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Abstract

Tomographic imaging via penetrating waves generates cross-sectional views of the internal 

anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large 

number of angular positions are required. Here, we show that a deep-learning model trained to 

map projection radiographs of a patient to the corresponding 3D anatomy can subsequently 

generate volumetric tomographic X-ray images of the patient from a single projection view. We 

demonstrate the feasibility of the approach with upper-abdomen, lung, and head-and-neck 

computed tomography scans from three patients. Volumetric reconstruction via deep learning 

could be useful in image-guided interventional procedures such as radiation therapy and needle 

biopsy, and might help simplify the hardware of tomographic imaging systems.

The ability of computed tomography (CT) to take a deep and quantitative look of a patient or 

an object with high spatial resolution holds significant value in scientific explorations and in 

medical practice. Traditionally, a tomographic image is obtained via the mathematical 

inversion of the encoding function of the imaging wave for a given set of measured data 

from different angular positions (Figs. 1a,b). A prerequisite for artefact-free inversion is the 

satisfaction of the classical Shannon-Nyquist theorem in angular-data sampling, which 
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imposes a practically achievable limit in imaging time and object irradiation. To mitigate the 

problem, image reconstruction with sparse sampling has been investigated extensively via 

techniques such as compressed-sensing1–6 and maximum a posteriori7,8. This type of 

approaches introduces a regularization term to the inversion to encourage some ad hoc or 

presumed characteristics in the resultant image9–13. If imaging quality cannot be 

compromised, the resultant sparsity is generally limited and does not address the unmet 

demand for real-time imaging with substantially reduced subject irradiation (Fig. 1c). 

Indeed, while continuous efforts have been made to reduce the number of angular 

measurements in medical imaging, tomographic imaging with ultra-sparse sampling has yet 

to be realized.

In this work, we push sparse sampling to the limit of a single projection view, and 

demonstrate single-view tomographic imaging with a patient-specific prior by leveraging 

deep learning and the seamless integration of prior knowledge in the data-driven image-

reconstruction process. The harnessing of prior knowledge by machine-learning techniques 

in different data domains for improved imaging is an emerging topic of research. Some 

recent studies14–19 have also investigated machine-learning-based image reconstruction. 

Whereas the data-driven approach represents a potentially general strategy for image 

reconstruction, here single-view CT imaging is achieved via a patient-specific prior. 

Practically, it is actually advantageous to work with the patient-specific prior: for many 

image-guided interventional applications, the approach would enable scenarios most relevant 

to the specific patient under treatment.

Deep neural networks have attracted much attention for their ability to learn complex 

relationships and to incorporate existing knowledge into the inference model through feature 

extraction and representation learning20–22. The method has found widespread applications 

across disciplines, such as computer vision23–25, autonomous driving26, natural language 

processing27, and biomedicine15,28–36. Here, we design a hierarchical neural network for X-

ray CT imaging with ultra-sparse projection views, and develop a structured training process 

for deep learning to generate three-dimensional (3D) CT images from two-dimensional (2D) 

X-ray projections. Our approach introduces a feature-space transformation between a 2D 

projection and a 3D volumetric CT image within a representation–generation (encoder–

decoder) framework. By using the transformation module, we transfer the representations 

learned from the 2D projection into a representative tensor for 3D volume reconstruction in 

the subsequent generation network. Through the model-training process, the transformation 

module learns the underlying relationship between feature representations across 

dimensionality, making it possible to generate a volumetric CT image from a 2D projection. 

It should be emphasized that an X-ray projection is not a purely 2D cross-sectional image, as 

higher dimensional information is already encoded during the projection process (see 

schematic in Fig. 1a), with the encoding function determined by the physics of interactions 

between the X-ray and media. Generally, a single projection alone is not sufficient for 

capturing the anatomical information in the projection direction for the subsequent 

volumetric-image reconstruction. What enables our deep-learning model for patient-specific 

volumetric image reconstruction is that anatomical relations (including the information in 

the direction of the projection view) are encoded during the model-training process via the 

use of augmented datasets containing different 2D–3D data pairs of body positions and 
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anatomical distributions. The deep-learning transformation deciphers the hidden information 

in the projection data, and predicts a volumetric image with the help of prior knowledge 

gained during model training (Fig. 1d).

Results

Figure 2 shows the detailed structure of our deep-learning framework. The input to the 

neural network is a single or multiple 2D projection images from different view angles. The 

output of the network is the corresponding volumetric CT image. During the model-training 

process, the neural network learns the mapping function from the 2D projection(s) to the 

volumetric image. Specifically, our deep-learning architecture consists of three main parts: a 

representation network, a transformation module, and a generation network. The 

representation network extracts embedding features and learns a semantic representation of 

the actual 3D scene from the input 2D projection(s). The transformation module bridges the 

representation and generation networks through convolution and deconvolution operations 

and relates the 2D and 3D feature representations. The role of the generation network is to 

provide volumetric images with subtle structures based on the learned features from the 

representation network. In constructing the model, we assume that one or more 2D 

projections and the corresponding 3D image possess the same semantic representation, as 

they represent the same object or scene. In other words, the representation in feature space 

remains invariant in the transformation of a 2D projection into a 3D image. To a large extent, 

the task of 3D image reconstruction here is to train the encoder (that is, the representation 

network) and decoder (that is, the generation network) to learn reliably the relationship 

between the feature space and image space. Details about the network architecture are 

included in Methods.

Training a deep-learning model requires a large number of annotated data, and this is often a 

bottleneck37. Instead of actually measuring a large number of paired X-ray projections and 

CT images for supervised training, we digitally produce projection images from a CT image 

of a patient by using the geometry consistent with a clinical on-board cone-beam CT system 

for radiation therapy (Fig. 1a). For imaging in the thoracic or upper abdominal region, where 

four-dimensional (4D) CT is often acquired to resolve organ motion caused by involuntary 

respiration, each 4D phase (that is, phase-resolved) CT is selected to form a 3D-CT dataset. 

In reality, a 3D CT image captures only one out of numerous possible scenarios of the 

patient’s internal anatomy. To consider various clinical situations in the modeling, a series of 

translations, rotations and organ deformations are introduced to the 3D-CT to mimic 

different imaging situations. For each of the transformations, the corresponding 2D 

projection image or digitally reconstructed radiograph (DRR) for one or more specified 

angles is produced. In this way, a dataset of DRR-CT pairs is generated for the training and 

testing of the deep-learning model. In practice, the dataset produced by using the CT of a 

given patient can be employed to train a patient-specific deep-learning model for subsequent 

volumetric imaging of the same patient. The model can be used for interventional 

procedures, such as radiation therapy and image-guided biopsy, where pre-operational CT 

can be employed to train the deep-learning model. One may, of course, construct a training 

dataset composed of an ensemble of patients with the above-mentioned DRR-CT pairs. This 

would lead to a more generally applicable model, yet the fundamental principle would be the 
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same. For simplicity, we will focus on the development of a patient-specific 2D–3D image 

mapping model.

We evaluate the approach by using different disease sites: an upper-abdominal case, a lung 

case, and a head-and-neck case. We use the anterior-posterior (AP) 2D projection as input 

(Fig. 2). In all experiments, the same network architecture and training strategy are used. 

The loss curves (Fig. 3) indicate that the model is trained to fit the training data well, and 

can also generalize to work on the data not included in the training datasets. The details of 

dataset generation and training process are described in Methods.

To evaluate the feasibility of the approach, we deploy the trained network on an independent 

testing dataset. Fig. 4a shows our reconstruction results with a single AP-view input for the 

abdominal-CT and lung-CT cases, together with the ground-truth CT images and the 

difference images between the obtained images and the ground truth. The deep-learning-

derived images resemble the target images, indicating the potential of the model for 

volumetric imaging. We also reconstruct volumetric images with a single lateral view as 

input for the abdominal case, with similar results (see the Experiments section of the 

Supplementary Information). Furthermore, we use multiple quantitative evaluation metrics 

to measure the results. Table 1 summarizes the average values of the evaluation metrics. The 

qualitative and quantitative results demonstrate that our model is capable of achieving 3D 

image reconstruction even with only a single 2D projection. The results (Fig. 5) also confirm 

the validity of our approach.

In addition, we conduct experiments with 2, 5 and 10 projection views as inputs. The 

multiple-view angles are distributed evenly around a 180-degree semicircle (for instance, for 

2 views, the two orthogonal directions are 0- (AP) and 90-degree (lateral)). We stack the 2D 

projections from different view angles as of the input data and modify the first convolution 

layer to fit the input channel size. With the same model-training procedure and hyper-

parameters, we obtain the CT images for 2, 5 and 10 views for both the abdominal-CT and 

lung-CT cases (Figs. 4b–d). The quantitative evaluation of the results for these cases is 

summarized in Table 1. The training-loss curves and the corresponding coronal and sagittal 

views of the images are shown in Supplementary Figs. 1–2 and Figs. 3–6, respectively. By 

comparing the quantitative evaluation metrics, it is clear that a single 2D projection is 

capable of producing a reconstructed image similar to that obtained with multiple 

projections. In a sense, the network structure is optimized for a single-view input. Generally, 

there should be an interplay between the number of projections and the architecture of the 

hierarchical network in deep-learning-based reconstruction. More projections should either 

lead to better performance or yield room to simplify the network structure because the 

learned representation is generally enhanced with the additional projection information.

Discussion

To better understand the deep-learning model, we analyze the semantic representations 

learned from the model. Generally speaking, successful generation of volumetric images is 

possible only if the model is able to learn the semantic representation of the 3D structure 

from the input projections. Hence, for the same volume, the representations obtained via 
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learning from different angular projections should be similar, since they describe the same 

underlying 3D scene. In Fig. 6a, we visualize the feature maps extracted from the 

transformation module for two testing samples. For visualization purposes, only 5 randomly 

chosen channels among the 4096 feature maps are shown, each with a size of 4×4 pixels. 

The feature maps learned from different numbers of 2D projections are displayed separately 

in different columns. The results show that, when different 2D views are given, the model 

extracts similar semantic representations of the underlying 3D scene. Furthermore, Fig. 6b 

shows the visualization of t-Distributed Stochastic Neighbor Embedding (t-SNE) for the 

feature maps of 15 testing samples. The t-SNE technique is commonly used to visualize 

high-dimensional data by embedding each sample as a point in a 2D space38. The four 

points in a cluster of the same color represent the learned features from 1-, 2-, 5-, and 10-

view reconstructions. The figure shows a clustering behavior for feature maps from the same 

sample, indicating that the model learns a similar representation from different 2D 

projections.

We also measure the similarity of the embedding representations by calculating the 

Euclidean distance between two feature maps. In this way, we compute a similarity score, 

ranging from 0 to 1, where high similarity (a score approaching 1) indicates that the distance 

between two feature maps is closer to zero. We plot a correlation matrix (Fig. 6c) among 50 

randomly selected testing samples, with their feature representations extracted from 1-view 

and 2-view reconstruction models. The highest values stand out in the diagonal of the 

correlation matrix while other off-diagonal values remain relatively low. This illustrates that 

the two sets of feature representations learned from 1-view and 2-view projections for the 

same 3D scene are the most similar, or the closest in Euclidean distance space, compared to 

the feature representations learned from other different 3D scenes. This provides additional 

evidence supporting that the model is capable of learning a semantic representation of the 

3D scene with a single projection.

Robustness against possible irregular breathing patterns is important for future clinical 

implementation of the approach. The robustness of deep networks against various 

perturbations is an intense area of research in artificial intelligence39–46. As summarized in 

ref. 43, possible solutions can belong to three categories: (i) the modification of network 

architectures (for example, adding more layers, changing the loss function, and modifying 

the activation functions); (ii) the use of external models as a network add-on to detect out-of-

distribution data (for example, using an external detector to rectify the irregular data); and 

(iii) the modification of the training-data distribution or the training strategy (for example, 

adding regularization, data augmentation, or leveraging adversarial training). In (i), the 

efforts are focused on refining the learning models. In (ii), irregular motions might be 

regarded as out-of-distribution data, where some potential techniques, such as a detector 

subnetwork41 or the confidence-based method42,44, might be helpful for detecting irregular 

input. Among the various methods, the modification of the training-data distribution is 

arguably the most straightforward way to proceed. The rationale is that, if the irregularities 

can be incorporated effectively into the training dataset and the training strategy can be 

adjusted accordingly, the robustness of the trained model would be enhanced. To a certain 

extent, this has been elaborated in the example in Supplementary Fig. 7, where it is 

demonstrated that, because of the inclusion of augmented training datasets with rotational 
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transformations, the deep-learning approach is much more robust against a small rotation of 

the imaging subject than a conventional principal component analysis (PCA)-based method. 

Quantitative results of the study for the testing sample illustrated in Supplementary Fig. 7 

are presented in Supplementary Table 1.

Outlook

We have described a deep-learning approach for volumetric imaging with ultra-sparse data 

sampling and a patient-specific prior. The data-driven strategy is capable of holistically 

extracting the feature characteristics embedded in a single projection or in a few 2D 

projections, and of transforming them into the corresponding 3D image through model 

learning. The image-feature space transformation plays an essential role in the ultra-sparse 

image reconstruction. At the training stage, the method incorporates diverse forms of a priori 
knowledge into the reconstruction. The manifold-mapping function is learned from the 

training datasets, rather than relying on any ad hoc form of motion trajectory. Although we 

have used X-ray imaging and patient-specific data, the concept and implementation of the 

approach could be extended to other imaging modalities or to other data domains with ultra-

sparse sampling. Practically, the single-view imaging represents a potential solution for 

many image-guided interventional procedures and may help to simplify the hardware of 

tomographic imaging systems.

Methods

Problem formulation.

We formulate the problem of 3D image reconstruction from 2D projection(s) into a deep-

learning framework. Given a sequence of 2D projections denoted as X1,   X2,   ⋯,   XN , 

where Xi ∈ ℝ
H2D × W2D for all 1 < i < N and N is the number of given 2D projections, the 

goal is to generate a volumetric 3D image Y describing the corresponding 3D physical scene. 

With the sequence of 2D projections as input, the deep-learning model outputs the predicted 

3D volume denoted as Y pred ∈ ℝ
C3D × H3D × W3D, while Y truth ∈ ℝ

C3D × H3D × W3D is the 

ground truth 3D image as the reconstruction target. Note that network prediction Y pred is of 

the same size as ground truth image Y truth, where each entry is a voxel-wise intensity value. 

Thus, the problem is formulated as finding a mapping function F transforming 2D 

projections to volumetric images. To tackle this problem, a deep-learning model is trained to 

find the mapping function F, which uses 2D projections X1,   X2,   ⋯,   XN  as input and 

predicts the corresponding 3D image Y pred, as expressed in equation (1).

F X1, X2, ⋯, XN = Y pred (1)

In order to use a sequential of 2D projections as model input, we stack all the 2D projections 

together as a single 3D tensor. In other words, a set of 2D projections X1, X2, ⋯, XN

(Xi ∈ ℝ
H2D × W2D) are stacked as a 3D volume Z ∈ ℝ

N × H2D × W2D, where N is the number 
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of 2D projections. In what follows, we introduce the model architecture of the deep neural 

network in detail.

Encoder–decoder framework.

The deep neural network is formulated into an encoder–decoder framework (Fig. 2). In the 

auto-encoder model47, the encoder converts high-dimensional data into embedded 

representations while the decoder reconstructs high-dimensional input. In our task, instead 

of decoding to get the input, we developed a modified decoder to generate the corresponding 

volumetric images based on the codes converted by the encoder. More precisely, with a 

sequence of 2D projections as input, the encoder network learns the feature representation 

by extracting semantic information from 2D projections, such as organ position and size. In 

this way, the encoder network learns a transformation function h1 from the 2D image domain 

to the feature domain. A transformation module then follows to learn the manifold mapping 

function h2 in the feature domain to transform the feature representation across dimensions. 

Using the learned feature representation as the input, the decoder network is trained to 

generate the 3D volume. In other words, the decoder network learns a transformation 

function h3 from the feature domain to the 3D image domain. In this way, we fit the target 

mapping function F by decomposition: F = h1 ∘ h2 ∘ h3. The rationale behind our network 

design is that both 2D projections and 3D images should share the same semantic feature 

representation in the feature domain, as they represent the image expressions of the same 

object or physical scene. Accordingly, the representation in feature space should remain 

invariant. In a sense, if the model can learn the transformation function between the feature 

space and the 2D/3D image space, it is possible to reconstruct 3D images from 2D 

projections. Therefore, following this encoder–decoder framework, our model is able to 

learn how to generate 3D images from 2D projections by leveraging from the learned 

representations in high-dimensional feature space.

Representation network.

Superb performance has been achieved by deep residual networks (such as ResNet)48 in 

many tasks. A key step in residual learning is the identity mapping that facilitates the 

training process and avoids gradient vanish in back-propagation48, which encourages 

residual learning of the hierarchical representation at each stage and eases the training of the 

deep network. Motivated by this feature, we introduce a residual-learning scheme in the 

representation network (Fig. 2), where the 2D convolution residual block is used to assist the 

deep model to learn semantic representations from 2D projections. More details about the 

residual learning scheme are presented in the “Ablative study and discussion” section of the 

Supplementary Information, and the results are summarized in Supplementary Table 2. 

Specifically, each 2D convolution residual block consists of a pattern of “2D convolution 

layer (with kernel size 4 and stride 2) → 2D batch normalization layer → rectified linear 

unit activation (ReLU) layer → 2D convolution layer (with kernel size 3 and stride 1) → 
2D batch normalization layer → ReLU layer”. The first layer conducts 2D convolution 

operations using a 4 × 4 kernel with sliding stride 2 × 2, which down-samples the spatial size 

of the feature map by a factor 2. In addition, to keep the sparsity of high-dimensional feature 
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representation, we correspondingly doubled the channel number of the feature maps by 

increasing the number of convolutional filters. A distribution normalization layer among the 

training mini-batch (batch normalization)49 then follows before feeding the feature maps 

through the ReLU layer50. Next, the second 2D convolution layer and 2D batch 

normalization layer are done by a kernel size of 3 × 3 and sliding stride 1 × 1, which keeps 

the spatial shape of the feature maps. Moreover, before applying the second ReLU layer, an 

extra shortcut path is established to add up the output of the first convolution layer to obtain 

the final output. By setting up the shortcut path of identity mapping, the second convolution 

layer is encouraged to learn the residual feature representations. In order to extract 

hierarchical semantic features from 2D projections, we constructed the representation 

network by concatenating five 2D convolution residual blocks with different number of 

convolutional filters. A detailed discussion of the network depth is available in the “Ablative 

study and discussion” section of the Supplementary Information, with some results 

illustrated in Supplementary Fig. 8. To be concise, we use the notation of k × m × n to denote 

k channels of feature maps in a spatial size of m × n. In the generation network, the size of 

input images is denoted as N × 128 × 128, where N is the number of 2D projections. The 

change of feature map size through the network are: 

N × 128 × 128 256 × 64 × 64 512 × 32 × 32 1024 × 16 × 16 2048 × 8 × 8 4096 × 4 × 4
, where each  means going through a 2D convolution residual block as described above, 

except that batch normalization and ReLU activation are removed in the first convolution 

layer. Thus, the output of the representation network is a feature representation extracted 

from 2D projections with a size of 4096 × 4 × 4.

Transformation module.

To bridge the representation and generation networks, a transformation module is deployed 

after learning the representations. As shown in Fig. 2, by taking the convolution operations 

with a kernel size of 1 × 1 and ReLU activation, the 2D convolution layer learns a 

transformation across all 2D feature maps. Then, we reshape embedded representations from 

4096 × 4 × 4 to 2048 × 2 × 4 × 4. In this way, we transform the feature representation across 

dimensions for subsequent 3D volume generation. Next, a 3D deconvolution layer with a 

kernel size of 1 × 1 × 1 and sliding stride of 1 × 1 × 1 learns a transformation among all 3D 

feature cubes while keeping the feature size unchanged. This transformation module bridges 

the 2D and 3D feature spaces. Moreover, as described in previous work51, we also remove 

the batch normalization in the transformation module to help the knowledge transfer through 

this module.

Generation network.

The generation network was built upon the 3D deconvolution block, which consists of a 

pattern of “3D deconvolution layer (with kernel size 4 and stride 2) → 3D batch 

normalization layer → ReLU layer → 3D deconvolution layer (with kernel size 3 and stride 

1) → 3D batch normalization layer → ReLU layer”. Note that the “deconvolution” layer 

actually means the operation of “transformed convolution” or fractional stride convolution 

which performs up-sampling operation. The first deconvolution layer up-samples a feature 

map by a factor 2 with a 4 × 4 × 4 kernel and sliding stride 2 × 2 × 2. In order to transform 
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from a high-dimensional feature domain to a 3D-image domain, we accordingly reduce the 

number of feature maps by decreasing the number of deconvolutional filters. The second 

deconvolution layer with a 3 × 3 × 3 kernel and sliding stride 1 × 1 × 1 keeps the spatial shape 

of feature maps. A 3D batch normalization layer and a ReLU layer follow after each 

deconvolution layer. Hierarchically, the 3D generation network consists of 5 concatenating 

deconvolution residual blocks. Following the same convention as in the representation 

network, we use a notation of k × m × n × p to denote k channels of 3D feature maps with a 

spatial size of m × n × p. With a representation input of 2048 × 2 × 4 × 4, the data flow of the 

feature maps is: 

2048 × 2 × 4 × 4 1024 × 4 × 8 × 8 512 × 8 × 16 × 16 256 × 16 × 32 × 32 128 × 32 × 64
× 64 64 × 64 × 128 × 128

, 

where each  denotes a 3D residual block. At the end of the generation network, an output 

transformation module was constructed with a 3D convolution layer and a 2D convolution 

layer with a kernel size of 1, which outputs 3D images fitting the shape of the reconstructed 

images. Finally, the generation network outputs the predicted 3D images of size 

C3D × 128 × 128, where C3D is the size of the target volumetric images along z-axis. Note 

that in the output transformation module, the batch normalization layer is removed, and that 

there is no ReLU layer after the final convolution layer.

Materials.

The approach is evaluated by using three cases of different disease sites. In the first study, a 

10-phase upper abdominal 4D-CT scan of a patient for radiation therapy (RT) treatment 

planning is selected. To proceed, the first 6 phases are used to generate the CT-DRR pairs for 

model training and validation with the procedure described above. We use the anterior-

posterior (AP) 2D projection as input (Fig. 2). With translation, rotation and deformation 

introduced to the CT volume, we obtain a total of 720 DRRs representing different scenarios 

of the patient anatomy for model training and 180 DRRs for validation. To ensure that the 

testing data are not seen in the model-training process, we generate 600 testing DRR 

samples independently from the remaining 4 phases of the 4D-CT. The 4D-CT images are 

acquired with 120 kV, 80 mA on a Positron emission tomography–computed tomography 

(PET-CT) simulator (Biograph mCT 128, Siemens Medical Solutions, Erlangen, Germany) 

together with a Varian Real-time Position Management™ (RPM) system (Varian Medical 

Systems, Palo Alto, CA). The 2D projection data are obtained by projecting each of the 3D 

CT data in the geometry of the on-board imager of TrueBeam™ system (Varian Medical 

System, Palo Alto, CA). In the second experiment, a lung cancer patient is chosen with two 

independent treatment planning 4D CT scans acquired at two different times with the same 

imaging parameter settings as above. Using the data-augmentation strategy described above, 

the first 4D-CT is used to generate training (2,400 samples) and validation (600 samples) 

datasets, whereas the second 4D CT was used to generate a testing dataset (200 samples). 

For each of the images in the training and testing datasets, the corresponding 2D projections 

are produced by projecting the 3D-CT volume in the geometry of the on-board imager of the 

TrueBeam™ system. To build a reliable model, the training and testing datasets might come 

from the same data distribution, but the datasets are independently sampled. The data 

acquisition and processing for the head-and-neck case are described in Supplementary 

Information.
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Image preprocessing.

Data are preprocessed before feeding them into the network. First, we resize all data samples 

to the same size. For example, all the 2D projection images are reshaped to 128 × 128. The 

volumetric images of the abdominal-CT and the lung-CT are resized to 46 × 128 × 128 and 

168 × 128 × 128 respectively, due to their different depths in the z-axis. Each data sample is a 

pair of 2D projected view(s) and the corresponding 3D-CT. Similar to other deep-learning-

based imaging studies15, down-sampling is introduced purely because of the memory 

limitation and for the purpose of computational efficiency. The formulation and algorithm 

are scalable to full-size images (512×512), because the component layers used in our model 

are also scalable to images of different sizes. At the current resolution of 128×128 (which is 

the same as that used in the deep-learning-based MRI reconstruction15), small motions of 

less than 3 mm may not be described accurately. However, we should emphasize that this 

resolution does not represent a fundamental limit of the deep-learning-based approach and 

can be improved as computational technology advances. In practice, methods such as deep-

learning-based super-resolution are being actively pursued, which may be employed to 

improve the spatial resolution of the approach. Additionally, following the standard protocol 

of data pre-processing, we conduct scaling normalization for both the 2D projections and the 

3D volumetric images, where pixel-wise or voxel-wise intensities are normalized to the 

interval 0,   1 . Moreover, we normalize the statistical distribution of the pixel-wise intensity 

values in the input 2D projections to be closer to a standard Gaussian distribution 𝒩 0, 1 . 

Specifically, we calculate the statistical mean and standard derivation among all the training 

data. When a new sample was inputted, we subtract the mean value from the input image(s) 

and divide the image(s) by the standard derivation to get the input 2D image(s).

Training details.

With input images X containing a stacked sequence of 2D projections, we train the deep 

network to predict the volumetric images Y pred, which is expected to be as close as possible 

to the ground-truth images Y truth. We define the cost function as the mean squared error 

(MSE) between the prediction Y pred and the ground truth Y truth, and the model was 

optimized by stochastic gradient descent iteratively. For comparison, we used the same 

training strategy and hyper-parameters for all experiments. We implemented the network by 

using the PyTorch52 library, and used the Adam optimizer53 to minimize the loss function 

and to update the network parameters iteratively through back-propagation. A learning rate 

of 0.00002 and a mini-batch size of 1 are used because of memory limitations. At the end of 

each training epoch, the model is evaluated on the validation set. This strategy is commonly 

used to monitor the model performance and avoid overfitting the training data. In addition, 

the learning rate is scheduled to decay according to the validation loss. Specifically, if the 

validation loss remains unchanged for 10 epochs, the learning rate is reduced by a factor 2. 

Finally, the best checkpoint model with the smallest validation loss is saved as the final 

model in the experiments. We trained the network using one Nvidia Tesla V100 graphics 

processing unit (GPU) for 100 epochs (duration typically around 20 hours for the 

abdominal-CT case). During testing, the typical inference time for 3D reconstruction of one 

testing sample is around 0.5 seconds.

Shen et al. Page 10

Nat Biomed Eng. Author manuscript; available in PMC 2020 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Evaluation.

To evaluate the performance of the approach, we deploy the trained model on a testing 

dataset, and analyze the reconstruction results using both qualitative and quantitative 

evaluation metrics. We use four different metrics to measure the quality of predicted 3D 

images: mean absolute error (MAE), root mean squared error (RMSE), structural similarity 

(SSIM)54, and peak signal-to-noise-ratio (PSNR). We compute the average values across all 

testing samples, and they are shown in Table 1. MAE / MSE is the L1-norm / L2-norm error 

between Y pred and Y truth. As usual, we take the square root of MSE to get RMSE. In 

practice, MAE and RMSE are commonly used to estimate the difference between the 

prediction and ground-truth images. SSIM score is calculated with a windowing approach in 

an image, and is used for measuring the overall similarity between two images. In general, a 

lower value of MAE and RMSE or a higher SSIM score indicates a better prediction closer 

to the ground-truth images. PSNR is defined as the ratio between the maximum signal power 

and the noise power that affects the image quality. PSNR is widely used to measure the 

quality of image reconstruction.

Comparison study.

To better benchmark the proposed method against the existing techniques, we conduct a 

comparative study with the published principal component analysis (PCA)-based 

method55–57 and elaborate the difference and advantages of our proposed approach. The 

comparison is done for a special situation of 4D-CT reconstruction (abdominal CT) where 

the anatomical motion may be characterized by principal components. We find that the PCA 

and deep learning-based methods produce similar results in an ideal case when there is no 

inter-scan variation in patient positioning (since the results are very similar, the resultant 

images are not shown). However, the deep learning model outperforms the PCA method in 

more realistic scenarios when the patient position deviates slightly from that of the reference 

scan (see Supplementary Information for details).

Reporting summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. 3D image reconstruction with ultra-sparse projection-view data.
a, A geometric view of an X-ray source, a patient and a detector in a CT system. b, X-ray 

projection views of a patient from three different angles. c, Different image-reconstruction 

schemes in the context of prior knowledge and projection sampling. d, Volumetric image 

reconstruction using deep learning with one or multiple 2D projection images.

Shen et al. Page 15

Nat Biomed Eng. Author manuscript; available in PMC 2020 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2 |. Architecture of the deep-learning network.
a, The input of the model is a single projection view or multiple 2D projection views. b, The 

representation network learns the feature representation of the imaged object from the input. 

c, The extracted 2D features are reshaped and transferred by the transformation module to a 

3D representation, for subsequent reconstruction. d, The generation network uses 

representation features extracted in the former stages to generate the corresponding 

volumetric images. e, The output of the model is a set of volumetric images. Notation: 

“Conv”: convolution layer; “Deconv”: deconvolution layer; (the numbers indicate the 

specific kernel size used); “BN”: batch normalization; “ReLU”: rectified linear unit; “+”: 

indicates feature-map addition with residual path; the numbers underneath each layer denote 

the number of feature maps for each layer.
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Fig. 3 |. Training-loss and validation-loss curves of the image reconstruction with a single 
projection view, for the abdominal-CT and lung-CT cases.
MSE, mean squared error.
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Fig. 4 |. Examples from the abdominal-CT and lung-CT cases.
Different numbers of 2D projections are used for the prediction. a–d, Images reconstructed 

by using 1, 2, 5, and 10 projection views. The corresponding coronal and sagittal views of 

the images for both experiments are presented in Supplementary Figs. 3–6. For the 

abdominal-CT case, 720, 180, and 600 images are used for training, validation and testing, 

respectively. For the lung-CT case, 2400, 600, and 200 images are used for training, 

validation and testing, respectively.
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Fig. 5 |. Examples from the head-and-neck-CT case.
a, 3D CT images of a head-and-neck case used for the training of the deep-learning model. 

b, Left, Testing samples and the corresponding difference images (with respect to the 

training samples) in the transverse, sagittal and coronal planes. Right, Predicted images and 

the corresponding difference images (with respect to the ground truth) in the transverse, 

sagittal and coronal planes. For this case, 2000, 500 and 200 images are used for training, 

validation and testing, respectively.
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Fig. 6 |. Analysis of feature maps.
a, Visualization of the feature maps, learned from different 2D projections, for two testing 

samples. The different colors in the figure indicate different intensity values in the feature 

maps (a lighter color indicates a higher intensity value). b, T-SNE visualization of the 

feature representations of 15 testing examples with the input of different 2D views. A total 

of 15 clusters (4 points of the same color) are shown. The 4 points in a cluster represent the 

learned features from 1-, 2-, 5-, and 10-view reconstruction models. Each cluster denotes the 

embedded representations for each of the 15 randomly chosen testing samples. c, 

Correlation matrix of representation vectors in 1-view and 2-view reconstructions from 50 

randomly chosen testing samples out of 600.

Shen et al. Page 20

Nat Biomed Eng. Author manuscript; available in PMC 2020 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shen et al. Page 21

Table 1 |

Reconstruction results for the abdominal-CT and lung-CT cases.

Number of 2D Projections Abdominal CT Lung CT

MAE RMSE SSIM PSNR MAE RMSE SSIM PSNR

1 0.018 0.177 0.929 30.523 0.025 0.385 0.838 27.157

2 0.015 0.140 0.945 32.554 0.024 0.399 0.837 26.985

5 0.016 0.155 0.942 31.823 0.028 0.452 0.831 26.247

10 0.018 0.165 0.939 31.355 0.027 0.429 0.817 26.636

MAE, mean absolute error; RMSE, root mean squared error; SSIM, structural similarity; PSNR, peak signal noise ratio.

Nat Biomed Eng. Author manuscript; available in PMC 2020 April 28.


	Abstract
	Results
	Discussion
	Outlook
	Methods
	Problem formulation.
	Encoder–decoder framework.
	Representation network.
	Transformation module.
	Generation network.
	Materials.
	Image preprocessing.
	Training details.
	Evaluation.
	Comparison study.
	Reporting summary.

	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Fig. 4 |
	Fig. 5 |
	Fig. 6 |
	Table 1 |

