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Abstract

Background: Efforts to elucidate the cellular and molecular mechanisms of regeneration have required the application
of methods to detect specific cell types and tissues in a growing cohort of experimental animal models. For example, in
the planarian Schmidtea mediterranea, substantial improvements to nucleic acid hybridization and electron microscopy
protocols have facilitated the visualization of regenerative events at the cellular level. By contrast, immunological
resources have been slower to emerge. Specifically, the repertoire of antibodies recognizing planarian antigens
remains limited, and a more systematic approach is needed to evaluate the effects of processing steps required
during sample preparation for immunolabeling.

Results: To address these issues and to facilitate studies of planarian digestive system regeneration, we conducted
a monoclonal antibody (mAb) screen using phagocytic intestinal cells purified from the digestive tracts of living
planarians as immunogens. This approach yielded ten antibodies that recognized intestinal epitopes, as well as
markers for the central nervous system, musculature, secretory cells, and epidermis. In order to improve signal
intensity and reduce non-specific background for a subset of mAbs, we evaluated the effects of fixation and other
steps during sample processing. We found that fixative choice, treatments to remove mucus and bleach pigment,
as well as methods for tissue permeabilization and antigen retrieval profoundly influenced labeling by individual
antibodies. These experiments led to the development of a step-by-step workflow for determining optimal specimen
preparation for labeling whole planarians as well as unbleached histological sections.

Conclusions: We generated a collection of monoclonal antibodies recognizing the planarian intestine and other
tissues; these antibodies will facilitate studies of planarian tissue morphogenesis. We also developed a protocol for
optimizing specimen processing that will accelerate future efforts to generate planarian-specific antibodies, and to
extend functional genetic studies of regeneration to post-transcriptional aspects of gene expression, such as protein
localization or modification. Our efforts demonstrate the importance of systematically testing multiple approaches to
species-specific idiosyncracies, such as mucus removal and pigment bleaching, and may serve as a template for the
development of immunological resources in other emerging model organisms.
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Background

Interest in the cellular and molecular mechanisms of
regeneration has stimulated a resurgence of investi-
gations in a growing cohort of organisms [1-4]. For
example, planarians (freshwater flatworms) can recover
from nearly any plane of transection, re-establishing
their body plan and rebuilding internal organs such as
the nervous and digestive systems within a week after
injury [5-7]. Recent investigations have illuminated
some of the mechanisms of planarian regeneration,
including the re-establishment of axial polarity [8-10],
somatic stem cell dynamics [11-15], tissue remodeling
[16,17], organogenesis [17-24], reproductive maturation
and germ cell development [25-28], and the molecular
nature of regenerative competence [29-31]. As in many
experimental animal models [32], these advances have
required the adaptation and development of a range
of tools and techniques, including methods for visual-
izing specific organs, tissues, and cell types. In particular,
optimization of protocols for in situ hybridization
[33-35] and sample processing for electron microscopy
[16,21,36] have dramatically increased the resolution
of regenerative events at the cellular level. By contrast,
a rigorous analysis of the influence of specific steps
during sample preparation for immunofluorescence
has not been undertaken, and the collection of planar-
ian-specific antibodies remains limited. Development
of more systematic approaches for testing the effects
of specific parameters on immunolabeling by indi-
vidual antibodies would accelerate the generation of
cell- and tissue-specific reagents, and expedite studies
of post-transcriptional aspects of gene expression
during regeneration, such as protein localization and
modification.

Historically, characterization of planarian tissues and
studies of their responses to injury were conducted using
histological stains, vital dyes, and electron microscopy
[37-40]. More recently, significant improvements to in
situ hybridization (ISH) protocols [33-35] have enabled
the use of RNA probes to label organs, subpopulations of
cells, and ribonucleoprotein particles [19,22,26,27,41-47].
In addition to these methods, protocols utilizing both
lectins and antibodies as cell-specific probes have also
been developed. These protocols are less labor inten-
sive and more economical than ISH protocols, and,
in addition to detection of specific cell types, enable
resolution of subcellular regions such as membranes,
nuclei, and neuronal processes. A variety of lectins and
antibodies (both monoclonal and polyclonal) have been
generated or identified that label the secretory system
[48], reproductive system [45], nervous system [49-55],
intestine [52,56,57], protonephridia [21,22], muscles
[17,58,59], and stem cells [11,56,60]. In addition, com-
mercial and publicly available antibodies that cross-
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react with planarian antigens in the nervous system
and other tissues have been identified [61-63].

Although antibodies are most often raised against spe-
cific molecules [64,65], monoclonal antibodies (mAbs)
have also been generated in large-scale screens using
purified cells, tissues, or whole-animal homogenates as
immunogens. Such screens have yielded specific markers
for neurons and their projections [66-74], regenerating
tissues [75,76], and other cell types [77-79] in a variety
of organisms. Tissue-based mAb screens bypass potential
difficulties such as the need to identify highly expressed
proteins or immunogenic regions appropriate for produc-
tion of fusion proteins. Additionally, mAb screens result
in the generation of clonal, immortal hybridoma lines and
therefore a theoretically inexhaustible supply of antibody
[80]. Several mAb screens have been conducted using
planarian cells and extracts, and have yielded markers for
various tissues and cell types [58,81-85].

Despite recent progress, the repertoire of antibodies
that recognize planarian tissues is still limited, and a
greater collection of reagents that label cell types unique
to specific organ systems is needed. For example, regen-
eration of the intestine requires both remodeling of pre-
existing, post-mitotic intestinal tissue and addition of
new intestinal cells at the growing ends of regenerating
gut branches [17]. Antibodies currently used to label the
intestine [52,56,57] lack specificity, labeling additional
tissues such as pharynx, epidermis, and nervous system.
Furthermore, some of these antibodies label only subre-
gions of intestinal cells such as the apical surface, mak-
ing them less than ideal for analysis of remodeling and
growth during intestinal morphogenesis.

In order to develop more specific intestinal antibodies,
we took advantage of a protocol we recently developed
[23] that enables purification of intestinal cells, and con-
ducted a mAD screen using these purified cells as immu-
nogens. We generated ten mAbs that labeled the intestine,
as well as 13 mAbs that label the nervous system, epider-
mis, secretory cells, and other cell types. Because sample
processing is known to influence antibody-antigen interac-
tions [86-89], we also systematically evaluated the effects
of various parameters during fixation of planarian tissue,
including chemical treatments to remove mucus and
pigmentation. This analysis led to the identification of
optimal sample preparation protocols for several mAbs,
and to the development of an optimization workflow that
efficiently tests the influence of multiple processing steps
on immunolabeling in planarians.

Results and discussion

A monoclonal antibody screen utilizing purified intestinal
phagocytes as immunogens

The planarian intestinal epithelium is comprised of two
cell types: secretory goblet cells that release digestive
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enzymes after food ingestion, and absorptive phagocytes
that engulf food for intracellular digestion [90-92]. Intes-
tinal phagocytes retain dyes, beads, and other com-
pounds for up to several weeks after they are ingested
[17,93-96]. We recently developed a protocol in which
animals are fed iron beads and dissociated into single
cell suspensions, enabling the purification of phagocytes
by magnetic sorting (Figure 1A) [23]. Using this protocol
(Additional file 1), we collected phagocytes from more
than 4000 planarians. After fixation, these cells were
used as immunogens for a monoclonal antibody screen.
Three mice were immunized; test bleeds from all three
mice labeled fixed planarians, while preimmune sera
did not (examples from one mouse are shown in Figure 1B
and C). Immunofluorescence was ubiquitous, likely
reflecting the fact that many intestinal antigens are also
expressed in other planarian cell types (Figure 1C). We
also observed slightly elevated signal in the intestine for
all three test sera (Figure 1C). One mouse was chosen for
final immunization (“boost”) and hybridoma generation.
After fusion of splenocytes with myeloma cells and
cloning of the resulting hybridomas, supernatants from
384 primary lines were screened for immunoreactivity
with fixed planarians (Figure 1D-X). In total, 181 (~47%)
supernatants labeled planarian tissues at levels visibly
higher than secondary antibody controls (Figure 1D).
Seventy (~22%) supernatants labeled the intestine
(Figure 1E-I). In addition, 135 supernatants (~35%)
labeled non-intestinal tissues (Figure 1J-X). These
included pigment cells of the optic cup (Figure 1J),
neurons and their processes (Figure 1K-M), muscles
(Figure 10), epidermis (Figure 1P-R), secretory cells
(Figure 1T, U and W) (with morphologies and loca-
tions similar to previously described cells [48,61]), and
cilia (Figure 1V). Twenty-four (~6%) antibodies that
labeled non-intestinal tissues also labeled the intestine
(e.g., Figure 1T), suggesting the recognition of highly
immunogenic antigens that are expressed at lower
levels in the intestine than in other tissues. Alterna-
tively, some non-intestinal antibodies might also have
been generated against antigens expressed by contam-
inating cells or cell fragments in intestinal cell prepa-
rations. In previous monoclonal screens, less than 8%
of antibody-producing clones labeled intestinal tissue
[58,81]. By contrast, in our screen ~25% of positive
clones (46/181) labeled the intestine with marked specifi-
city. Because intestinal cells comprise only 3-8% of
all planarian cell types [97], these results show that
immunization with an enriched cell population is an
efficient strategy for generating cell type-specific mAbs.
We retained 23 hybridomas, giving preference to those
that produced antibodies labeling the intestine and other
specific cell types with high signal and low background
(Table 1). 21 of 23 hybridoma lines produced IgM class
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antibodies, while two lines produced IgG mAbs (Table 1).
IgM-producing hybridomas can dominate an immune
response due to underimmunization with suboptimal
amounts of antigen, or an abundance of complex car-
bohydrates and lipids when whole cells are used as an
immunogen [65,98,99]. Consistently, a recent effort to
generate mAbs against membranes purified from plan-
arian stem cells yielded many IgM-producing lines [85].
Although IgM mAbs sometimes have lower affinity,
reduced specificity, and decreased ability to penetrate
tissue [98,99], our screening strategy identified IgM
mAbs that labeled specific cell types and penetrated
tissues well. Each of the 23 hybridomas was subcloned,
and we identified at least one unique line that continued
to secrete high levels of specific mAb after rescreening,
freezing, and expansion. Subclones were deposited in the
Developmental Studies Hybridoma Bank (Iowa City, IA)
for archival and public distribution.

Optimization of planarian relaxation, mucus removal, and
fixation improves immunolabeling

Although our mAbs consistently labeled specific tissues
in the primary screen, levels of both signal and non-
specific background often varied from animal to animal
and within different regions of individual animals. Be-
cause epitope accessibility and antibody specificity de-
pend critically on fixative choice and other sample
processing steps [87,88,100-104], we hypothesized that
optimization of fixation and other treatments would im-
prove labeling with some mAbs.

Processing of planarian tissue for immunofluorescence
requires several steps in addition to fixation, including
chemical removal of mucus secretions prior to fixation,
bleaching to remove pigmentation and enable visualization
of internal structures, and post-fixation treatments
to increase tissue permeability and expose antigens
(Figure 2A). A range of approaches to these steps have
been developed to prepare planarians for whole mount
in situ hybridization, immunolabeling, and histological
analysis [11,17,33-35,49,90,105-108]. In our primary
screen, we tested hybridoma supernatants on HCl-treated,
formaldehyde-fixed planarians that were bleached in
hydrogen peroxide diluted in PBS. Because formal
demonstrations of the effects of specific treatments at
each stage of sample processing are rarely reported, we
evaluated additional approaches to these steps simultan-
eously by testing combinations of treatments together
(detailed protocols are provided in Additional file 2).

We began by comparing two chemical treatments com-
monly used to relax planarians and remove their mucus
secretions prior to fixation: hydrochloric acid (HCI) [33]
and N-Acetyl-L-cysteine (NAc) [34]. We also compared
formaldehyde, a cross-linking fixative [81,82,107], with
methacarn, a coagulating fixative [17,45], reasoning that



Forsthoefel et al. BMC Developmental Biology (2014) 14:45 Page 4 of 22

A-wire e

feed tic bead dissociate, purify immunize (x3),
e intestinal phagocytes, fix test serum, boost
‘ }, . I - intestine
@ -'<
h
isolate B cells, screen primary clones, timi
generate hybridomas subclone, re-screen optimize other

(CNS, etc.)

(# of clones)

intestine MIESNE intestine intestine

pigment CNS CNS VNC
cups nuclei projections projections

epidermal
basal lamina

marginal peripharyngeal ventral
secretory secretory secretory
cells ili cells

Figure 1 (See legend on next page.)




Forsthoefel et al. BMC Developmental Biology (2014) 14:45

Page 5 of 22

(See figure on previous page.)

(B, C, E-H, J-M, O, T, U, and W); 50 um (P-R); 25 um (V).

Figure 1 Generation of monoclonal antibodies that recognize the planarian intestine and other tissues. (A) Screen strategy. (B)
Preimmunization serum (1:200) did not detectably label planarian tissue. (C) Test sera (1:200) ubiquitously labeled planarian tissues, with slightly
elevated intestinal labeling. (D) Pie chart depicting the number of clones (n = 384 total) in the primary screen with indicated labeling specificities.
(E-X) Examples and schematics of immunolabeling from the primary screen. (E-I) mAbs that label the intestine (schematic, I). (J-N) mAbs that
label the nervous system (schematic, N). (O-X) Examples of mAbs that label other non-intestinal tissues (schematics, S and X). Anterior is to the
top in all images. Cell and tissue types are indicated in each panel. “CNS”, central nervous system. “VNC”, ventral nerve cord. Scale bars: 100 um

antibodies raised against cells fixed in formaldehyde and
methanol would be most likely to react with planarian
tissues that had been fixed similarly. Additionally, we
tested magnesium chloride, which has been used to relax
marine and freshwater invertebrates prior to fixation
[109,110], as an extra step prior to mucus removal. We
have previously utilized magnesium-induced relaxation to
increase resolution of individual branches of the planarian

Table 1 Monoclonal antibodies, isotypes, and tissue
specificity

Clone Isotype*  Tissue(s) recognized
1A10 IgM Intestine
1811 IgM Intestine
1C3 IgM Intestine
1E12 IgM Epidermal & intestinal nuclei
1F12 IgM CNS neurons (small subset)
CNS processes in neuropil (subset)
PNS processes in neuropil (subset)
1H8 IgM Nuclei (elevated in CNS)
TH11 IgM Cilia
2CN IgG1 Peripharyngeal secretory cells & projections
2D2 IgM CNS neurons (small subset)
CNS processes in neuropil (subset)
PNS processes in neuropil (subset)
2E8 IgM Pigment cups'
2G4 IgM Intestine & epidermis
2H3 IgM Muscles
3A4 IgM Intestine’
3A10 IgM Intestine
3D4 IgM Marginal/anterior secretory cells intestine (weak)"
3D10 IgM Ventral puncta’
3F11 IgG1 Intestine
3G7 IgM Epidermal basement membrane
3G9 IgM Intestine
3H3 IgM Epidermis, enriched in cell:cell junctions
4D2 IgM Intestine
4H4 IgM Ventral secretory cells
4H8 IgM Epidermal nuclei (subset)’

*All mAbs possessed kappa light chains.
Pattern based on primary screen; mAb has not been characterized further.

intestine [23]. For these optimizations, we utilized indirect
detection (tyramide signal amplification, TSA), which
dramatically improved signal intensity for supernatants
generated after the primary screen (Additional file 3:
A-F). Furthermore, blocking time was increased to over-
night (15-18 hr), a step that moderately improved signal-
to-noise for some intestinal antibodies (Additional file 3:
G and J), without affecting labeling efficiency for others
(Additional file 3: H, I, K and L).

For intestine-specific mAbs, magnesium treatment uni-
versally improved labeling (Figure 2B-D). For example, in
the absence of magnesium treatment, mAbs 4D2 and 3G9
labeled anterior and posterior intestinal branches in HCI-
treated, formaldehyde-fixed planarians, but penetration in
the prepharyngeal region was poor (Figure 2B and C).
When animals were relaxed in magnesium prior to HCI
treatment, labeling of the primary anterior intestinal
branch was dramatically improved. Similar results were
observed for a third mAb, 2G4, in methacarn-fixed pla-
narians (Figure 2D).

Mucus removal method also affected intestinal label-
ing, albeit more moderately. For example, HCI treatment
improved signal and reduced non-specific labeling by anti-
bodies 4D2 and 3G9 (Figure 2B and C) in formaldehyde-
fixed planarians, while NAc treatment led to slightly more
specific labeling by 2G4 (Figure 2D). We also attempted
to fix NAc-treated animals with methacarn, but animals
disintegrated during bleaching (not shown). Milder NAc
treatments or reduced H,O, concentration during bleach-
ing improved integrity, but abolished intestinal labeling
(not shown). Although we cannot rule out that some anti-
bodies might work well on such samples, we did not test
NAc-methacarn combinations further in whole planarians.

Fixative choice was also critical for efficient immu-
nofluorescence. For most intestine-specific antibodies
we tested (4D2, 3G9, and 2G4), methacarn fixation
was superior to formaldehyde fixation, especially in
Mg-treated animals (Figure 2B-D). In methacarn-fixed
specimens, intestinal labeling was more intense, par-
ticularly in anterior regions. Additionally, non-specific
background labeling was much lower as compared
to formaldehyde-fixed planarians. These results show that
processing conditions (e.g., formaldehyde fixation) utilized
to screen hybridomas do not automatically identify the
“best” treatment conditions for particular antibodies.
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Figure 2 Sample processing influences immunofluorescent labeling of the planarian intestine. (A) Overview of steps during fixation and
processing. (B) mAb 4D2 labeling. (C) mAb 3G9. (D) mAb 2G4. For all three mAbs, labeling was best (i.e, highest signal and lowest non-specific
background) in animals relaxed in magnesium and fixed with methacarn (asterisks). In some samples, magnesium treatment also improved labeling
of anterior intestinal branches (arrows). “Mg”, magnesium-induced relaxation. “NAc”, N-Acetyl-L-cysteine treatment. “HCI", HCI treatment. “FA”,
formaldehyde/Triton X-100 fixation. “Mcn”, methacarn fixation. “TSA", tyramide signal ampilification. Samples were bleached in methanol/6% H-O, (16-20h).

Scale bars: 500 pm.

Non-intestinal mAbs displayed a similar range of sen-
sitivity to combinations of treatments (Figure 3A-E;
Additional file 4: A and B). For example, in formaldehyde-
fixed samples, mAb 2D2 labeled a subset of neuronal
processes in the cephalic ganglia and ventral nerve

cords, as well as a small number of cell bodies anterior
and lateral to the brain (Figure 3A; Additional file 3: E,
H, and K). Labeling was enhanced by both Mg and NAc
treatments, but abolished by methacarn fixation. Simi-
larly, mAb 1HS8 preferentially labeled CNS nuclei in
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Figure 3 Effects of fixation and other parameters on immunofluorescent labeling of non-intestinal tissues. (A) mAb 2D2 labels a subset
of CNS neurons and processes after formaldehyde fixation. (B) mAb 2C11 labels cell bodies around the pharynx as well as fine processes within the
pharynx (arrow). (C) mAb 3G7 labeling of the epidermal basement membrane (arrows) is negatively affected by magnesium treatment, methacarn
fixation, and NAc treatment. (D) mAb 3H3 labeling of epidermal cell:cell junctions. Images taken from the posterior of the animal. Region shown is
the lateral margin of the animal adjacent to the pharynx. (E) mAb 2H3 labeling of body wall and enteric musculature (arrows). Sample treatment
parameters are indicated at left. In all panels, anterior is to the left. Yellow asterisks indicate conditions that yielded the most specific signal with
minimal background labeling. All samples were bleached in methanol (16-20 hr). Scale bars: 100 um (A, E); 500 um (B); 50 um (C, D).

NAc-treated, formaldehyde-fixed samples, and also in
Mg-treated, formaldehyde-fixed samples, whether HCl
or NAc was used for mucus removal (Additional file 4:
A). mAb 2C11 (specific for peripharyngeal secretory
cells and their processes [61]) labeled efficiently in both
methacarn and formaldehyde (Figure 3B). Labeling of
processes in the pharynx, a more internal tissue, was
improved in Mg-, NAc-treated samples (Figure 3B). By
contrast, Mg and NAc treatment reduced or eliminated
labeling by mAb 3G7, which labeled the epidermal base-
ment membrane only in HCl-treated, formaldehyde-fixed
animals (Figure 3C). Similarly, labeling of epidermal cell
junctions by mAb 3H3 (Figure 3D) was also negatively

affected by Mg treatment, suggesting that magnesium
may improve penetration of some mAbs at least in part
through mild histolysis of more superficial tissues. Finally,
mAb 2H3 labeled superficial body wall muscles best in
NAc treated samples, while labeling of internal enteric
muscles surrounding intestinal branches was less sensitive
to sample preparation (Figure 3E).

Taken together, these initial optimizations demonstrate
that epitopes recognized by our collection of mAbs are
selectively sensitive to combinations of commonly used
mucus removal treatments and fixatives (Table 2). Fur-
thermore, magnesium-induced relaxation is a simple
step that can improve labeling of deeper tissues such as
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Table 2 Optimization of whole animal sample processing
mAb Tissue specificity Fixation protocol
Mg Mg Mg
HCl HCl NAc HCl HCl NAc
Mcn FA FA Mcn FA FA
2G4 Intestine & epidermis + + + ++ + +
3F11 None (MeOH bleach) - - - - - _
3F11 Intestine (PBS bleach) - - - -
3G9 Intestine - + + 4+ + +
4D2 Intestine + - - T+t + +
1E12 Nuclei, elevated in epidermis and intestine + + - + - -
1H8 Nuclei, elevated in CNS - - + - + +
2Cn Peripharyngeal secretory cells and processes - + + - + ++
2D2 Subset of neurons and processes - + ++ - + ++
2H3 Muscles ++ + ++ ++ + ++
3G7 Epidermal basement membrane - + - - + -
3H3 Epidermis, enriched in cell:cell junctions ++ + + ++ - :

Qualitative assessment of signal:noise for the predominant tissue labeled by each mAb. “-“ indicates negligible or non-uniform labeling, poor morphology, and/or
high background. “+" indicates moderate specificity, uniform labeling, and/or robust labeling accompanied by moderate background. “++" indicates robust signal

with minimal noise.

the intestine and pharynx. Optimization of these steps
together is an efficient method for improving signal and
reducing non-specific background labeling.

Further optimization of hydrogen peroxide treatment and
other sample processing steps

For many mAbs, identification of the appropriate com-
bination of magnesium treatment, mucus removal
method, and fixative was sufficient to yield reprodu-
cible and specific labeling. For several mAbs, however,
labeling was still inconsistent and accompanied by
higher levels of background, particularly in anterior
regions where secretory cells are more abundant [48].
In an effort to further improve labeling, we conducted
more detailed analyses of bleaching and mucus removal
steps, and also tested the effects of post-fixation treatments
to unmask epitopes and permeabilize tissue. We chose
three of the most inconsistent mAbs (3F11, 2D2, and
2C11) that labeled different cell types from both superficial
and internal tissues for further analysis of these steps.

In order to facilitate visualization of internal tissues,
hydrogen peroxide bleaching prior to immunolabeling
has become a routine post-fixation step [49]. Bleaching
also likely increases tissue permeability, allowing better
penetration of molecular probes [35]. In published
protocols, hydrogen peroxide is usually diluted with
PBS, methanol, or other diluents, but the degree to
which labeling by individual antibodies is affected by
diluent choice is rarely reported. In our primary screen
(Figure 1), hydrogen peroxide was diluted with PBS. In
subsequent optimizations (Figures 2 and 3), samples were

bleached in hydrogen peroxide diluted with methanol.
Although most antibodies were unaffected by bleaching
diluent, methanol bleaching completely abolished intes-
tinal labeling by one antibody, 3F11 (Figure 4A and B).
Consistently, no intestinal labeling was observed in
methacarn-fixed animals, even when bleached in PBS,
suggesting that the epitope recognized by mAb 3F11 is
sensitive to methanol (Figure 4B).

To further explore diluent choice, we compared the
effects of bleaching in PBS or methanol for two add-
itional mAbs. Unlike 3F11 labeling (Figure 5A and B),
2D2 labeling of the CNS was significantly reduced in
PBS-bleached animals, particularly in more posterior
regions (Figure 5C and D). 2C11 labeling, on the other
hand, was robust whether bleaching was carried out in
either PBS or methanol (Figure 5E and F). Thus, although
many of the mAbs we generated labeled planarians
bleached in either PBS or methanol, side-by-side analysis
indicates that bleaching diluent is an important variable
that can influence optimal immunofluorescence.

Antibody labeling was also sensitive to the duration
of bleaching. Many published protocols vaguely specify
“overnight” bleaching, but systematic analysis of how
bleaching time affects immunolabeling has not been
reported. Again, most of our mAbs adequately labeled
samples bleached overnight (14-16 hr in our protocols)
(Figures 2 and 3; Additional file 4). However, 3F11 was
sensitive to both over- and under-bleaching in both
HCl-treated (Figure 5G-J) and NAc-treated (Additional
file 5: A-D) planarians. In addition, labeling of posterior
gut branches was specifically decreased in moderately
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Figure 4 Methanol bleaching abolishes labeling by mAb 3F11. (A) mAb 3F11 does not label samples bleached in methanol (12-16 hr). (B)
mAb 3F11 labels the intestine in formaldehyde-fixed animals bleached in PBS (12-16 hr). Mg treatment also substantially improves 3F11 labeling
in HCl-treated samples, but substantially reduces labeling in NAc-treated samples (B), demonstrating that some antibodies are uniquely sensitive
to specific combinations of treatments. In all panels, anterior is to the left. Scale bars: 500 um.

overbleached samples (Figure 5I). Other mAbs (2D2,
2C11, and 3G9) were also sensitive to overbleaching to
varying degrees (Figure 5K-R and Additional file 5: E-H).
Antigen sensitivity to hydrogen peroxide treatment has
been previously observed for a variety of samples from
various organisms [99]. Our results show that although
bleaching is essential for immunolabeling of whole
planarians, duration of hydrogen peroxide treatment
should be optimized for individual antibodies. Further-
more, caution is warranted when evaluating antibodies
raised against proteins whose expression or localization
is expected to vary along the anteroposterior axis.

Next, we tested the effect of increasing the duration
of mucus removal treatments. For mAb 3F11, longer

HCI and NAc treatments both substantially reduced
labeling (Figure 6A-D). For 2D2, longer HCI treat-
ment moderately reduced labeling in the anterior of
the animal (Figure 6E and F), while longer NAc treat-
ment had no effect (Figure 6G and H). For 2Cl1,
longer HCI treatment reduced labeling, as with 3F11
and 2D2 (Figure 61 and J). However, longer NAc treat-
ment increased 2C11 labeling within the pharynx, while
simultaneously reducing labeling of peripharyngeal cell
bodies and projections (Figure 6K and L). Thus, longer
mucus removal times generally reduce labeling inten-
sity, but in some cases might benefit immunolabeling by
increasing the accessibility of more internal organs like
the pharynx.
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Figure 5 Bleaching affects mAb labeling. (A-B) Planarians labeled with mAb 3F11 after hydrogen peroxide bleaching in either PBS (A) or
methanol (B). Labeling is completely abolished by methanol bleaching. (C-D) mAb 2D2 labeling of the CNS is more robust in samples bleached
in methanol, particularly in posterior regions (arrows indicated reduced signal in C). (E-F) mAb 2C11 labeling is unaffected by bleaching diluent.
(G-J) Planarians labeled with mAb 3F11 after bleaching for the times indicated at left. Arrows (1) indicate signal loss in tail branches. (K-N)
Planarians labeled with mAb 2D2. Arrows (N) indicate signal loss in tail branches. (O-R) Planarians labeled with mAb 2C11. Arrows (R) indicate decreased
signal both within and around the pharynx. Planarians were relaxed in magnesium chloride, treated with 2% HCI (3F11) or 7.5% NAc (others),
fixed in formaldehyde/Triton X-100, and bleached in 6% H,0,/PBS (3F11) or 6% H,O,/methanol (others). Samples were bleached for 12 hrin

Finally, we hypothesized that treatments to increase
tissue permeability and “unmask” antigens might im-
prove mAb labeling. We tested three methods com-
monly used on whole planarians: reduction, which
chemically permeabilizes tissues [44,111]; proteinase K
treatment, which is thought to enzymatically cleave
fixation-induced bonds [34,112,113]; and heat-induced
antigen retrieval (“AR”), which increases antigenicity for
some epitopes by a mechanism that remains incompletely
understood [17,35,114,115] (Figure 7). Proteinase K
digestion and AR were detrimental, reducing or completely

abolishing labeling for 3F11, 2D2, and 2C11 (Figure 7A-C,
E-G, and I-K). Reduction, on the other hand, improved la-
beling for 3F11 and 2D2, increasing antibody penetration
in anterior regions (Figure 7D and H), and substantially in-
creasing 3F11 signal intensity (Figure 7D). Thus, for the
three mAbs we tested, reduction had the most beneficial
effect. However, since antigen-antibody interactions can
respond more or less favorably to individual treatments
[113], we suggest that all three treatments be included in
efforts to optimize antibodies with low signal, high back-
ground, or poor penetration.
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Figure 6 Extended mucus removal time attenuates immunofluorescent labeling. (A-D) Planarians labeled with mAb 3F11 after HCI (A-B) or
NAc (C-D) treatment for the times indicated. (E-H) Planarians labeled with mAb 2D2. (I-L) Planarians labeled with mAb 2C11. Planarians were
relaxed in magnesium chloride, treated with 2% HCl or 7.5% NA, fixed in formaldehyde, and bleached in 6% H,0,/PBS (3F11) or 6% H,0,/MeOH
(others) (12-16 hr). Magenta arrows indicate reduced labeling. Yellow arrow (L) indicates increased labeling of pharynx. Scale bars: 500 pm.

mAbs label planarian tissues in unbleached histological
sections

Histological sections provide superior spatial resolution
of cellular events in some contexts [17,43,116-118], and
reduce the potential impact of issues such as antibody
penetration in thick specimens. Furthermore, sections
also allow easy visualization of internal tissues without
requiring bleaching, an appealing option since peroxide
treatment can be detrimental (Figures 4 and 5).

We assessed labeling by our mAbs on cryosections from
HCI- and NAc-treated, formaldehyde-fixed planarians,
and compared sections generated from both bleached
and unbleached animals (Figure 8 and Additional file 6;
Table 3). Additionally, we assessed whether antigen
retrieval enabled detection of epitopes on unbleached
sections, since AR is widely used to unmask antigens in
formaldehyde-fixed, paraffin-embedded tissue [115].

In sections labeled with secondary antibody alone
(Figure 8A), background labeling was minimal, but
higher in NAc-treated sections; both bleaching and AR
reduced this background significantly. mAb 3F11, the anti-
body that was most sensitive to bleaching (Figure 5G-]),
labeled the intestine robustly in unbleached sections from
both HCI- and NAc-treated animals (Figure 8B). Back-
ground labeling of non-intestinal tissue was higher in

NAc-treated sections, although much of this labeling
was likely non-specific, since it also occurred in sections
labeled with secondary antibody alone (Figure 8A). In
sections from bleached animals, non-specific labeling
was reduced, but intestinal signal in 3F11-labeled sec-
tions also decreased, especially in HCl-treated samples
(Figure 8B). AR was as effective as bleaching at reducing
non-specific labeling (Figure 8A), but also abolished 3F11
intestinal labeling (Figure 8B), regardless of mucus re-
moval method. We also co-labeled sections from HCI-
treated, NAc-fixed, unbleached animals with the lectin
Lens culinaris agglutinin (LCA), which labels intestinal
goblet cells (Additional file 6: A-C) [48]. Overlap with
3F11 labeling was minimal, suggesting 3F11 recognizes in-
testinal phagocytes with a high degree of specificity.

Demonstrating the variable sensitivity of antigens to
processing, labeling by 2G4 (Figure 8C and Additional
file 6: D) was affected differently by the same treatments.
First, 2G4 labeled the lumenal region of the intestine
much more intensely in HCl-treated samples than NAc-
treated samples. Second, bleaching virtually eliminated
2G4 labeling. Third, antigen retrieval preserved intestinal
labeling in HCl-treated samples, while greatly reducing
non-specific mesenchymal background as well as specific
epidermal signal.
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Figure 7 Post-fixation treatments influence immunolabeling. (A-D) Planarians labeled with mAb 3F11 after the treatments indicated at left.

(E-H) Planarians labeled with mAb 2D2. (I-L) Planarians labeled with mAb 2C11. Arrows in (H) indicate the prepharyngeal region that is permeabilized
by reduction treatment (compare to E). Asterisks indicate “best” treatment (i.e., highest signal intensity and specificity). Planarians were relaxed
in magnesium chloride (A-D), treated with 2% HC| (A-D) or 7.5% NAc (E-L), fixed in formaldehyde/Triton X-100, and bleached in 6% H,0,/PBS
(A-D) or 6% H,0,/MeOH (E-L) (12-16 hr). Reduction was conducted prior to bleaching, while proteinase K (“prot K") and antigen retrieval (“AR")

One antibody, 2H3, labeled both subepidermal body
wall muscles (Figure 10) and visceral muscles surround-
ing intestinal branches (Figure 3E), in patterns strikingly
similar to previous studies using both phalloidin and
other muscle-specific antibodies [17,58,59]. Further illus-
trating the utility of testing multiple parameters together,
2H3 only labeled sections after AR treatment (Figure 8D
and Additional file 6: E). Interestingly, in HCl-treated
sections, visceral muscle labeling was high, while exter-
nal muscle labeling was low. The opposite effect was ob-
served in NAc-treated samples, in which body wall
muscles were labeled more intensely than visceral mus-
cles. Thus, the 2H3 epitope may be sensitive to HCI
treatment, and is degraded more quickly in external than
internal tissues during mucus removal.

Other antibodies displayed a similar range of treatment
optima. For example, 2D2 labeled neuronal projections
only in unbleached, HCl-treated, non-AR sections
(Additional file 7: A). 2C11 labeled peripharyngeal
secretory cells and their projections after all six treatment
combinations, but signal was most specific and highest in
bleached, HCl-treated sections (Additional file 7: B). 3H3

was the least sensitive to processing, intensely labeling the
epidermis in all samples (Additional file 7: C).

We tested other post-fixation treatments (reduction
and proteinase K digestion), and also tested antibodies
on sections from methacarn-fixed planarians (Table 3).
As expected, mAbs responded variably to these treat-
ments. Although in no case was labeling more specific
than in formaldehyde-fixed samples, AR treatment did
enable muscle detection by 2H3 in methacarn-fixed
sections (Table 3), suggesting that some epitopes bene-
fit from heat treatment, even in the absence of cross-
linking fixation.

To summarize, optimal mAb labeling of histological
sections usually requires a specific combination of
sample preparation parameters, as in whole animals.
Although we initially selected for mAbs that would
label peroxide-bleached animals in our primary screen
(Figure 1), we nonetheless found that on sections,
labeling by a number of antibodies was completely
abolished by bleaching. One possible explanation for
this result is that additional processing steps (cryoem-
bedding, freezing, air drying, thawing, and rehydration),
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Scale bars: 100 um.

unbleached bleached unbleached + AR

Figure 8 mAD labeling of histological sections. Cryosections (20 um) from formaldehyde-fixed planarians processed as indicated. (A) Sections
labeled with secondary antibody only. (B) mAb 3F11 labels the intestine (arrows). (C) 2G4 labels the apical regions of intestinal cells (arrows) and
epidermis. (D) 2H3 labels enteric (yellow arrows) and body wall (magenta arrows) muscles. Schematics illustrating orientation of cross sections
and tissues labeled (green) are to located the right of each set of panels. All planarians were treated with HCI or NAc, and fixed in formaldehyde/
Triton X-100 (20 min). Bleaching in 6% H,0,/PBS (12 hr) (middle column) was conducted prior to cryosectioning. Antigen retrieval was conducted
after sectioning. Dorsal is to the top in all images. Conditions yielding the highest signal-to-noise for each mAb are indicated with an asterisk.

together with the detrimental effects of peroxide bleach-
ing, combine to degrade or alter epitopes in a way that
prevents their detection. Finally, for some antibodies, AR
is an effective method for reducing background and enab-
ling antigen detection on sections from unbleached pla-
narians. AR is therefore a viable alternative to bleaching,
since epitopes that are irreversibly damaged by peroxide
treatment may be preserved in heat-treated histological
sections.

A systematic approach to optimization of sample
processing in planarians

We have shown that the specificity of antibodies raised
against planarian tissue can be affected by every step
of sample processing. Our observations are consistent
with an extensive body of immunohistochemical research
demonstrating that the molecular complexity of antigens

makes their sensitivity to chemical treatments unique and
unpredictable [86,88,89,119,120]. We screened our initial
hybridoma library on HCl-treated, formaldehyde-fixed,
PBS-bleached planarians. While we successfully identified
antibodies that labeled under these conditions, some
mADbs performed better or worse when planarians were
processed differently. Thus, although the axiom “you
get what you screen for” holds true, screening itself does
not automatically identify optimal processing condi-
tions. Furthermore, our data imply that when screening
antibodies raised against specific molecules (e.g., fusion
proteins), preparing samples several ways may be advis-
able. For example, while we favor formaldehyde fixation
because of its faithful preservation of protein localization
and cellular morphology [103,104], the effects of HCI or
NAc on specific epitopes likely need to be tested empir-
ically. Alternatively, screening could be conducted to
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mAb Fixation protocol

HCI NAc HCI NAc HCI NAc HCI NAc HCl NAc

Formaldehyde
- Bleach AR Reduction Prot K

2G4, int. ++ + + - ++ - + + - -
2G4, ep. ++ ++ - - + + - - + +
3F1 ++ + + ++ - - + + + -
2Cn + + ++ + ++ + + + -
2D2 + - - - - - + - - -
2H3 - - - - ++ + - - + -
3H3 ++ ++ ++ ++ ++ ++ + + + +
mAb Methacarn
2G4, int. + + - nd. ++ ++ + - + -
2G4, ep. + + - nd. - - ++ + ++ +
3F11 - - - nd. - - nd. nd. nd. nd.
2CT1 + ++ ++ nd. - ++ + + + ++
2D2 - - - nd. - - nd. nd. nd. nd.
2H3 - - - nd. + + - - - -
3H3 ++ ++ ++ nd. ++ ++ ++ ++ + +

Qualitative assessment of signal:noise for tissues labeled by selected mAbs: 2G4, intestine (“int.”) and epidermis (“ep.”); 3F11, intestine; 2H3, enteric muscle; 2D2,
CNS neuropil; 2C11, peripharyngeal secretory cells and projections; 3H3, epidermis. “-“ indicates negligible or non-uniform labeling, poor morphology, and/or high
background. “+" indicates moderate specificity, uniform labeling, or strong signal accompanied by elevated non-specific labeling. “++" indicates robust signal with

minimal noise. “n.d.”, not done.

identify antibodies that label robustly in specific appli-
cations, for example, on samples that have first under-
gone in situ hybridization.

Although development of a universal protocol suitable
for every antibody is likely impossible, testing a limited
number of methods together can efficiently identify con-
ditions that preserve antigenicity and achieve excellent
signal-to-noise for many antibodies (Figure 9). For whole
planarians, we have developed a two stage optimization
workflow (Figure 9A and B). In the first stage (Figure 9A),
mucolytic agents, fixatives, and bleaching diluents are
tested in combination for a total of six initial condi-
tions. Although we did not extensively test methacarn
together with milder NAc treatment, such a combin-
ation could be included, increasing the total number of
initial conditions to eight. In an optional second stage
(Figure 9B), other parameters such as magnesium-induced
relaxation, bleaching time, antigen retrieval, and antibody
dilution can be tested to further refine a protocol for a
particular antibody, as we have done for mAbs 3F11, 2D2,
and 2C11. Alternative approaches are also possible. For
example, reduction and proteinase K treatment could
be tested during the first round, increasing the number
of initial combinations to 18.

Because peroxide bleaching affects some antigens
detrimentally, and because some antigens may require

unmasking, we also recommend testing mAbs on
cryosections from bleached and unbleached planar-
ians in combination with antigen retrieval (Figure 9C).
We routinely adhere sections from planarians prepared
four different ways to the same slide. Using two slides,
eight combinations including antigen retrieval can be
analyzed simultaneously in one experiment. Again, pa-
rameters can be easily substituted; for example, bleached
samples could be omitted in favor of samples fixed in
methacarn, or reduction could be tested instead of antigen
retrieval.

By approaching sample preparation systematically,
we have substantially improved processing protocols
for several of the monoclonal antibodies we generated
(examples in Figure 9D; Tables 2 and 3). These protocols
are suitable for use on uninjured animals as well as regener-
ates, and enable visualization of intestinal remodeling and
growth (Figure 10A-C), re-establishment of the central
nervous system after head amputation (Figure 10D-F),
and the de novo development of secretory cells and
their projections into the pharynx (Figure 10G-I). We
have assembled step-by-step protocols detailing each
stage of sample preparation, including examples of
initial optimization steps for whole animals, as well as
summary protocols for several individual antibodies
(Additional file 2).
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Figure 9 A combinatorial method for optimization of antibody labeling in planarians. (A) Schematic of first round optimization steps for
whole animals. (B) Schematic of potential further optimization steps. (C) Optimization steps on cryosections. (D) Examples of optimized protocols

block, label with
mAb 2H3 (1:10

Future directions

Although we evaluated many of the more commonly used
fixatives and sample preparation conditions, our analysis
was not exhaustive. Alternative fixatives, mucus removal
treatments, bleaching agents, and tissue permeabilization
methods remain to be tested or might emerge in the
future. For example, a combined relaxing agent and
fixative has been used previously to prepare planarians
for paraffin embedding, sectioning, and immunolabeling
[107,121]. The modular nature of our optimization work-
flow allows straightforward substitution or addition of
such treatments. Additionally, although we conducted
tests of the duration of bleaching and mucus removal,
we have not rigorously explored treatment time as a
parameter. In particular, fixation and permeabilization
may need to be extended for larger planarians, as noted
for in situ hybridization protocols [34]. Similarly, initial
trials suggest that small animals and tissue fragments

(<2 mm) may be more sensitive to hydrogen peroxide
treatment, requiring bleaching for 10 hr or less, at least
for some antibodies.

Conclusions

We raised a panel of mAbs against planarian intestinal
cells, and identified optimal sample preparation conditions
for several antibodies. Serendipitously, our screen also
yielded markers for non-intestinal cell types, reagents that
may benefit studies of regeneration of the nervous system,
pharynx, and epidermis. Our results reinforce the feasibil-
ity of producing tissue-specific markers using whole plan-
arian cells as an immunogen. Furthermore, our approach
to testing multiple parameters together during sample
processing should accelerate future efforts to develop
planarian-specific antibodies, and to extend investigation
of regenerative mechanisms to post-transcriptional aspects
of gene expression including protein localization and
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Figure 10 mAbs label regenerating intestine, secretory cells, and central nervous system in specimens processed using optimized
protocols. (A-C) 3F11 labels the intestine in tail fragments regenerating a new head, including anterior regions that remodel (arrow, B) and
elongate (arrows, C) at early and intermediate stages of intestinal regeneration, respectively. (D-F) After head amputation, 2D2 labels the regenerating
brain, including new neuronal projections (arrows, E), and cell bodies (arrows, F). (G-1) 2C11 labels the regenerating peripharyngeal secretory
system in tail fragments, including the first appearance of cell bodies 4 days after amputation (arrows, H), and projections within the pharynx 8
days after amputation (arrow, ). Days after amputation are indicated at left. Anterior is to the left in all panels. Dotted magenta lines indicate
approximate boundary between new tissue (left) and old tissue (right). All samples were processed using the optimized protocol for each mAb
described in Additional file 5. Scale bars: 100 um (insets in D-F); 200 um (all others).

modification. Finally, our observations emphasize the
long-appreciated sensitivity of antibody specificity to
fixation and other treatments, and the utility of system-
atically testing multiple approaches when addressing
organism-specific idiosyncracies such as mucus secretions
or tissue permeability. Our experiences and approaches
may facilitate efforts to develop immunological resources
in other emerging model organisms.

Methods

Planarian care and maintenance

Asexual Schmidtea mediterranea (clonal line CIW4) were
maintained in 0.5 g/L Instant Ocean salts as described
[122]. Phagocytes were collected from large (>9 mm)
planarians. Animals 5-7 mm in length were utilized for
cryosections. For all other experiments, small planarians
(3-5 mm) were used. Animals were starved for 5-10
days prior to experiments.

Phagocyte collection and fixation

Eighty to 100 planarians were fed a mixture of Feridex
(AMAG Pharmaceuticals), liver homogenate, ultra-low
melting point agarose, and food coloring (Durkee) as

described [23]. 36-48 hours later, animals were dissoci-
ated in calcium- and magnesium-free medium with
BSA (“CMF”) [58,123] and 0.6 U/ml Dispase (Invitro-
gen) [23], and filtered sequentially through 160 pm, 53
pum, and 30 um nylon meshes in Swinnex filters (Milli-
pore). After each filtration, cells were pelleted at 150 x
g for 5 min, then resuspended in fresh CMF.

After the final spin, cells were resuspended in 2 ml
degassed CMF + 0.5 mM EDTA (“CMEF-E”), and applied
to a Miltenyi LS Column mounted on a VarioMACS cell
separator. Column equilibration and purification were
conducted according to the manufacturer’s protocol, ex-
cept that degassed CMF-E was used as the buffer for all
steps, and phagocyte elution was conducted with three
3 ml CME-E elutions by gravity flow, which was gentler
and yielded more intact cells than plunger flushing of
the column.

Phagocytes were pelleted at 300 x g for 5 min, then
immediately fixed for 10 minutes in either 4% formalde-
hyde/1X PBS (RT) or 67% methanol/33% PBS (-20°C).
Cells were rinsed three times in 1X PBS, then incubated
overnight (O/N) in 1X PBS/0.1% Triton X-100 at 4°C.
After three rinses in 1X PBS, cells were stored at 4°C.
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Equal numbers of FA-fixed and MeOH-fixed cells were
pooled and supplied in PBS to the University of Illinois
Immunological Resources Facility for immunization. Each
purification routinely yielded 1-3 x 10° phagocytes;
approximately 50 collections total were conducted.

Immunization, serum tests, hybridoma generation, and
screening

All animals were obtained and cared for in strict accord-
ance with the policies and guidelines of the Division of
Animal Resources (DAR) and the Institutional Animal
Care and Use Committee (IACUC) of the University of
Ilinois. The DAR was responsible for all animal veterinary
care. Immunization, fusion, hybridoma generation, and
cloning were conducted by the University of Illinois Im-
munological Resources Facility (IACUC protocol 07082).

BALB/c female mice were injected three times (every
three weeks) with 5 x 10° to 1 x 10° fixed phagocytes
per injection, with a final, fourth boost of 9 x 10° cells.
Antigen emulsion was made by mixing cell suspension
with an equal volume of adjuvant. Titermax adjuvant and
incomplete Freunds adjuvant were used for primary
immunization and subsequent immunizations, respectively.

Preimmune sera were drawn prior to immunization,
while test bleeds were drawn after the third immunization.
Both were tested at 1:100, 1:200, 1:500, and 1:1000 in
blocking solution on fixed, bleached planarians using pre-
viously described methods [17]. Briefly, planarians were
killed in ice-cold 2% HCI for 5 min, then fixed for 6 hr in
either 4% formaldehyde (FA)/1X PBS, Carnoy’s fixative
(6:3:1 ethanol:chloroform:glacial acetic acid), or methacarn
(6:3:1 methanol:chloroform:glacial acetic acid) at 4°C.
FA-fixed animals were bleached O/N (16 hr) in 6%
H,0,/1X PBS; Carnoy’s- and methacarn-fixed animals
were bleached in 6% H,0O,/methanol. Animals were
incubated for 4 hr at RT in BSA/fish gelatin blocking
solution [17], and O/N at 4°C in test sera and secondary
antibody (goat anti-mouse 568, Molecular Probes, used
at 1:1000), which were diluted in blocking solution. 6-8
washes in PBSTx (0.3% Triton X-100 in 1X PBS) were
conducted over >6 hr at RT after primary and secondary
incubations.

The best immune responders to intestinal cells were
sacrificed and their lymphocytes fused with Sp2/0 mye-
loma cells to generate hybridoma cell lines following
standard protocols [80]. For the primary screen, planarians
were fixed in formaldehyde and immunolabeling was per-
formed as for serum testing, except that incubations were
carried out in 96 well plates, and supernatants were used
undiluted. Fusions secreting specific antibodies were
selected, subcloned, and re-screened to generate final
hybridoma cell lines. Modified standard HAT medium
containing 10% FBS was used to culture hybridoma cells
in a 7% CO, incubator.
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Antibody-producing lines have been deposited in the
Developmental Studies Hybridoma Bank, Iowa City, IA.
Although re-optimization of dilution is recommended,
we have validated DSHB-produced supernatants from
multiple lines (3G9, 3F11, 2G4, 2H3, 2D2, and 2Cl11),
and find that they perform identically to those produced
at Illinois. We also note that although IgM antibodies
can be less stable than IgG mAbs [65,99], in our hands
supernatants from IgM-producing hybridomas were stable
for a minimum of 12 months when stored at 4°C, regard-
less of production site.

Isotyping

Antibodies were isotyped using the IsoStrip Mouse Mono-
clonal Antibody Isotyping Kit (Roche), according to the
manufacturer’s instructions.

Magnesium-induced relaxation

Planarians were placed in a glass vial (Research Products
International) in 1 ml planarian salts. Two ml 1M MgCl,
(RT) were quickly added to the vial (0.66 M final con-
centration), and animals were gently swirled for 15-30 sec.
After animals had uncurled and relaxed, 10 ml 1X PBS
were quickly added. After animals had settled at the
bottom of the tube, the salts/MgCl,/PBS solution was
removed completely, allowing animals to flatten against
the sides and bottom of the vial. Hydrochloric acid
or N-Acetyl-cysteine solution (below) was then added
immediately.

Mucus removal (HCI)

Animals were placed in glass vials and chilled on ice in
planarian salts for 1 minute (animals relaxed in MgCl,
were not pre-chilled). Planarian salts were removed and
replaced with ice-cold 2% HCI (i.e., 36-38% HCI diluted
1:18) in water (v/v); vials were shaken moderately by
hand for 1 min, chilled on ice for 1 min, shaken again
for 1 min, and then HCI was removed. Prior to formal-
dehyde fixation, animals were rinsed quickly in 1X PBS,
which was then removed completely before fixative was
added. Alternatively, methacarn was added directly after
HCI treatment.

Mucus removal (NAc)

For N-Acetyl-L-cysteine treatment [44], animals were
placed in glass vials, planarian salts were removed, and
7.5% NAc (Sigma)/1X PBS (w/v) was added. Animals were
gently rocked for 7 min (RT), then NAc was removed
completely and replaced with fixative.

Methacarn fixation and bleaching

Ice-cold methacarn (6:3:1 methanol:chloroform:acetic
acid) was added directly to animals after mucus removal.
Fixation was conducted at 4°C with gentle rocking.
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Planarians were fixed for 20 minutes. Fixative was then
removed and replaced with -20°C methanol. Samples
were rocked for 10-15 minutes at 4°C, and rinsed twice
more in methanol (RT). Animals were then bleached in
6% H,0O, in methanol (in a foil-lined container 6-10
cm below a fluorescent light at RT, 14-20 hr unless
noted otherwise), rinsed 3X in methanol, then stored
at -20°C or rehydrated immediately for experiments.
Animals were rehydrated by incubation in 1:1 metha-
nol:PBSTx (v/v) (5 min), followed by three washes in
PBSTx (5 min each). We note that in preliminary studies,
we also tested antibodies on animals fixed in the related
Carnoy's fixative as well as methanol alone. However,
we found that results were comparable or worse than
methacarn, and did not test these fixatives further.

Formaldehyde fixation and bleaching

For optimization of whole-animal immunolabeling, pla-
narians were fixed in 4% formaldehyde (EMD Biosci-
ences)/PBSTx (1X PBS plus 0.3% Triton X-100) for 20
min. For cryosections, planarians were fixed in 4% FA
(Ted Pella 18505)/PBSTx for 20 min. Fixations were
conducted with gentle rocking at RT. After fixation, ani-
mals were rinsed 3X in PBSTx.

For whole-animal optimization, planarians were then
dehydrated by incubation in 1:1 methanol:PBS (v/v) (5 min)
followed by two incubations in methanol at RT, perme-
abilized for >1 hr in methanol at -20°C, then bleached
overnight (14-20 hr, unless noted otherwise) in 6%
H,0O, in methanol at RT. After bleaching, animals were
rinsed several times in methanol, then stored at -20°C
or rehydrated and used immediately. Bleaching in PBS
was conducted similarly, except that animals were
rinsed twice more in 1X PBS, bleached in 6% H,O, in
1X PBS, rinsed 3X in 1X PBS, and stored (<5 days) at 4°C
or used immediately.

Reduction (whole planarians)

After formaldehyde fixation but prior to bleaching, pla-
narians were incubated in reduction solution (50 mM
DTT, 1% NP-40, and 0.5% SDS, in 1X PBS) for 10 min
at 37°C [34], with occasional gentle agitation. Animals
were then washed 3X in PBSTx (5 min each).

Proteinase K treatment (whole planarians)

Bleached animals were incubated in 10 pg/ml proteinase
K (Invitrogen) in PBSTx + 0.1% SDS [34] for 10 min with
gentle rocking (RT). Planarians were rinsed in PBSTx
three times, post-fixed in 4% FA/PBSTx for 10 min, then
rinsed three more times in PBSTx.

Antigen retrieval (whole planarians)
Bleached planarians were equilibrated in 10 mM sodium
citrate (pH 6.0) (5 min). Fresh sodium citrate was added,

Page 18 of 22

then animals were incubated in a heat block at 95-100°C
(10 min). Planarians were allowed to cool to RT, then
washed 2X in PBSTx (5 min each).

Immunofluorescence (whole planarians)

Planarians were equilibrated in PBSTx (5 min), then
blocked O/N (16-20 hr) in BSA/fish gelatin blocking
solution (0.6% IgG-free BSA (Jackson Immuno) and
0.45% fish gelatin (Sigma) in PBSTx) at RT. Supernatants
were diluted 1:2 in blocking solution (i.e., one volume
supernatant and one volume blocking buffer) in Figures 2
and 3, and Additional files 3, 4, and 5. In Figures 6 and
7, mAb 3F11 was diluted 1:2. In all other figures, super-
natants were diluted 1:10 or 1:100 (2C11 only). Planarians
were incubated O/N at 4°C. After 6-8 PBSTx washes
over at least 6 hr, planarians were re-blocked for 1-2 hr at
RT, then incubated with goat anti-mouse IgG + IgM HRP
(Jackson Immuno) at 1:250 and DAPI (1 pg/ml) O/N at
4°C. For direct detection, goat anti-mouse IgG +IgM
Dylight-488 (Jackson Immuno) was used at 1:500. After
incubation in secondary antibody, animals were washed
6-8X in PBSTx over at least 6 hr, then twice in PBSTw
(0.01% Tween-20 in 1X PBS) (5 min each). For TSA,
planarians were incubated with FITC-Tyramide [34] at
1:1500 plus 0.005% H,O, in PBSTw for 10-15 min at
RT, then washed 3X in PBSTx (10 min each). Planarians
were washed overnight in PBSTx, rinsed again in PBSTX,
then mounted in Vectashield.

Cryosectioning
Fixed, bleached planarians (rehydrated if necessary) were
cryoprotected in 15% sucrose (w/v)/PBS (>10 min at RT)
followed by 30% sucrose/PBS (O/N at 4°C). Animals were
stored for up to two weeks at 4°C in 30% sucrose prior to
cryosectioning.

Samples were transferred to Tissue Freezing Medium
(TBS) in silicone “Pelco” EM molds (Ted Pella), frozen on
dry ice, and stored for up to one week at -80°C. Blocks were
cryosectioned at 20 pm on a Microm HM550 cryostat, and
sections adhered to Superfrost Plus slides (Fisher) coated
with gelatin (0.5%) and chromium potassium sulfate
(0.05%). Slides were air-dried at RT for 1-3 hr, then stored
for up to two weeks at -80°C prior to immunolabeling.

Rehydration (cryosections)

Slides were warmed to room temperature (5-10 min),
then incubated in three changes of 1X PBS (>5 min
each, RT) in Coplin jars to rehydrate and remove tissue
freezing medium.

Proteinase K treatment (cryosections)

After rehydration, slides were equilibrated in PBSTx
(5 min). 50 pl of a solution of 10 pg/ml proteinase K
(Invitrogen) in PBSTx + 0.1% SDS was added to each
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slide, then slides were coverslipped and incubated for
10 min (RT). Slides were then quickly dipped in PBSTx
in a Coplin jar to remove coverslips, then slides were
briefly incubated (15-30 sec) in two rinses of PBSTx.
Sections were post-fixed in 50 ul 4% FA/PBSTx, then
washed 3X in PBSTx in Coplin jars (5 min each).

Reduction (cryosections)

After rehydration, slides were equilibrated in PBSTx
(5 min). 50 pl of reduction solution was added to each slide,
then slides were coverslipped and incubated for 10 min at
37°C. Slides were dipped in PBSTx in a Coplin jar to re-
move coverslips, then washed 3X in PBSTx (5 min each).

Antigen retrieval (cryosections)

After rehydration, slides were equilibrated in 10 mM so-
dium citrate (pH 6.0) (5 min, RT), then transferred to fresh
sodium citrate in microwave-safe plastic Coplin jars. Slides
in sodium citrate were heated to boiling in a microwave,
then brought back to boiling every minute for 10 minutes
total; care was taken to minimize superheating. Slides were
then allowed to cool gradually to room temperature.

Immunofluorescence (cryosections)

Slides were equilibrated in PBSTx (5 min), blocked for
30 min in low-volume plastic slide jars (Ted Pella
21096), then incubated with mAb supernatants under
glass coverslips for 2 hr in a humidified staining cham-
ber. All supernatants were diluted 1:10 (one part super-
natant, nine parts block) in blocking solution except
2C11, which was diluted 1:50. Coverslips were removed
in PBSTX, rinsed in PBSTx (<30 sec) to remove excess
antibody, and washed three times in PBSTx (10 min
each). Slides were then incubated for 2-3 hr with HRP-
conjugated goat anti-mouse IgG +IgM (Jackson) at
1:250 and DAPI at 1 pg/ml. Coverslips were removed
and slides were rinsed and washed as above in PBSTx.
Following two washes in PBSTw (5 min each), TSA was
performed on slides with FITC-tyramide (1:1500) in
PBSTw with 10 min development. After TSA, slides
were washed at least three times in PBSTx (10 min
each), then mounted in Vectashield. Rhodamine-LCA
(Vector Laboratories) was incubated with secondary anti-
body at 1.25 pg/pl. All antibody incubations and TSA were
conducted on-slide, in 50 pl volumes under 22 x 50 mm
glass coverslips; all washes were carried out in glass Coplin
jars. All steps were conducted at RT.

Imaging and image processing

Samples were imaged on a Zeiss SteREO Lumar.V12 run-
ning AxioVision (v4.6.3 and later), a Nikon Eclipse TE200
with a MicroFIRE camera (Optronics) and Picture Frame
v2.3, a Zeiss Axio Observer.A1 with a Retiga 4000R camera
(QImaging) and QCapture Suite PLUS (v3.1.3.10), or a
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Zeiss LSM710 laser scanning confocal running Zen. Images
were processed using Image] 1.46r [124] and Adobe Photo-
shop CS4. Where appropriate, exposure times were kept
constant and adjustments to brightness and contrast were
applied identically to allow comparison of immunolabeling.

Additional files

Additional file 1: Detailed protocol for isolation of planarian
intestinal phagocytes.

Additional file 2: Detailed protocols for fixation and
immunofluorescent labeling of planarians.

Additional file 3: Comparison of direct to indirect detection and
effects of blocking duration on immunofluorescent labeling. (A-C) mAb
detection using DyLight 488-conjugated secondary antibody. (D-F) mAb
detection using HRP-conjugated secondary and FITC-tyramide (tyramide
signal amplification). (G-) mAb labeling after blocking for 4 hr prior to
immunolabeling. (J-L) mAb labeling after blocking overnight (16-20 hr) prior
to immunolabeling. For 3F11, animals were relaxed in magnesium, treated
with 2% HCl, fixed in formaldehyde, and bleached in PBS. For 2C11 and 2D2,
animals were processed identically except mucus was removed with 7.5%
NAc and animals were bleached in methanol. For TSA vs. fluorophore-
conjugated secondary comparison, animals were blocked overnight. For
blocking comparison, TSA was used for detection. mAbs are indicated at the
top of the figure. Scale bars: 100 um (B, £/, H', K); 500 um (all other panels).

Additional file 4: Optimization of additional mAbs. (A) mAb TH8
labeling is enriched in central nervous system nuclei, especially in NAc-
treated samples. (B) mAb 1E12 labels nuclei. Signal is most robust after
methacarn fixation; in combination with magnesium relaxation, epidermal
signal is dramatically reduced, revealing intestinal nuclear labeling.
Sample treatment parameters are indicated at left. In all panels, anterior is
to the left. Yellow asterisks indicate conditions that yielded the most
specific signal with minimal background labeling. All samples were
bleached in methanol (16-20h). Scale bars: 100 um (A); 500 um (B).

Additional file 5: Excessive bleaching adversely affects mAb labeling.
(A-D) NAc-treated planarians labeled with mAb 3F11 after bleaching for the
times indicated. (E-H) Planarians labeled with mAb 3G9 after bleaching for
the times indicated. Planarians were relaxed in magnesium chloride, treated
with 7.5% NAc (3F11) or 2% HCl (3G9), fixed in formaldehyde/Triton
X-100 (3F11) or methacarn (3G9), and bleached in 6% H,0O,/PBS (3F11) or
6% H,0,/methanol (3G9). Scale bars: 500 um.

Additional file 6: mAb labeling of cryosections. (A) Cryosection labeled
with mAb 3F11, Rhodamine-LCA, and DAPI. (B-C) High magnification of the
region boxed in (A) shows the minimal overlap in labeling between 3F11
(phagocytes) and LCA (goblet cells). Asterisks indicate examples of 3F11-
negative goblet cells. (D) 2G4 labeling of the apical region of the intestine
(arrows) and ventral epidermis. (E) 2H3 labeling of muscle fibers around the
intestine (arrows). 2H3 also weakly labels ventral body wall muscles under
these conditions. 3F11- and 2G4-labeled samples were HCl-treated,
FA-fixed, without AR. 2H3-labeled samples were HCl-treated, FA-fixed,
and AR-treated. (A, D, E) Confocal projections of 20 pm thick cryosections.
(B, ©) 2 um optical sections of the region boxed in (A). Scale bars: 100 pm
(A, D, E); 20 um (B, O).

Additional file 7: mAb labeling of non-intestinal tissues on
histological sections. Cryosections (20 um) from formaldehyde-fixed
planarians prepared as indicated and labeled with the antibodies shown.
(A) Sections through the planarian brain labeled with mAb 2D2. Arrows
indicate neuronal projections within cephalic ganglia (cg, dotted lines, and
inset) in sections from HCl-treated, unbleached animals. (B) mAb 2C11 labels
peripharyngeal secretory cells and their projections (arrows) in sections
through the pharyngeal region. (C) mAb 3H3 labels epidermis. For all
images, planarians were treated with HCl or NAc, and fixed in formaldehyde/
Triton X-100 (20 min). Bleaching in 6% H,0,/PBS (12 hr) (middle column)
was conducted prior to cryosectioning. Antigen retrieval was conducted
after sectioning, on-slide, prior to immunolabeling. Dorsal is to the top in all
images. Scale bars: 100 um.
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