where:

risk signature =wavelet HLL firstorder10Percentile× 0:590
+wavelet HLL firstorder Mean× 3:868
+ original shape Flatness× 1:10

Diagnostic Validation of the MRI Model and
Radiomics Nomogram
The MRI model showed a degree of prediction performance
of LVSI status (Fig. 3A,B), which reached an AUC of 0.710
(95% confidence interval [CI], 0.5864–0.8333) in the train-
ing cohort, with a sensitivity of 0.854 and a specificity of
0.552, and the AUC of 0.633 (95% CI, 0.4401–0.8256) in
the validation cohort, with a sensitivity of 0.818 and a speci-
ficity of 0.231.

The radiomics nomogram showed good forecasting abil-
ity, with an AUC of 0.754 (95% CI, 0.6326–0.8745] in the
training cohort and 0.727 (95% CI, 0.5449–0.9097) in the
validation cohort (Fig. 4A,B). The specificity and sensitivity
were 0.756 and 0.828 in the training cohort and 0.773 and
0.692 in the validation cohort.

The decision curve23 also showed favorable performance
of the radiomics nomogram (Fig. 5). This reflected greater
benefit for the cervical cancer patient cohort by radiomics
nomogram in the prediction of LVSI if the threshold proba-
bility of patients or doctors was greater than 0.23.

FIGURE 2: A radiomics nomogram integrated the radiomics
signature from axial T1 contrast-enhanced images with the RBC
from complete blood count in the training cohort. The value of
each predictor can be converted into a risk score according to
the “Points” at the top of the nomogram. After adding up the
individual risk score of these predictors in “Total Points,” the
corresponding prediction probability at the bottom of the
nomogram is the LVSI. The cutoff value in this nomogram is
0.606. The case would be diagnosed as LVSI when the total
prediction probability is beyond the cutoff value. RBC, red
blood cell.

FIGURE 1: The feature selection process of the RFE method.
Each iteration removes a feature that is considered least
important and corresponds to a 10-fold cross-validation. After
10-fold cross-validation, the RMSE of the model in the training
cohort was used to select the optimal feature set. Finally, four
features were selected by the RFE method. RFE, recursive
feature elimination; RMSE, root mean square error.
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Discussion
LVSI is an unfavorable prognostic factor in cervical cancer4,5

and remains a crucial element in the application of fertility-
sparing operations.24–26 According to the National Compre-
hensive Cancer Network Guidelines V. 1.2019 Cervical

Cancer, primary treatment is different for clinical stage IA1
patients with or without LVSI.27 Moreover, following pri-
mary hysterectomy the presence of LVSI may warrant the use
of adjuvant radiotherapy. Accordingly, the development of
noninvasive biomarkers with the potential to provide

FIGURE 3: (A) MRI model reached AUC of 0.710 in the training cohort, with a sensitivity of 0.854 and a specificity of 0.552, and (B)
the AUC of 0.633 in the validation cohort, with a sensitivity of 0.818 and a specificity of 0.231. AUC: area under the receiver
operating characteristic curve.

FIGURE 4: (A) Radiomics nomogram reached the highest AUC of 0.754 in the training cohort, with a sensitivity of 0.756 and a
specificity of 0.828, and (B) the highest AUC of 0.727 in the validation cohort, with a sensitivity of 0.773 and a specificity of 0.692.
AUC: area under the receiver operating characteristic curve.
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prediction of LVSI preoperatively in patients with cervical
cancer is urgent. There has been no previous report about the
preoperative prediction of LVSI in cervical cancer.

Therefore, in the current study we considered the clini-
cal parameters and attempted to develop an MR-based radio-
mics nomogram and assessed its ability for predicting LVSI
preoperatively in patients with cervical cancer. Our radiomics
nomogram showed favorable discrimination, with high AUCs
in the training cohort validation cohort. In addition, with the
addition of clinical parameters in the combined model, the
predictive performance was improved, especially in terms of
specificity, indicating that the radiomics features have the
potential to predict performance with MRI. Also, the combi-
nation of a clinical parameter (RBC) and MR-based radio-
mics features contributed to improve the predictive
performance. Moreover, negative correlations were found
between RBC and LVSI, suggesting that LVSI may lead to
chronic blood loss, and requires further consideration and
exploration. We also provided an easy-to-use tool for clini-
cians as well as patients by establishing a radiomics nomo-
gram based on the multivariate logistic regression model that
showed a favorable standardization and discrimination in
both the training and validation datasets. In the validation
cohort, the prediction accuracy of the combined radiomics
nomogram is 0.74, while the accuracy of the MRI model and
RBC is only 0.60 and 0.54, respectively, which demonstrated
that the nomogram achieved better predictive efficacy than
either the MR-based radiomics features or RBC alone. The
decision curve analysis of the radiomics nomogram in a sub-
stantial range of threshold probability demonstrated greater
benefit for the cervical cancer patient cohort, compared with
the unpredictable situation of LVSI at present.

The selected features in the radiomics nomogram were
the first-order statistics and shape-based features, which are

explained in detail in the Supplementary Materials. This
reflected that the gray level changes and the shape of the
tumor boundaries, as shown in the MRI, are very important
for predicting LVSI status. But they are too difficult to quan-
tify for a clinical user, and hence it was almost impossible to
discriminate the LVSI status before our study. Therefore, the
objectivity and the accuracy of the combination of MR-based
radiomics and clinical parameters are reflected in this study,
and remain promising for more MRI studies.

Currently, neoadjuvant chemotherapy (NACT) can
reduce the tumor volume preoperatively, increase the
resection rate,28 and make the LVSI shrink or even disappear.29

Several research studies have proved the ability of NACT in
improving the prognosis of cervical cancer.30,31 However, con-
troversy regarding the NACT should be further investigated. A
systematic review of 21 studies failed to confirm the conclusion
that NACT before radical surgery (RS) produced a survival ben-
efit.32 Recently, some investigations comparing NACT + RS
with RS alone have been reported, but the results are
inconsistent.33–36 Therefore, the lack of techniques before
NACT to determine the existence of LVSI led us to underesti-
mate the role of NACT in the improvement of prognosis.
Next, ongoing multicenter prospective randomized clinical trials
are required to more objectively evaluate the effect of NACT in
patients with cervical cancer by applying the MRI-based radio-
mics nomogram for the prediction of LVSI before NACT.

There are a few limitations to our study, including the
fact that genomic characteristics have not been incorporated
in our nomogram. In recent years, genetic polymorphism of
C-reactive protein (CRP) 1846C>T was associated with
severe LVSI in endometrial cancer37 and a high DLL4 pro-
tein level correlated with LVSI in early-stage cervical cancer38

has been reported. In addition, the lack of external validation
for the model, the relatively small sample size, and inherent
biases in retrospective studies should also be considered. It is
necessary to further conduct a multicenter validation with a
larger sample size to provide favorable evidence for clinical
application.

In conclusion, this study presented a radiomics nomo-
gram, incorporating both the radiomics signature as well as
clinical parameters, as a noninvasive biomarker that can pre-
dict LVSI in patients with cervical cancer preoperatively.
However, further retrospective and even prospective valida-
tion analysis should be conducted to confirm its predictive
properties in subsequent studies.
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