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ABSTRACT

Transient protein-protein interactions play key roles in controlling dynamic cellular responses.
Many examples involve globular protein domains that bind to peptide sequences known as
Short Linear Motifs (SLiMs), which are enriched in intrinsically disordered regions of proteins.
Here we describe a novel functional assay for measuring SLiM binding, called Systematic
Intracellular Motif Binding Analysis (SIMBA). In this method, binding of a foreign globular domain
to its cognate SLiM peptide allows yeast cells to proliferate by blocking a growth arrest signal. A
high-throughput application of the SIMBA method involving competitive growth and deep
sequencing provides rapid quantification of the relative binding strength for thousands of SLiM
sequence variants, and a comprehensive interrogation of SLiM sequence features that control
their recognition and potency. We show that multiple distinct classes of SLiM-binding domains
can be analyzed by this method, and that the relative binding strength of peptides in vivo
correlates with their biochemical affinities measured in vitro. Deep mutational scanning provides
high-resolution definitions of motif recognition determinants and reveals how sequence
variations at non-core positions can modulate binding strength. Furthermore, mutational
scanning of multiple parent peptides that bind human tankyrase ARC or YAP WW domains
identifies distinct binding modes and uncovers context effects in which the preferred residues at
one position depend on residues elsewhere. The findings establish SIMBA as a fast and incisive
approach for interrogating SLiM recognition via massively parallel quantification of protein-
peptide binding strength in vivo.
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INTRODUCTION

The proper function of cells depends on an enormous number of interactions between different
proteins [1]. Interactions that are weak and transient are particularly important in controlling
molecular events that are rapid and dynamic. Many of these interactions are mediated by
peptide sequences known as Short Linear Motifs (SLiMs), which by definition do not form stable
tertiary structures and instead are enriched in intrinsically disordered regions of proteins [2].
SLiMs bind to globular folded domains in their partners [2-5] and they can be recognized by a
wide variety of modular protein domain families, with well-known examples including SH3, WW,
and PDZ domains. Over 200 distinct families of globular SLiM-binding domains are known [2],
and their binding to cognate SLiM peptides can control subcellular targeting, assembly of multi-
protein complexes, and recognition of substrate proteins by modifying enzymes (e.g., kinases,
phosphatases, ubiquitin ligases, etc.). SLiMs play key roles in signal transduction pathways and
the control of protein stability [1, 5], and their gain or loss can drive the evolution of regulatory
networks [6, 7]. Furthermore, SLiM-mediated interactions can be mimicked by viruses and other
pathogens to co-opt host cell functions [8-11], they can be targets for drugs [12], and they may
contribute to human diseases when dysregulated [13].

Major questions about SLiM function remain unresolved because of limitations in understanding
how SLiM peptide sequences dictate their recognition (Fig 1A). "Consensus" residues, meaning
those that are shared across most identified binding peptides, often play a central role in
controlling the affinity of SLiMs for their relevant binding partners and specificity that minimizes
off-target binding [3]. However, more-variable residues in adjacent non-core positions can also
contribute substantially [14]. In addition, sequence features that affect the structural
conformation of the peptide can modulate binding energetics without contributing to the domain-
peptide interface [15]. Efforts to understand these binding determinants would benefit from
improved methods for SLiM discovery and characterization. Current estimates suggest that
roughly one third of the human proteome is intrinsically disordered [16, 17] and contains over
100,000 SLiMs [4, 18], with the majority yet to be identified. These SLiMs are estimated to fall
into roughly 350 distinct classes, with over 4000 experimentally validated examples [2]. While
some SLiM classes have been studied extensively, most have only a few known examples, and
hence they lack accurate definitions of the range of functionally permissible sequences [2, 19].
Established consensus motifs usually lack information about which deviations from the
consensus are functionally tolerated and they overlook contributions of flanking positions, which
limits their utility for discovering novel motifs and for predicting the effects of polymorphisms or
disease mutations. Furthermore, it is becoming increasingly evident that variation in the binding
strength of SLiMs can tune the magnitude or timing of regulatory events, such as during cell
cycle transitions and in the control of protein phosphorylation or degradation [20-24]. These
findings highlight a critical need for comprehensive and quantitative approaches to define how
variations in SLiM sequences affect their binding strength, specificity, and functional potency.

A key attribute of SLiMs is that their short length (~ 3-11 residues) and limited contact interface
(e.g., only 3-4 residues buried in the binding pocket of their partner domains) means that their
binding affinities are often relatively weak (e.g., Ko ~ 1-500 uM) and rapidly dissociating [3, 25,
26]. Consequently, they mediate interactions that are inherently transient and dynamic. While
this makes them well-suited for many important physiological functions (e.g., rapidly reversible
interactions among signaling proteins), it can hinder their discovery by methods that rely on
stronger binding, and it can complicate efforts to distinguish functional motifs from non-binding
sequences. For example, tens of thousands of interactions in the human proteome have been
identified via yeast two-hybrid screens, or by affinity purification followed by mass spectrometry
[27-30], but in those screens SLiM-mediated interactions are statistically underrepresented,
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likely due to their weak affinities [5, 31]. Therefore, additional methods are needed to focus
more specifically on interrogating SLiM-mediated interactions. Current approaches fall into two
categories [32]: SLiM discovery (unbiased screens to identify new binding motifs), and SLiM
characterization (analysis of sequence features that govern specific binding).

For the first category, SLiM discovery, high-throughput display-based technologies (phage
display, bacterial display, and mRNA display) allow screening of peptide libraries that can
exceed 108 distinct sequences [33-40]. Despite providing a wealth of information on sequences
that can bind a given bait domain, these approaches do not always yield robust information
about the relative binding strength of the captured sequences or about features that prohibit
binding [33]. The SLiM sequence features required for binding can be inferred indirectly from the
most common residues in these sequences; while useful, these inferences are not
comprehensive, as they provide no information about whether any residues absent from the
identified sequences are compatible with binding, which is critical for full understanding of the
binding determinants and for the accuracy of predictive modeling [41]. Importantly, to obtain
affinity information about candidate SLiMs identified via screening, it is typical to conduct follow-
up tests using low-throughput biophysical assays [19, 34, 42], which can introduce a bottleneck
in post-screening stages. Therefore, alternate high-throughput methods to validate captured
sequences and quantify their binding strengths would be valuable.

The second category, SLiM characterization, requires the initial identification of one or more
binding peptides, which then can be probed for the sequence features that control their binding.
These binding determinants can be defined comprehensively by using saturation mutagenesis,
in which each position in a peptide is systematically varied to all possible amino acids. One
common procedure for interrogating SLiM sequences uses “SPOT” arrays, in which peptides
are synthesized in situ on a solid support [43, 44]. This method has the advantage of being
accessible to many experimental labs as well as the option to incorporate residue modifications
(e.g., phosphorylation) at specific peptide positions. However, the binding measurements are
often only semi-quantitative, and they involve washing steps that disrupt equilibrium and bias
results toward the strongest binders [3, 45]. A recent method, “MRBLE-pep”, uses peptide
variants attached to spectrally coded beads to measure binding to purified domains in vitro [45].
This method can accurately quantify binding affinities for hundreds of peptides in parallel,
although it requires specialized equipment and reagents as well as purified protein domains;
moreover, the costs and effort scale in direct proportion to the numbers of domains to be tested,
which can become prohibitive for larger-scale efforts in which the number of domains and
peptide contexts range from dozens to thousands. Several additional approaches using
functional assays in living cells have provided detailed characterization of peptides that act as
kinase docking motifs [20, 46], transactivation domains [47] and degrons [48], although none
has yet been generalized to permit their application to other SLiM-binding domain families.

All currently available methods for SLiM analysis have their own advantages and disadvantages
[32]. Ideal approaches would integrate several key features: (i) a quantitative readout that
directly correlates with biophysical properties (e.g., binding affinity) or functional characteristics
(e.g., stability); (ii) scalability in terms of the number of domains and peptides that can be tested:;
and (iii) generalizability to accommodate a diverse range of domain and peptide classes. In
addition, assaying interactions within a cellular environment can be desirable to replicate the
conditions and effects of crowding found in the cytoplasmic milieu [49]. Therefore, to provide a
new approach that can complement existing methods, help circumvent bottlenecks, and fill key
gaps in knowledge, we have devised a high-throughput method that allows for systematic and
quantitative analyses of SLiM binding using an in vivo assay. The approach is called “SIMBA”,
for Systematic Intracellular Motif-Binding Analysis. By combining deep mutational scanning
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(DMS) with a competitive growth assay in which SLiM binding confers a growth advantage, we
can quantify the relative binding strength of thousands of motif variants simultaneously and
thereby define the rules of SLiM recognition with high accuracy. The work described here
validates SIMBA methodology and initiates several downstream applications to demonstrate its
feasibility and utility. We apply the approach to refine our understanding of three well-studied
motif families by providing unique insights into the positive and negative contributions of non-
core residues to binding strength, the impact of motif sequence context on residue preferences,
and the interdependence of preferences at distinct motif positions. The findings highlight the
potential for the SIMBA approach to substantially illuminate our current understanding of
protein-protein interactions by providing a new analytical tool that can define recognition rules
for large numbers of SLiMs and their binding domains.

RESULTS
Origin and Development of SIMBA Methodology

In general overview, the SIMBA method is an intracellular assay in which binding between a
protein domain and a SLiM peptide regulates signaling through a yeast growth arrest pathway.
In this system, cyclin dependent kinase (CDK) can block the growth arrest response by
phosphorylating a protein in the MAPK-dependent signaling pathway (Fig 1B). To do so, the
CDK requires one of its cyclins to recognize the target protein via a SLiM “docking site” (Fig 1B),
which promotes dynamic, multi-site phosphorylation of the target [50, 51]. Because this
phosphorylation inhibits the signaling protein [52], it allows cells to grow in the presence of the
arrest signal (yeast mating pheromone). Previously, we exploited this antagonism of growth
arrest to define the sequence requirements of docking peptides for binding to the native yeast
cyclin, CIn2 [20]. Here, we have adapted this system to monitor binding between foreign
globular domains and their SLiMs. To achieve this, we fuse the foreign SLiM-binding domain to
yeast CIn2, and then use its cognate foreign SLiM peptide to replace the CIn2 docking motif in
the CDK substrate (Fig 1C). As a result, binding of the foreign domain to its SLiM can drive
substrate phosphorylation and block the growth arrest signal in a manner that reflects their
interaction strength.

In the basic procedure, yeast cells contain two constructs. One encodes the foreign domain
fused to CIn2, expressed from a galactose-inducible promoter. The other encodes the signaling
protein that hosts the SLiM sequence to be tested; this protein is a chimeric signaling molecule,
Ste205PM that can be inhibited by CDK phosphorylation and can tolerate the insertion of
peptide sequences [20, 50]. To monitor the effects of SLiM binding, expression of the domain-
CIn2 fusion is induced, and then pheromone is added to activate the growth arrest pathway.
There are two options for a quantitative readout. The first uses low-throughput assays of
signaling, involving either transcriptional reporters or western blots that detect phosphorylation
of a MAPK in the arrest signaling pathway, to quickly test small numbers of domain-peptide
pairs. The second uses high-throughput assays, involving competitive growth of mixed cell
populations, to screen libraries containing thousands of different SLiM sequences (Fig 1D).
Here, stronger SLiM binding confers faster growth [20], and deep sequencing is used to analyze
the rates of enrichment or depletion for all SLiMs in the population (Fig 1E), which are then
converted to scores of relative binding strength (see Methods). It is worth emphasizing that,
while our findings below and in subsequent sections indicate that in vivo strength correlates with
binding affinity, the in vivo scores cannot be converted directly to a biophysical parameter (such
as Kp).
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Modular SIMBA components permit the study of diverse domains and peptides

A broadly applicable assay for peptide binding must have sufficient modularity to accommodate
a diverse range of domain-peptide pairs. Initial tests using low-throughput assays showed that
several distinct classes of SLiM-binding domain could be analyzed by the SIMBA method. We
tested 6 SLiM-binding domains of 4 distinct structural types (Fig 2A, top), each of which was
fused to the N-terminus of the yeast cyclin CIn2: an SH3 domain from the yeast protein Abp1
[53]; an Ankyrin Repeat Cluster (ARC) domain from human Tankyrase 2 (TNKS2R%) [54]; two
WW domains from human YAP1 and NEDD4 [55, 56]; and two SWIB domains from human
MDM2 and MDM4 [57, 58]. These domains were chosen because each had multiple known
binding peptides with a range of affinities. Binding of these domains to their cognate SLiMs was
readily detected by virtue of enabling the hybrid cyclin-CDK complex to block yeast pheromone
signaling, as measured by MAPK phosphorylation or induction of a transcriptional reporter. For
example, tests using the TNKS2*R%* domain illustrated several key features (Figs 2B, S1A-C).
First, the TNKS2*R* domain did not perturb the ability of CIn2 to recognize its own docking site
(“LP_Ste5”), which provides a useful control for functionality of the fusion protein as well as an
internal standard for binding strength. Second, the TNKS2*R®* domain imparted the ability to
inhibit signaling proteins containing its cognate SLiMs, which were not inhibited by CIn2 alone.
Third, the magnitude of inhibition conferred by each SLiM peptide in vivo reflected their binding
affinities measured previously in vitro. Fourth, the foreign SLiMs did not affect the levels of the
recipient substrate protein but they did alter its electrophoretic mobility in cells expressing the
TNKS24R%_CIn2 fusion (Fig 2B), consistent with inhibitory phosphorylation by the hybrid cyclin-
CDK complex. Analogous results were obtained with the 5 other SLiM binding domains (Fig
S1D-F), which are summarized in Fig 2A (bottom). Altogether, these results validate the utility of
SIMBA as a modular and generalizable approach for detecting foreign domain-SLiM interactions
and assessing their relative binding strengths.

The tests above showed that the SIMBA system can distinguish interactions with Kp’s in the 5-
100 uM range but starts to saturate for stronger affinities. To increase resolving power for these
stronger interactions, we reduced the levels of the domain-cyclin fusion protein by using a
weaker promoter to drive its expression. Specifically, we replaced the strong galactose-inducible
promoter (PcaL1) with weakened versions, PeaiL and Peacs (Fig S1G). Indeed, interaction
strengths of peptides that bind the MDM2%"'® domain with affinities in the 0.05-5 yM range were
resolved better when the domain-CIn2 fusion was expressed from the weaker Pea.L promoter
rather than the full-strength Pga 1 promoter (Fig 2C). Thus, simple adjustments of the system’s
sensitivity can permit resolution of affinities spanning roughly three orders of magnitude (Ko =
0.05-100 pM). In the following sections, we will present the results from high-throughput
experiments that validate the utility of the SIMBA approach for screening large numbers of
domain-peptide pairs as well as for revealing unforeseen determinants of binding strength and
specificity.

SIMBA allows comprehensive screening of binding strength and preferences in vivo

To confirm that the functional strength in vivo reflects biochemical binding affinity, we
established a test case involving the TNKS24R®* domain. We chose this domain because its
binding affinity had been measured in vitro for almost 200 SLiM peptides, including a set of all
152 single-site substitutions in an 8-residue peptide (RSPPDGQS) derived from human 3BP2
[54]. Thus, we used SIMBA to measure binding strengths for this same set of single-site variants
(Fig 3A), and then compared the results from our in vivo assay to those from the prior in vitro
measurements. This comparison revealed a good agreement for the full set of 153 variants (i.e.,
WT plus 152 mutants) (Figs 3B-C). Moreover, the SIMBA results recapitulated the distinct
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categories of selectivity at individual peptide positions that were previously seen in vitro (Figs
3C, S2A); examples include an exclusive requirement for Arg at p1, broad tolerance with a
continuum of binding strengths at p2, and unique intolerance for a Pro residue at p7. We also
mutagenized two extra residues on either side of the 8-residue motif (i.e., p-2, p-1, p9, and p10)
and confirmed that these flanking regions have minimal influence on binding (Figs 3A-B).

Because all peptide-encoding plasmids are pooled together and assayed simultaneously during
the competitive growth, it is minimal extra work to increase the number of peptides tested by
several fold. Therefore, we performed DMS on five other parent peptides concurrently with the
3BP2 peptide (Fig S2B-C), each of which had been assayed individually in vitro [54]. These
peptides included 3 native sequences from other proteins (NUMA1, MCL1, AXIN1), a previously
defined variant with optimum residues at each position (RPGopt), and a weakened version of
the 3BP2 peptide with a Glu substitution at p5 (3BP2-E5). In total, binding was measured in
parallel for 1374 total peptides. The sequence preferences averaged across 5 motifs (excluding
the 3BP2-E5 mutant) resembled that obtained from the 3BP2 motif alone (Fig 3B), although we
observed context-specific features that will be described below. None of the peptides showed
strong preferences at positions flanking the core 8-residue motif (Fig S2C). For the AXIN1
peptide, binding affinities were measured previously for Ala mutations at 9 positions (p-1 to p8)
[54]; as we found with the 3BP2 variants, these AXIN1 mutations affected binding strength
similarly in vivo and in vitro (Fig 3D). The score distributions from the 6 parent peptides reflected
their expected binding strengths. Namely, those with stronger affinities (Fig S2B) gave broader
variant score distributions and larger (in absolute value) negative scores (Fig S2D), indicating
that the wild-type peptide is further from non-functional. Also, as described previously [20],
stronger peptides more closely approach the maximum possible score achieved by mutants
containing termination codons (Fig S2D, red), which have the greatest selective advantage
because they eliminate the protein that mediates the growth arrest signal. When the parent
peptide scores were normalized to these maxima, their in vivo strengths correlated with their
previously measured affinities (r = 0.93) (Fig 3E). Thus, the good agreement between in vivo
and in vitro binding strengths is observed when testing either mutant variants of individual
peptides or groups of distinct parent peptides.

Finally, we asked if the SIMBA results might be influenced by the regional polypeptide context in
which the SLiM peptide was embedded, by comparing results of inserting them at two distinct
locations in the recipient protein — either on the N-terminal or C-terminal side of the
phosphorylated region (Fig 3F). The results in the two location contexts were strongly correlated
(Figs 3G, 3I, S2E). Therefore, the peptide motifs are functionally autonomous, with binding
specificities that are independent of the surrounding polypeptide context. We also compared
results when expressing the TNKS2*R%* fusion protein from the full-strength (PsaL1) versus a
weakened (PgaLs) promoter (Fig S2A), and we found robust agreement (Figs 3H-1, S2F-G).
Even with the full-strength promoter, strong peptides that were indistinguishable in low-
throughput transcription or MAPK phosphorylation assays, such as 3BP2 (5 uM) and RPGopt
(0.6 uM) (see Figs 2B, S1A), showed resolved binding strengths in the competitive growth
assay (Figs 3E, S2D), and both reductions and increases in binding strength were detectable for
mutant variants of each peptide (Fig S2C-D). Thus, sub-micromolar affinities of peptides do not
preclude discovery of their binding determinants. We speculate that the resolution of strong
binders is improved in the growth assay because the longer timespan of the experiment allows
small differences to be reinforced and compounded. Collectively, our findings show that SIMBA
can serve as an accurate gauge of relative biochemical affinity, that it reveals the same motif
sequence preferences as would be observed in vitro with purified components, and that these
preferences are independent of the host protein context of the SLiM or the expression level of
its partner domain.
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Local context effects revealed by comparing multiple parent peptides

As mentioned earlier, we performed DMS for multiple TNKS24R®binding peptides. When their
residue preferences were grouped by position, it became evident that some parent peptides had
strikingly different preferences at p4 (Fig 4A-B). Namely, for three peptides (3BP2, RPGopt, and
NUMAA1), Pro and Gly were equally the most favored residues at p4 (Fig 4C), in agreement with
the previous in vitro results using the 3BP2 peptide [54]. In contrast, for the peptides from MCL1
and AXIN1, Gly was among the most disfavored residues at p4 (Fig 4C). These two peptides
also showed a unique preference for Pro at p2 (Fig 4A), and both are inherently Pro-rich (Fig
4B), suggesting that they might be predisposed to form a type Il polyproline helix (PPII helix).
This left-handed structure possesses a restricted conformational flexibility that can reduce the
entropic cost of binding [59, 60], and hence we hypothesize that this energetic benefit is
disrupted when a Gly residue is introduced. In support of this interpretation, the main-chain
trajectories for all peptides co-crystallized with TNKS2%¢4 show nearly identical left-handed
topology from p1 through p5 [54], compatible with a PPII helix (Fig 4D-E).

Another notable context effect at p4 was the unusual preference for Val or lle in the AXIN1
peptide (Fig 4A). Because Val at p4 had been observed to be disfavored in the 3BP2 context
[54], it was assumed that the same would be true in the AXIN1 context; hence, to explain strong
binding by the AXIN1 peptide, it was hypothesized that the negative impact of Val at p4 was
offset by the presence of a favored Glu residue at p8 [54]. Surprisingly, however, our
experiments revealed that Val at p4 is not suboptimal in the AXIN1 context and instead it is one
of the two most favored residues (Fig 4A). Conceivably, because p4 in AXIN1 is flanked on both
sides by Pro residues, Val or lle might maintain the predisposition toward PPII structure while
improving packing against the hydrophobic p4-binding pocket in TNKS2R%4_ Similarly, the native
residues at p5 for MCL1 (lle) and AXIN1 (Pro) are not as disfavored in each of these parent
peptides as they are in the 3BP2 peptide context, and instead they are favored as strongly as
the more-common Asp residue (Fig 4A). In contrast to these context-dependent differences, it is
noteworthy that the requirement for Gly at p6 and the severe intolerance for Pro at p7 were
observed in all parent peptides (Fig S2C). Collectively, our findings illustrate the informative
value of performing DMS analysis on multiple parent peptides, as it can reveal context-
dependent preferences that would not be suspected from analysis of any single peptide motif.
Such benefits emerge readily from the SIMBA methodology due to its ability to analyze
thousands of peptide sequences simultaneously.

Defining SLiM recognition rules for the SWIB domain from human MDM2

As an additional test case, we used SIMBA to characterize the sequence preferences of the
MDM2%VB domain, which drives ubiquitin-mediated degradation of the tumor suppressor p53
and is a target of anticancer compounds designed to block its peptide-binding pocket [61, 62].
We performed DMS on two human MDM25V'® binding peptides, one from p53 and another from
NUMB, that have a shared core motif (FxxxWxxL) but different affinities (Fig S1E). The SIMBA
results revealed similar preference patterns for both peptides (Fig 5A), including strong
selectivity for hydrophobic residues at the three core positions p5, p9, and p12
(FxxxWxx[LIVMF]) that engage a deep hydrophobic cleft in the MDM25V'® domain [57, 63].
Additional preferences were evident at the non-core positions, most obviously for bulky aromatic
or nonpolar residues at p8. There was a clear difference in the optimization of the two peptides,
as binding to the NUMB peptide could be strengthened by numerous mutations (Fig 5B),
particularly by replacing suboptimal residues with preferred residues at several non-core
positions (p4, p8, p13, p15) (Fig 5A). In contrast, the p53 peptide contains preferred residues at
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p4 and p8, providing a potential explanation for why, despite identical core motifs, the binding
affinity of the p53 peptide is roughly ten-fold stronger than that of the NUMB peptide (Fig S1E)
[33]. The data also revealed strong negative preferences that likely relate to peptide
conformation rather than binding contacts between the peptide and domain. Namely, in both
peptides, Pro and Gly were largely disfavored from p7 to p13, consistent with their propensity to
disrupt the a-helical conformation of the bound peptide [57, 63]. Interestingly, p6 tolerates Pro,
despite being within the a-helical region. At p13, which immediately follows the core motif, Pro
was the most disfavored residue in both peptides (Fig 5A). This is notable given that Pro is the
wild-type residue at this position in the p53 peptide, and its replacement with Ala strengthens
p53 binding affinity in vitro [15, 64, 65]. In the NUMB peptide, a Pro mutation at p13 results in a
severe loss of MDM2%"'® binding, emphasizing that the context of the starting peptide influences
its robustness to mutation.

The effect on MDM25V® binding affinity has been measured for alanine substitutions at 12
positions along the p53 peptide [65]. A comparison of these affinities with their corresponding
SIMBA scores showed excellent agreement (r = 0.91) over a range of 3-4 orders of magnitude
in Kp (Fig 5C), giving further confirmation that SIMBA provides an accurate measure of relative
binding strength. Compared to alanine scanning, DMS data provide a more nuanced definition
of how binding is dictated by sequence. In particular, we observed that non-core positions can
substantially modulate binding strength (Fig 5D), but this effect can be overlooked by Ala-
scanning for two reasons: (i) the effect of Ala is often more neutral compared to other residues;
and (ii) the effect of Ala depends on the favorability of the wild-type residue being replaced (e.g.,
Ala at p8 is more disruptive in p53 than in NUMB because the wild-type residue is more
favorable in p53 [Leu] than in NUMB [GIn]). The range of residue tolerance at each position, as
revealed by these DMS measurements, can be summarized using the Gini coefficient as a
measure of inequality (Fig 5E). It shows a pattern that is largely similar for both the p53 and
NUMB peptides and is also consistent with a pattern of "not permitted" substitutions (defined as
> 3-fold change in ICs) observed in previous mutagenic scanning of an optimized MDM2-
binding peptide [66]. Finally, a comparison to previous phage display data for the MDM25V®
domain [33] (Fig 5A, bottom) similarly illustrates how SIMBA results can provide more refined
discrimination between the degrees of preference at distinct positions, as well as information
about substitutions that result in the loss of binding (which is absent in phage display results).
Altogether, these analyses of MDM2°"® binding preferences reinforce the utility of the SIMBA
method for providing accurate, high-resolution definitions of motif binding determinants and for
understanding the sequence basis for differences in peptide binding strength.

Specificity determinants and context effects in WW domain-binding peptides

To further explore how SIMBA methodology could be used to interrogate SLiM preferences and
context dependence, we studied two different WW domains that bind peptides with a common
core motif, [LP]PxY, or "PY peptides". We chose the first WW domain from human YAP
(YAP"W") and the third WW domain from human NEDD4 (NEDD4"“"*?), to allow comparison with
prior information about their peptide ligands, binding affinities, and structural details of peptide-
domain contacts [55, 56, 67-73]. Notably, statistical analyses of peptides captured by these two
domains in phage-display experiments suggested there were correlations between residue
preferences at different positions in the peptide [74]. That is, the most favored residue at a given
peptide position might depend on the identity of residues at other positions. We sought to
conduct direct empirical tests of such contingent preferences by performing DMS on multiple
parental peptides that differ in their starting sequence context.
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Initial tests using low-throughput SIMBA assays and a small number of peptides (Fig S1F)
confirmed that WW domain binding was readily detected for higher-affinity peptides (Kp ~ 2-7
MM) and was weak or undetectable for lower-affinity peptides (Ko ~ 50-180 uM). For subsequent
high-throughput assays and DMS, we chose 22 parental peptides from three categories (Fig
S3A): (i) 15 natural peptides reported to bind one or both WW domains; (ii) 3 mutationally-
optimized peptides (UGR2, UGR1, UGR1-LYG) that bind the NEDD4""* domain with strong,
sub-micromolar affinity; and (iii) 4 peptides representing the consensus sequences of possible
motif sub-classes (PYcon1-4) that were suggested by the statistical analyses noted above [74].
We used the competitive growth assay to test binding of these 22 parental peptides to each WW
domain (Fig 6A-B). To compare their binding strengths against each other (rather than
comparing mutant variants with a single wild-type sequence), we calculated z-scores that
express the magnitude of enrichment of all peptides relative to a set of “nonbinder” control
sequences (see Methods). The two domain fusions showed similar scores for the control CIn2-
binding motifs (LP peptides) (Fig 6A), which provide internal standards for their binding
capacities. Peptides derived from viral capsid proteins were weak binders (Fig 6B), consistent
with prior in vitro data (Fig S3A). Many of the other peptides were recognized by both WW
domains, but the rank order of binding strength was clearly distinct for the two domains, and
some peptides showed striking specificity for one domain over the other (Figs 6A-B). Of note,
those with the strongest specificity for YAPYW' have a Pro residue immediately following the
core Tyr residue (Fig 6B). From here forward, we will refer to this core Tyr position as p0 and
denote other positions by their distance before (p-2, p-1, etc.) or after (p+1, p+2, etc.).

For DMS, we mutagenized twelve of these parental peptides at 12 positions each, including the
core motif plus flanking residues on both sides (Fig S3B). Collectively, these experiments
assayed binding of each WW domain to 2748 peptide sequences. The averaged sequence
preferences from all parent peptides (Fig 6C) matched the expected pattern at the core
positions (i.e., [LP]PxY), while also suggesting milder preferences at surrounding positions.
However, these averages obscured distinct context-dependent patterns that became evident
when the preferences were grouped by position (Fig 6D). Especially striking was a bifurcation of
YAPYW'_binding peptides into two classes, which we designated as types 1 and 2 (Fig 6E), that
show distinct requirements at p-3: type 1 tolerates either Leu or Pro at p-3, whereas type 2
strongly favors Pro over Leu. Type 2 motifs also showed a unique preference for Pro at non-
core positions p-4, p-1 and p+1 (Fig 6D-E). Because the parental type 2 peptides are especially
Pro-rich (Fig 6F), their partiality toward Pro suggests a hypothesis similar to the one raised
earlier for TNKS2R% peptides. Namely, the type 2 sequences are likely predisposed to form a
PPII conformation that is adopted by peptides in the bound state [68, 71-73, 75], which reduces
the entropic cost of binding, and hence substitutions that disrupt this PPIl propensity are
disfavored.

On the C-terminal side of the core motif, type 1 peptides preferred acidic residues at p+2 as well
as nonpolar residues at p+3 and p+4 (Fig 6D). These preferences fit with prior structural studies
that identified contacts between C-terminal non-polar residues and a hydrophobic pocket on the
NEDD4""3 domain (near the Tyr-binding pocket) [68, 71, 72, 76]. In such cases, a right-handed
helical turn immediately following the pO Tyr allows a nonpolar side chain at p+3 or p+4 to
occupy the hydrophobic pocket (Figs 6G, S3C), and acidic side chains at p+2 can stabilize the
helix by making intrapeptide hydrogen bonds back toward p-1. Similar C-terminal preferences
were strikingly absent in type 2 peptides (Fig 6D-E), perhaps because the Pro at p+1 might
prevent the helical turn and/or occupy the hydrophobic pocket itself, as seen in the complex of
YAPYW with the Lats_PY2 peptide [73] (Fig S3C). Indeed, for YAP"W'!  Pro was the most
favored p+1 residue in type 2 peptides but the least favored in type 1 peptides (Fig 6D). For
type 1 peptides, YAP"W' and NEDD4"*? showed subtle differences in their favored nonpolar
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residues at p+3 (Fig 6D). Specifically, YAP"W' showed a notable tolerance for the aromatic
residue Trp whereas NEDD4""? generally preferred aliphatic residues (I/L/V/A/C), perhaps
reflecting differing composition of their hydrophobic pockets. The inclusion of Cys with these
nonpolar residues is consistent with prior findings that it interacts favorably with hydrophobic
membrane or protein environments [77-79], and that it ranks as nonpolar in several
hydrophobicity scales [80].

Contingent preferences implicate contributions from intrapeptide interactions

We also noticed that preferences at p-1 were influenced by peptide context (Fig 6D). For
example, the most favored p-1 residues in several peptides were Ser or Thr while in other
peptides they were Asp or Ala. Furthermore, in the Smad7 context there was an unusual
preference for aliphatic residues (I/L/V). We reasoned that these preferences might be
influenced by the C-terminal flanking sequence (C-flank), because peptides that adopt a C-
terminal helical turn can form intrapeptide interactions in which the p+2 side chain projects back
toward p-1 (Figs 6G, S3C) [68, 70, 72], and the Smad7 peptide adopts an atypical hairpin-like
conformation that places the Pro residue at p+4 near p-1 (Fig S3C) [67]. To address this
possibility, we appended seven different C-flank sequences to the core motifs from three
parental type 1 peptides, and then tested the p-1 preferences for all 21 combinations (Fig 7A).
Although a few of these hybrid peptides bound YAP"W! too weakly to be informative, the
majority indicated that the C-flanks had clear effects on p-1 preferences of both WW domains.
Namely, with some exceptions, the general trends were that two of the C-flanks (PYcon3,
aENaC) imposed a p-1 preference for Asp, four others (Comm, AmotPY1, ARRDC3, UGR2)
imposed a preference for Ser or Thr, and one (Smad7) imposed a distinct preference for Pro.
Notably, the C-flanks that imposed the Asp preference at p-1 have a Thr residue at p+2,
whereas those that imposed the Ser/Thr preference have a Glu residue at p+2 (Fig 7A). In light
of the aforementioned intrapeptide interactions between p+2 and p-1 seen in some structures,
we tested if changing the residue identity at either position altered preferences at the other (Fig
7B). Although the effects were not as strongly determinative as when entire C-flanks were
swapped, we found that the identity of the p+2 residue did alter the rank of p-1 preferences in
several motif contexts (Fig 7B, left). Namely, for three type 1 motifs (UGR2, aENaC, PYcon3),
the presence of Thr rather than Glu at p+2 led to an increased preference at p-1 for Asp rather
than Ser/Thr. In contrast, in the type 2 motif from Smad7, the p+2 residue had little effect on its
unusual p-1 preferences. In reciprocal tests (Fig 7B, right), the identity of the p-1 residue
influenced p+2 preferences modestly for two motifs (ARRDC3, Comm), in which the presence of
Asp rather than Ser at p-1 led to an increased preference for Thr at p+2. Such influences were
more variable for the aENaC motif and absent for the strong UGR2 motif. Collectively, our
observations reveal pair-wise contingent preferences between two positions (p-1 and p+2) that
are further influenced by the surrounding context. Because p-1 and p+2 residues remain solvent
accessible in type 1 peptides (Fig S3D), rather than buried as part of the peptide-domain
interface, their coordinated effects on binding likely signify a role in intrapeptide interactions that
stabilize the bound conformation.

Curiously, type 1 peptides showed a substantial preference for Trp at p+1 (Fig 7D-E), a position
that normally faces away from the WW domain in peptides with the C-terminal helical turn (Fig
6G). We considered the possibility that a Trp at p+1 provides an alternative way to favorably
occupy the hydrophobic pocket, which could thereby preclude the role for nonpolar residues in
the C-terminal helix. However, replacing p+1 with Trp did not alter the preferences for nonpolar
residues at p+3 or p+4 displayed by NEDD4"*3, or those at p+4 displayed by YAP"W! although
it did noticeably shift the p+3 preferences shown by YAPYW! (Fig 7C). These results suggest
that the contributions to binding strength conferred by Trp at p+1 and nonpolar residues at
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p+3/p+4 are additive, not competitive. This finding favors an alternative explanation in which the
p+1 Trp helps stabilize the type 1 C-terminal helix, perhaps via an aromatic-aromatic interaction
[81] with the adjacent pO Tyr. Indeed, structural predictions using AlphaFold [82] suggest that
these Trp side chains lie next to the Tyr in a perpendicular geometry (Fig 7D) that is common for
aromatic-aromatic interactions [81]. Altogether, our interrogations of context-dependent
preferences reveal that different peptide conformations and domain pocket characteristics can
contribute to a remarkable variety of subtly distinct binding modes that are not adequately
described by average preferences or those of any singular motif.

Preferences at non-core positions influence predictions of binding strength

Consensus sequences describe the minimal required features of binding motifs, but due to their
relatively low complexity there can be multitudes of matching sequences that are not easily
distinguishable. For the consensus sequence [LP]PxY, there are 1730 matches in the
intrinsically disordered regions of the human proteome. To rank their potential for binding the
YAPYW! or NEDD4"'? domains, we used the comprehensive SIMBA data to derive position-
specific scoring matrices (PSSMs) that quantitatively weight the preference for every possible
residue at each position in the extended motif. Then, these PSSM values were summed over
the length of the motif for each of the 1730 human sequences. This process was performed
separately for each WW domain and using PSSMs derived from all motifs combined versus
from only type 1 or only type 2 motifs. Each PSSM dispersed the 1730 matches into a broad
distribution (Fig 8, "hits"), which is primarily due to variation at non-core positions, as the core
consensus describes only 2 distinct sequences (i.e., LPxY and PPxY). For comparison, we also
calculated PSSM sums for the parental motifs that had been tested in SIMBA experiments (Fig
8, "tested"). The strong binders among these tested motifs were generally in the top quartile of
PSSM sum distributions. Interestingly, for YAPYW! the type 1 PSSM gave very high scores for
the strong type 1 motifs but low scores for the strong type 2 motifs, whereas the type 2 PSSM
gave the reverse pattern. These type-specific results predict that only sequences yielding PSSM
sums within the top 10% of the distribution would show binding strengths comparable to those
tested in our experiments. For NEDD4""3, the different PSSMs all gave high scores to the
strongest binders, yet we again observed that some of the type 1 motifs were underestimated
by the type 2 PSSM and vice-versa (Fig 8, “tested”). Overall, these results illustrate that
quantitative PSSMs derived from SIMBA data can help distinguish strong binders from bulk
consensus matches, and they also emphasize the importance of using PSSMs specific for each
distinct binding mode to achieve the best assessment of candidate sequences. By extension,
without prior knowledge of distinct binding modes, evidence for their existence could emerge
from disagreements between observed binding strengths and predictions that are based on a
single PSSM.

DISCUSSION

In this study we have described and validated a new method, SIMBA, for performing systematic
and quantitative analyses of SLiM-mediated binding to multiple distinct domains. This
comprehensive and quantitative analysis provides a fast, easy, and low-cost alternative to
traditional biochemical assays of protein-peptide binding. The power of the approach lies in its
ability to rapidly quantify the binding strength of thousands of variant motifs in parallel and
thereby reveal the specificity determinants for the queried domain. Further advantages include
that it monitors binding in an in vivo setting, it can discern variations in binding strength over a
broad range, and it is amenable to both low-throughput and high-throughput assays.
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Previous studies on docking peptides for cyclins and MAPKSs provide precedents that
competitive growth assays in yeast can be used for fine-scale measurement of peptide binding
strength [20, 46]. SIMBA now generalizes these strategies in a way that can be applied to a
broad range of different types of domains and peptides, without depending on their normal
biological functions. We envision that this method will be of primary utility in two categories of
investigation. The first is to define the sequence determinants of SLiM binding strength and
specificity for a given domain or group of related domains. The second is to compare the
relative binding strengths of large sets of candidate SLiM peptides. Such candidates might
emerge from other screens (e.g., phage display hits) or they might be potential binding peptides
identified in the proteome as matches to an existing “consensus” sequence for a specific
domain. In either case, SIMBA allows dozens to thousands of such candidates to be analyzed
quickly and easily.

SIMBA provides a valuable complement, though not a substitute, to other methods for
determining biochemical affinity. Its measurements of binding strengths are relative rather than
absolute. For many purposes, such as for defining the sequence preferences of SLiM-binding
domains, this relative binding information of mutant variants is sufficient, and it is not necessary
to know the affinity of the wild-type motif. In cases where there are pre-existing measurements
of Ko values for some peptides that bind a given domain, their inclusion in SIMBA experiments
allows them to serve as benchmarks against which to compare the many other peptides being
tested.

The findings in test cases described here clearly demonstrate how systematic analyses of SLiM
sequence requirements can illuminate unanticipated complexities in binding determinants even
for well-studied examples such as TNKS24R%* YAPYW! and NEDD4""3, Although we had
primarily expected to confirm previously defined binding rules for these domains, in each case
we also obtained evidence for different binding modes and contingent relationships between
different motif positions that could not have been predicted based on prior knowledge. These
observations illustrate the intrinsic discovery potential of the SIMBA approach that emerges
readily from its ease of performing massively parallel analyses. Namely, gathering empirical
binding results for large numbers of domain-peptide pairs can provide unexpected insights that
would be missed in more limited analyses (e.g., those focusing on singular peptide contexts).

The SIMBA method is fundamentally a variation of the classic yeast two-hybrid system [83, 84],
except the interaction being tested controls a phosphorylation reaction rather than transcription.
In principle, either method could be used to investigate SLiM binding determinants, and the
most crucial advances for large-scale interrogation arise from the combination of competitive
growth and deep sequencing to allow massively parallel analyses. Nevertheless, SIMBA offers
several additional benefits that are notable. (i) It can detect weak binding in the 1-100 uM range
that includes many physiologically relevant SLiM interactions [3]. (ii) The interaction controls
multisite substrate phosphorylation that yields a continuum of regulatory strength [52], which
makes it sensitive to binding strength over a broad range. (iii) The phosphorylation reaction in
vivo is dynamic and rapidly reversible [85], which can help ensure that the measured output
reflects binding at equilibrium. (iv) Because the fused cyclin (CIn2) can still recognize its own
docking site, it provides an internal standard against which to compare the strength of binding
mediated by the fused domain. (v) The effects of the SLiM interaction are under acute control,
as they require induced expression of the cyclin fusion and an external stimulus, and hence
there is no chronic selection pressure to skew population distributions before the experiment
begins. (vi) It allows adjustments in the required binding strength (by using different strength
promoters) so that multiple affinity ranges can be monitored.
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Because SIMBA monitors enrichment or depletion of all sequences in the tested population, the
quality of data is similar for both functional and nonfunctional motifs. This aspect is a notable
contrast to capture-based approaches, such as phage display, that provide only indirect
inferences about any sequences that were not captured. Dependable quantification of a broad
range of binding strengths, from strong binders to non-binding sequences, as well as
identification of prohibited residue substitutions, will be of great value in developing accurate
ranking and filtering criteria for future efforts at in silico prediction of binding motifs. High quality,
comprehensive binding data should also be useful for structural modeling and for predicting
pathogenic impacts of sequence variants. For example, quantitative data from large numbers of
peptides, including abundant examples of non-binders, can provide training information to
improve computational predictions of protein complexes and their binding affinities [86-88].
Separately, they can provide empirical tests of binding effects of cancer-associated mutations in
the COSMIC database [89] and improve the confidence in pathogenicity predictions generated
by AlphaMissense [90], especially for variants in disordered regions of proteins that lack the
structural features used as a main input of that algorithm.

Finally, in addition to providing mechanistic insights into binding specificity, SIMBA could also
accelerate development of useful tools for basic biochemical research or synthetic biology. For
example, the ability to rapidly identify variant peptides with distinct binding strengths could allow
the design of degron tags, enzyme docking sites, or localization anchors whose effects on
recipient target proteins can be finely tuned over a broad range. Separately, SIMBA approaches
could also assist with identifying competitive peptide inhibitors of SLiM-binding domains. Such
peptide inhibitors could serve as drug proxies or guides for peptidomimetic compounds [91] and
could also be used to pre-screen the effects of target inhibition in human cell lines [92]. In
applications currently underway, we have already applied the SIMBA method to over thirty other
SLiM-binding domains, and we have extended the approach to include unbiased screens for
discovery of new binding motifs. Thus, we expect that SIMBA, due to its ability to systematically
define SLiM recognition rules and functional potency en masse in vivo, will be a versatile tool for
numerous areas of future investigation.
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EXPERIMENTAL PROCEDURES
Yeast Strains and Growth Conditions

Standard procedures were used for growth and genetic manipulations of yeast [93, 94]. Unless
indicated otherwise, cells were grown at 30°C in yeast extract/peptone medium with 2% glucose
(YPD), or in synthetic complete medium (SC) lacking histidine and/or uracil with 2% glucose or
raffinose. Yeast strains and plasmids are listed in Tables S1 and S2, respectively. To construct
plasmids encoding fusions of CIn2 to foreign SLiM-binding domains, the domain sequences
were amplified by PCR or obtained as synthesized gene fragments, and then they were inserted
as BamHI-Xmal fragments between the GST and CLN2 sequences of a Pga1-GST-CLN2
construct [50]. All such constructs used for competitive growth assays harbored a full-length
CLN2 fragment (residues 1-545), whereas many initial constructs used for low-throughput
signaling assays contained a truncated fragment (residues 1-372). Related constructs harbored
weakened promoters [95] called Pgacs (-415 to -5) and PgaLL (-431 to -5), which were amplified
by PCR and inserted in place of the full-strength promoter PgaL1 (-675 to -5). We note that the
expression levels were reproducibly greater with Pgas than with PgaLL, which is the reverse of
the rank strength reported previously [96]. Strains used for competitive growth assays were
constructed by integrating Peca.-GST-domain-CLN2 constructs into the genome at the HIS3
locus of strain PPY2617; PCR was used to confirm single copy integration. These strains were
transformed with plasmids that encode derivatives of a chimeric signaling protein, Ste205'*5PM,
that harbor different SLiMs [20].

Signaling Assays

For low-throughput assays of SLiM binding, we used methods similar to those described
previously [20, 50] to monitor the ability of domain-CIn2 fusion constructs to inhibit pheromone
signaling, either by using a transcriptional reporter (FUS1-lacZ) or by immunoblotting for
phosphorylated MAPK (Fus3). Plasmids encoding Ste20%'**™™ chimeras with various SLiMs
were either (i) co-transformed with a domain-CIn2 fusion plasmid into a STE5-8A ste20A strain
(PPY2617); or (ii) transformed into a similar strain containing an integrated copy of a relevant
domain-CIn2 fusion plasmid. Measurement of FUS7-lacZ transcriptional induction and MAPK
activation followed methods described previously [20, 97]. Cell cultures were grown to
exponential phase in SC liquid medium containing 2% raffinose and lacking histidine and/or
uracil. Cyclin expression was induced by adding 2% galactose for 90 minutes. For FUS1-lacZ
assays, cells were treated with pheromone (50 nM) for 45 min, and -galactosidase activity was
measured as described previously [97]. To assay MAPK activation, cells were treated with
pheromone (50 nM) for 15 min, whole cell lysates were prepared as described previously [98],
and then proteins were resolved by SDS—-PAGE and transferred to PVDF membranes
(Immobilon-P; Millipore). Primary antibodies used include mouse anti-phospho-p44/42 (1:1000,
Cell Signaling Technology #9101), rabbit anti-phospho-p44/42 (1:5000, Cell Signaling
Technology #4370), rabbit anti-myc (1:200, Santa Cruz Biotechnologies #sc-789), and rabbit
anti-G6PDH (1:100000, Sigma #A9521). Horseradish peroxidase-conjugated secondary
antibody was goat anti-rabbit (1:3000, Jackson ImmunoResearch #111-035-144). Enhanced
chemilluminescent detection used a BioRad Clarity substrate (#170-5060). Densitometry was
performed using ImageJ software. Quantified measurements of signaling outputs using either
assay are plotted relative to samples in which a control peptide (SNGNGSGSNGN) [20] is
present in the Ste205*°*" chimera. Fold inhibition is the difference in signal between the test
peptide and the control peptide, as a fraction of the control signal.

Library Construction and Competitive Growth Assays

15


https://doi.org/10.1101/2024.10.30.621084
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.10.30.621084; this version posted November 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

The construction of mutant libraries and the performance of bulk growth competition assays
were based on procedures described previously [20]. SLiM variants were tested in the context
of a chimeric Ste205*°"M signaling protein, in which the membrane-binding domain from Ste5
and its flanking CDK phosphorylation sites replace the native membrane-binding domain in
Ste20, and SLiMs are placed at either the N or C terminal side of the Ste5 fragment [20, 50].

To construct libraries of SLiM variants, SLiM-encoding sequences were amplified by PCR using
oligonucleotides as templates and primers that anneal to flanking linker sequences (Gly Gly Ser
Gly). The template oligonucleotides were designed such that single codons were randomized
(NNN) to generate all 64 nucleotide variants. All templates for a given motif were pooled in
equal amounts and then amplified by 10 or 12 PCR cycles (98° for 10 sec; 56° for 20 sec; 72°
for 6 sec) using different primer sets for insertion at the N-terminus
(ggagtgacgtcGGAGGTAGTGGT and ctcacgctagcTCCAGATCCACC) or the C-terminus
(actatacgcgtGGAGGTAGTGGT and tctttgcatgcTCCAGATCCACC). Column-purified PCR
products were digested with restriction enzymes (Aatll and Nhel for insertion at N terminus; Mlul
and Sphl for insertion at C terminus), treated with calf intestinal phosphatase, and then ligated
(16 hrs at 18°, then 10 min at 65°) into the appropriately digested vector (pPP4375 or pPP4745).
The ligation products were transformed into E. coli (XL-10 Gold Ultracompetent Cells;
Agilent/Agilent Technologies) and plated on LB+Amp plates. Colonies (exceeding the number of
variant sequences per library by > 10-fold) were harvested by adding LB+Amp liquid and gently
agitating with a glass rod spreader, and then plasmid DNA was prepared from the suspension of
pooled colonies. The isolated DNAs were checked by Sanger sequencing to verify that all four
nucleotides were comparably represented at each position in the randomized codon. To
construct plasmids with individual peptide motifs (e.g. wild type), the oligonucleotides used as
PCR templates were unique sequences without codon randomization, or for some early
constructions the insert fragments were obtained by annealing complementary oligonucleotides
as described previously [20].

For competitive growth assays, a solution with equimolar amounts of each individual codon
library was prepared. A mixture of control plasmids containing wild-type SLiMs plus unrelated
and random sequences was spiked into the solution (making up 1-2.5% of the total) to create
the final pool, which was transformed into yeast strains containing the relevant Pga.-domain-
CLN2 fusions. After the transformation procedure, the bulk of the transformation mixture was
split and plated onto two -URA plates, plus a diluted aliquot (1%) was plated onto a third -URA
plate. Colonies on the diluted plate were counted to ensure that the number of transformants
exceeded the number of mutant variants in the library by at least 10-fold. Colonies on the
concentrated plates were suspended in 10 mL of —URA/raffinose liquid medium, washed twice
with 20 mL -URA/raffinose, then diluted into 50 mL -URA/raffinose to yield a density of ~ 4 x 10°
cells/ml (ODsso ~ 0.3). These cultures were incubated in a shaking water bath for 4 hrs, then
diluted back to ODeso ~ 0.01 and incubated overnight for ~16 hrs. The cultures were diluted back
again (to ODeso ~ 0.6 in 50 mL), incubated for 1.5-2.5 hrs, and treated with 2% galactose for 75
min (in a volume of 70 mL) to induce cyclin expression. At this time (t = 0), an aliquot (~ 38 mL,
3 x 108 cells) was harvested, and the remaining culture was treated with pheromone (500 nM)
and returned to incubation. Cells were diluted with fresh medium (including galactose and
pheromone) after the first 8 hr and subsequently after every 12 hr to maintain an ODego below 1
(in a volume of 50 mL). Additional aliquots (~ 20 mL, 3 x 108 cells) were harvested at 8, 20, 32
and 44 hr. Harvested cells were collected by centrifugation (5 min., 3200 rpm, room temp),
washed with 10 mL sterile water, resuspended in 1 mL sterile water, and transferred to 1.5 mL
microcentrifuge tubes. These suspensions were centrifuged, the supernatants were aspirated,
and the pellets were frozen using liquid nitrogen and stored at -80°C.
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DNA Preparation and Deep Sequencing

Plasmids were isolated from yeast cell pellets following previously described methods [20, 99].
DNA was purified using the Zymo Research ZR Plasmid Miniprep Kit (#D4015). Frozen cell
pellets were thawed and suspended in 200 pl of solution P1 and treated with 7 yL Zymolyase
(0.2 units/uL; Zymo Research #E1005) at 37°C for 1.5 hr, with vortexing approximately every 20
mins to disperse clumps, before proceeding with the remaining steps. Samples of plasmid DNA
(4 pL) were subjected to PCR (17 cycles, 50 pL total volume) with primers that include standard
P5 and P7 sequences for binding to lllumina flow cells during next generation sequencing
(NGS). The forward primer included the P5 sequence, followed by an Illumina sequencing
primer binding site, a 6-nucleotide bar code, and an upstream plasmid-annealing sequence; the
reverse primer included a P7 sequence, followed by a 6-nucleotide i7-index sequence, an i7
sequencing primer binding site, and a downstream plasmid-annealing sequence. Aliquots (5 uL)
of the PCR products were run in 1 % agarose gels to confirm the presence of the desired
product. For any timepoint samples with low product yield, PCRs were repeated using Notl-
digested plasmid and/or increased PCR cycles (19-25). Gel band intensities were quantified by
densitometry (Imaged), and then equal amounts of products from all timepoints for a given strain
were pooled, purified using Zymo Spin | columns (Zymo Research #C1003-250), and eluted in
30 pL of 10 mM TRIS-HCI, pH 8. The concentration of the eluted products was measured using
NanoDrop spectrophotometry, and then equal amounts of samples from all strains were pooled,
gel-purified in triplicate from a 1% gel (NEB Monarch DNA Gel Extraction Kit #T1020L), eluted in
20 yL, and the triplicate eluates were combined. The final concentration was measured by Qubit
fluorometry and the product size distribution was verified by Fragment Analyzer (Agilent) before
being sent for lllumina-based NGS (paired-end sequencing, 150 bp) by a commercial vendor
(Novogene).

Sequencing Data Analysis

NGS data were de-multiplexed by strain and timepoint using bar code and index identifiers. To
compare mutant variants versus wild-type SLiM sequences, we used Enrich2 software [100] to
obtain read counts for all sequence variants. Then, we added 0.5 counts to any variants
depleted to 0 counts by the 32-hr timepoint (to prevent Enrich2 from ignoring fully-depleted
variants), and used Enrich2 to calculate fithess scores that describe the rate of change of
mutant variants compared to the wild-type sequence [20, 100]. All scores reported here were
calculated from 32-hr time courses.

To compare groups of sequences where there was no single wild-type reference standard, such
as when comparing multiple WW domain binding peptides to each other, we calculated their
enrichment relative to a set of non-binder control sequences. For this, we used 2FAST2Q [101],
a program in Python, to count the occurrence of sequences from all strains and timepoints,
converted each value to a frequency by dividing by the total counts, and normalized each
frequency relative to the starting (t=0) frequency. We calculated a raw score for each timepoint
as the log2 of the relative frequency divided by the time in hours (raw score = log2[relative
frequency]/time). For subsequent calculations we used the median raw score from all timepoints
for a given sequence. We defined a set of non-binder controls as all 236 missense variants of
the core Tyr codon in four [LP]PxY motifs, plus 9 other non-[LP]PxY sequences. Then, we
calculated z-scores as (X- p)/o, where X is the raw score of a test sequence, p is the mean raw
score of the non-binder set, and o is the standard deviation of the non-binder raw scores.
Hence, this z-score represents the number of standard deviations that a test sequence differs
from the mean of non-binders.
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To create logos of sequence preferences, we transformed Enrich2 scores or z-scores into a
preference metric that expresses the bias for each residue at a given motif position relative to
the set of all possible residues, following procedures described previously [20]. For DMS
analyses of wild-type motifs, the raw Enrich2 score for each amino acid variant was normalized
to the lowest ( = 0) and highest ( = 1) scores in a given motif array: (normalized score) = (raw
score — minimum) + (mean terminator score — minimum). Then, the normalized scores were
converted to a frequency metric by dividing each by the sum of all scores at the same position:
(frequency) = (normalized score) + (column sum). Finally, the frequency metric was converted to
a preference metric by subtracting 0.05, so that a neutral preference is represented by zero,
favored residues are positive, and disfavored residues are negative: (preference score) =
(frequency — 0.05). These preference scores were used to generate sequence logos via a web-
based tool (http://slim.icr.ac.uk/visualisation/index.html). For experiments that probe how
positional preferences in WW domain binding peptides are affected by altered peptide context
(such as swapping C-terminal flanking sequences), the calculated z-scores for all variants in the
control strain (unfused CIn2) were subtracted from the corresponding scores in the test strains
(WW-CIn2 fusion). These CIn2-subtracted z-scores for all non-terminator variants were
normalized separately for each position that was individually interrogated. Then, these
normalized scores were converted to frequency metrics, preference scores, and sequence
logos as described above. The plotted results exclude peptides for which the CIn2-subtracted z-
score was less than 1. To generate a preference logo from in vitro affinities of 3BP2 variants, we
first calculated the inverse of published Kp values [54], assigned an inverse value of zero to
variants with unquantifiable Kp's, and then used these inverse values to calculate frequency and
preference metrics as described above.

PSSMs for scoring matches to the [LP]PxY consensus sequence were derived as follows. First,
as described above, normalized scores were calculated for each WW-binding motif. These
values were then transformed to a difference PSSM [20] by subtracting the average of all
residues at a given position from the value of each residue at that position: (difference score) =
(residue score) — (position average). Then, the difference scores were averaged for subsets of
motifs, as listed in Figure 6D: all motifs (sequences 0-9 for NEDD4""*® or 1-8 for YAP"W1), type
1 motifs (sequences 1-8 for NEDD4"3 or 1-4 for YAPYW"), and type 2 motifs (sequences 9 and
0 for NEDD4""*? or 5-8 for YAP"W). Finally, to give identical boundaries for all PSSMs, the
averaged difference scores were further transformed such that positive values were normalized
to the maximum (= 1) and negative values were normalized to the minimum (= -1). Human
proteome sequences matching the [LP]PxY consensus were obtained using the SLiMSearch
algorithm [102]. For each sequence, the corresponding boundary-normalized PSSM values for
each residue at each position were summed across 10 motif positions (xx[LP]PxYxxxx) to obtain
a predicted score (PSSM sum). PSSM sums were calculated for reference sequences in the
same way.

For competitive growth assays of SLiM variants, fitness scores and standard errors were
calculated by Enrich2 software [100]. Other statistical analyses, including calculation of means,
medians, SD, SEM, Pearson’s correlation (r), and Gini index, were performed using Microsoft
Excel. The numbers of biological replicates are described in the Figure Legends.

Structure representations, analysis, and predictions
lllustrations based on prior crystallography or NMR structural data were generated using PyMOL

software and original Protein Data Bank (PDB) coordinates. Calculations of buried surface area
of peptide residues bound to WW domains were performed using PISA, an online protein
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interface analysis tool (https://www.ebi.ac.uk/msd-srv/prot_int/pistart.html). Structural predictions
of peptide-domain complexes were generated by AlphaFold 2 [82], implemented using
ColabFold [103] and UCSF Chimera X software [104]; illustrations were created in PyMOL.
Data availability

All necessary data are available in the submitted manuscript or supporting materials. Large
datasets derived from competitive growth assays and next generation sequencing, including

variant counts and calculated enrichment scores, have been deposited at Mendeley Data:
(https://doi.org/10.17632/nghf59hf4s.1).
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Abbreviations

The abbreviations used are: SLiM, short linear motif; SIMBA, systematic intracellular motif
binding analysis; DMS, deep mutational scanning; CDK, cyclin dependent kinase; MAPK,
mitogen activated protein kinase; PSSM, position-specific scoring matrix; NGS, next generation
sequencing; ARC, ankyrin repeat cluster; GST, glutathione S-transferase.

FIGURE LEGENDS

Figure 1. Overview of the SIMBA system

(A) Generic diagram emphasizing how SLiM sequence variants can differ in binding strength.
(B) Top, CDK activity associated with the cyclin CIn2 blocks signaling through a pheromone-
stimulated growth arrest pathway. Bottom, a chimeric signaling protein, Ste205'**"™, contains a
plasma membrane binding domain (PM) and flanking phosphorylation sites from Ste5 joined to
signaling domains from Ste20. A SLiM docking site for CIn2 promotes CDK phosphorylation of
Ste205"*°"M at multiple sites, which inhibits signaling.

(C) The role of cyclin docking can be replaced using foreign SLiMs and their binding domains,
such that the foreign interaction allows cells to escape the growth arrest signal.

(D) Libraries of Ste205'**™™ derivatives harboring large numbers of SLiM variants are introduced
into yeast cells and analyzed by competitive growth.

(E) The rate of SLiM enrichment or depletion is an indicator of binding strength.

Figure 2. Test cases and low-throughput assays of SLiM binding via the SIMBA system
(A) Top, tested domains and their motif types. Bottom, summary of results presented in Figures
2B and S1D-F. The plot shows functional strength measured by SIMBA in vivo vs. previously
measured affinities in vitro. Error bars are omitted for clarity. See also Figure S1C.

(B) CIn2 and a TNKS2"R%4-CIn2 fusion were coexpressed with Ste205°*"™ derivatives harboring
known TNKS2R%_pinding peptides, and then pheromone signaling was assayed. Top,
representive blots; SLiM binding blocks activation of the MAPK Fus3 (P-MAPK) and promotes a
mobility shift of the myc-tagged Ste20%*"M substrate. Bottom, quantification of results (mean +
SD; n = 2 [CIn2] or n = 6 [TNKS2R%_CIn2]), compared with in vitro binding affinity [54]. See
also Figure S1A-B.

(C) Improved resolution of strong interactions by expressing the MDM25"'® domain from a
weaker promoter (PcacL) vs. the full strength promoter (Pgac1). Bars, mean £ SD (n = 4). See
also Figure S1C.

Figure 3. Interrogation of TNKS2R¢4.binding peptides by SIMBA

(A) Heatmap showing effects of all single-position substitutions in the 3BP2 motif. Colors denote
enrichment (red) or depletion (blue) relative to the wild-type motif, calculated as log scores by
Enrich2 software (see Methods). The asterisk denotes a termination codon. The data average
four independent experiments using PeaLs-driven TNKS22R4.CIn2 (two each of N-site and C-
site libraries).

(B) Logos showing TNKS24R%4 sequence preferences observed for the 3BP2 motif in vitro [54]
and in vivo (this study), plus the average in vivo results from 5 distinct motifs (see also Figure
S2B-D). For clarity, only positive preferences are shown (see Methods).

(C) Plots of SIMBA scores vs. Kp for all 3BP2 variants as well as representative individual
positions. Yellow, wild-type; pink, missense variants. SIMBA scores are mean £ SEM (n = 4). Kp
values [54] are the mean of technical duplicates (n = 1 £ SE of the regression fit); Kp values that
were not quantifiable in vitro were assigned values of 200 uM to allow inclusion in the plot. See
also Figure S2A.
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(D) SIMBA scores vs. Kp values [54] for the wild-type AXIN1 peptide plus 9 Ala mutants, plotted
as in panel (C). See also Figure S2B-D.

(E) Comparison of STOP-normalized SIMBA scores to in vitro Kp [54] for 6 wild-type peptides.
See also Figure S2B-D.

(F) Diagram of N-site and C-site locations for inserting SLiM sequences.

(G) Correlation of SIMBA scores for variants of the RPGopt motif in N-site vs. C-site locations.
Data are the mean 1 range (n = 2). See also Figure S2E.

(H) Correlation of SIMBA scores for RPGopt motif variants when the TNKS2R%-CIn2 fusion
was expressed from different strength promoters (PcaL1 vs. PcaLs). Data are the mean £+ SEM (n
= 4; two each of N-site and C-site libraries). See also Figure S2F.

() Summary of Pearson correlation coefficients (r) for the indicated pairwise comparisons. See
also Figures S2E-F.

Figure 4. Local context affects residue preferences at some positions

(A) Logo comparing the residue preferences at each peptide position in the context of 5 different
parent peptides that bind TNKS2R% (labeled i-v; see panel [B]).

(B) Sequence and Kp of parent peptides (i-v) analyzed in panel (A). Yellow, Pro residues
flanking p4 in MCL1 and AXIN1. Blue, residues that are atypically preferred in MCL1 and AXIN1.
(C) Preference ranks of Pro and Gly at p4 in 5 different parent motifs.

(D) Similar trajectories and p4 contacts of 3BP2 and MCL1 peptides bound to TNKS24R% [54].
PDB IDs: 3twr, 3twu.

(E) Rotated view of the TNKS2**%*-bound MCL1 peptide, showing left-handed trajectory of poly-
proline sequence from p2 to p4

Figure 5. Determinants of binding strength for MDM25'® peptide ligands

(A) Top, heatmaps of DMS results for p53 and NUMB peptides (mean, n = 2, for each peptide).
Middle, sequence preference logos derived from the SIMBA scores. Bottom, logo from the
ProP-PD database (https://slim.icr.ac.uk/proppd/) [33] showing residue frequencies in peptides
captured by MDM2"'® phage display; this logo is shown twice to facilitate comparison with the
SIMBA preferences in each of the two peptide contexts above.

(B) Distribution of SIMBA scores for all missense variants (black circles) and the average STOP
codon (red X symbols) at the 15 positions in each of the 2 parent motifs.

(C) SIMBA scores vs. Kp values [65] for the wild-type p53 peptide (yellow) and 12 Ala mutants
(pink). Kp values that were not quantifiable in vitro were assigned as 200 uM to allow inclusion
in the plot.

(D) Plot of SIMBA scores for Ala residues (large, orange-filled circles) vs. all other residues
(small, unfilled circles) at each position in the p53 and NUMB peptides.

(E) Bars show Gini coefficients, calculated from normalized SIMBA scores, for each position in
the p53 and NUMB peptides. Black dots connected by a grey line show previous scoring of the
number of unpermitted substitutions at each position of an optimized MDM25"'®-binding peptide
(MPREMDYWEGLN) [66].

Figure 6. Specificity determinants and context effects in WW domain-binding peptides
(A) Scatterplot of z-scores (median, n = 6) for peptides tested for YAP"W' and NEDD4"'"3
binding.

(B) Sequences and binding z-scores (median, n = 6) for 22 peptides, sorted by YAPYW binding
strength. The core [LP]PxY motif is colored red, and Pro residues at p+1 are colored blue.

(C) Logos showing average sequence preferences for each WW domain.

(D) Logos comparing preferences at each peptide position in the context of multiple parent
peptides (identified at right for each WW domain). At bottom, plum and tan bars mark the
distinct type 1 and 2 preference patterns summarized in panel (E).

27


https://doi.org/10.1101/2024.10.30.621084
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.10.30.621084; this version posted November 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

(E) Logos showing distinct YAPYW! preferences for type 1 and 2 peptides.

(F) Sequences of the type 1 and 2 peptides that contribute to the logos in panel (E). Yellow
highlighting and blue font mark Pro residues at non-core positions in type 2 peptides.

(G) AARDC3 peptide bound to the NEDD4"? domain (PDB ID: 4n7h) [72]. Hydrophobic
regions on the NEDD4"Y"® surface are colored yellow [105].

Figure 7. Contingency relationships between distinct peptide positions

(A) Logos of p-1 preferences in 21 different peptide contexts. Seven 4-residue C-flank
sequences were appended to each of three core motifs (...[LP]PxY), and then the p-1 codons
were randomized and tested for binding YAP"W' and NEDD4"", For clarity, the logos show
only the most preferred residues, and they omit data from peptides for which the difference in z-
score between the tested WW-CIn2 fusion and unfused CIn2 was less than 1.

(B) Logos showing preferences at p-1 when the p+2 residue is varied (left), or preferences at
p+2 when the p-1 residue is varied (right).

(C) Logos showing preferences at p+3 or p+4 when the p+1 residue is varied. Data in panels A-
C are derived from the median synonym z-scores from 3 independent experiments.

(D) Predicted conformations of peptides bound to YAP"W'. Bottom, prediction for the UGR2
peptide, showing 3 side chains for reference (-2P, 0Y, +1S). Above, analogous predictions for
peptides with p+1 Trp substitutions (+1W), aligned with the bottom structure and hiding the
YAPYW' domain for clarity. The Trp groups are predicted to lie next to the p0 Tyr groups (0Y)
with their planar faces in a perpendicular geometry.

Figure 8. Stratification of [LP]PxY matches by PSSM scoring

All 1730 matches to the [LP]PxY consensus sequence ("hits") in disordered regions of the
human proteome were scored using 6 different PSSMs. For each of 2 WW domains, 3 PSSMs
were derived from the DMS results: one from all motifs (average), one from type 1 motifs only,
and one from type 2 motifs only. The PSSM values for individual residues were summed across
10 motif positions (xx[LP]PxYxxxx) to calculate a predicted score (PSSM sum) for all
sequences. For all hits, the distribution of sums obtained using each PSSM is shown; pink lines
denote median and quartile values. For all motifs tested by SIMBA ("tested"), PSSM sums were
calculated similarly, and their symbol sizes are proportional to their observed SIMBA scores
(see Figure 6B).
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SUPPORTING INFORMATION
Supporting Figure Legends

Figure S1. Low-throughput assays of SLiM binding to six domains

(A) List of tested TNKS2*R®_binding peptides. Kp values are from [54].

(B) The experiment shown in Figure 2B was repeated using the transcriptional reporter, FUS1-
lacZ (mean = SD; n = 4).

(C) Comparison of the fold inhibition in FUS1-lacZ vs. P-MAPK assays, for all peptides in panel
A. Both assays show affinity-dependent inhibition, but the P-MAPK assay detects weak binding
with greater sensitivity. Fold inhibition (mean + SD, n = 4) is the difference in signal between the
test peptide and the control, as a fraction of the control signal. Kp values are mean + SE [54].
(D) SLiM recognition by the Abp1°H domain, assayed using the FUS1-lacZ reporter. Bars, mean
+ SD (n = 3). Kp values from [53].

(E) SLiM recognition by MDM25"'® and MDM4°"'® domains, assayed as in Figure 2B. Bars,
mean = range (n = 2). Kp values from [33, 65].

(F) SLiM recognition by YAPYW'" and NEDD4"“"** domains, assayed as in Figure 2B. Bars, mean
+ range (n = 2). Note that Kp values from distinct studies [55, 56] might not be directly
comparable.

(G) Protein levels of GST-tagged CIn2 fusions expressed from promoters of different strengths
(PeaL1, Peacs, PeacL). Expression was induced with galactose for 105 min. G6PDH served as a
loading control.

Figure S2. SIMBA interrogation of multiple TNKS2R%4.binding peptides

(A) SIMBA scores vs. Kp for all 3BP2 variants as well as variants at each of 8 individual
positions, plotted as in Figure 3C, with the TNKS24R®4_CIn2 fusion driven by PgaL1 or Pgas. All
SIMBA scores are mean + SEM (n = 4).

(B) Sequence and Kp of each motif subjected to DMS and SIMBA. Residues in the 8 core
positions are colored where identical to (blue) or different from (orange) the 3BP2 sequence.
(C) Heatmaps of DMS results from six parent peptides, plotted as in Figure 3A.

(D) Distribution of SIMBA scores for all missense variants (black circles) and the average STOP
codon (red X symbols) at the 12 positions in each of the 6 parent motifs.

(E) Correlation of SIMBA scores for variants inserted a the N-site vs. C-site locations, plotted as
in Figure 3G, for six parent peptides.

(F) Correlation of SIMBA scores when the TNKS2R%4-CIn2 fusion was expressed from Pgai1 vs.
PcaLs, plotted as in Figure 3F, for six parent peptides.

(G) Sequence preference logos, averaged from 5 motifs (excluding 3BP2-E5), comparing when
the TNKS2RC4.CIn2 fusion was expressed from PgaL1 vS. Peats.

Figure S3. DMS data and characteristics of WW domain-binding peptides

(A) WW domain peptides used in this study, and their reported binding affinities. The consensus
peptides (PYcon1-4) were designed based on “multiple PWM” sequences from Figure S1B of
Ref [74], which were proposed as improved predictors of binding specificity compared to single
PWMs.

(B) Heatmaps of DMS results for 12 peptides combined with 2 WW domains. Data are the mean
of 3 independent replicate experiments.

(C) Conformations of WW domain bound peptides in published structures. The orientation is
comparable to that in Figure 6G. PDB IDs: 4n7h, 2m30, 2ez5, 5ydx, 2ltw.

(D) Plot of buried surface area (BSA) for residues in WW-bound peptides, expressed as a
percentage of accessible surface area in the unbound peptide. Data are from 4 NEDD4""?
complexes (all type 1) and 2 YAP"W! complexes (type 2). Peptide names include PDB IDs.
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Supporting Tables

Table S1. Yeast strains used in this study

Name Relevant genotype * Source

PPY2551 MATa bar1A STE5-8A ste20A::kanMX6 HIS3::Psa-GST-CLN2 Ref. [20]

PPY2617 MATa bar1A STE5-8A ste20A::kanMX6 FUS1::FUS1-lacZ::LEU2 This study

PPY2622 MATa bar1A STE5-8A ste20A::kanMX6 FUS1::FUS1-lacZ:LEU2 HIS3::PcaL1-GST-MDM25WB-CLN2 This study

PPY2623 MATa bar1A STE5-8A ste20A::kanMX6 FUS1::FUS1-lacZ:LEU2 HIS3::Pca -GST-TNKS2*R®-CLN2 This study

PPY2625 MATa bar1A STE5-8A ste20A::kanMX6 FUS1::FUS1-lacZ:LEU2 HIS3::Pca..-GST-MDM25WB-CLN2 This study

PPY2628 MATa bar1A STE5-8A ste20A::kanMX6 FUS1::FUS1-lacZ:LEU2 HIS3::Pca.s-GST-MDM25WE-CLN2 This study

PPY2629 MATa bar1A STE5-8A ste20A::kanMX6 FUS1::FUS1-lacZ:LEU2 HIS3::Pca-GST-TNKS2*R®-CLN2 This study

PPY2631 MATa bar1A STE5-8A ste20A::kanMX6 FUS1::FUS1-lacZ::LEU2 HIS3::Pcas-GST-TNKS2*R*-CLN2  This study

PPY2708 MATa bar1A STE5-8A ste20A::kanMX6 FUS1::FUS1-lacZ::LEU2 HIS3::Psa.1-GST-CLN2 This study

PPY2727 MATa bar1A STE5-8A ste20A:kanMX6 FUS1::FUS1-lacZ:LEU2 HIS3::Pca1-GST-YAPYW'-CLN2 This study

PPY2732 MATa bar1A STE5-8A ste20A::kanMX6 FUS1::FUS1-lacZ::LEU2 HIS3::Pcai-GST-NEDD4"W3-CLN2  This study

* All strains in W303 background (ADE2 his3-11,15 leu2-3,112 trp1-1 ura3-1 canf)

Table S2. Plasmids used in this study

SUBSTRATE fusion plasmids

Name Description Peptide Motif Insert Source

pPP4365 CEN URA3 myc13-(LP_Ste20 motif)-(Ste5 1-85)- LP_Ste20 = VSLDDPIQFTA Ref. [20]
(Ste20 312-939)

pPP4366 CEN URA3 myc13-(LP_Ste5 motif)-(Ste5 1-85)-(Ste20 | LP_Ste5 = SPLLPPFGLSY Ref. [20]
312-939)

pPP4367 CEN URA3 myc13-(LP_Sic1 motif)-(Ste5 1-85)-(Ste20 | LP_Sic1 = EVLLPPSRPTS Ref. [20]
312-939)

pPP4368 CEN URA3 myc13-(LP_Whi5 motif)-(Ste5 1-85)-(Ste20 | LP_Whi5 = MPLLPPTTPKS Ref. [20]
312-939)

pPP4369 CEN URA3 myc13-(LP_Lam5 motif)-(Ste5 1-85)- LP_Lam5 = KQLGPPFEHAS Ref. [20]
(Ste20 312-939)

pPP4375 CEN URA3 myc13-(nonLP_control motif)-(Ste5 1-85)- nonLP = SNGNGSGSNGN Ref. [20]
(Ste20 312-939)

pPP4518 CEN URA3 myc13-(Amot_PY1 motif)-(Ste5 1-85)- Amot_PY1 = NNEELPTYEEAK This study
(Ste20 312-939)

pPP4519 CEN URA3 myc13-(Amot_PY2 motif)-(Ste5 1-85)- Amot_PY2 = HRGPPPEYPFKG This study
(Ste20 312-939)

pPP4521 CEN URA3 myc13-(PR_Ark1 motif)-(Ste5 1-85)-(Ste20 | PR_Ark1 = KKTKPTPPPKPSHLK This study
312-939)

pPP4522 CEN URA3 myc13-(PR_Prk1 motif)-(Ste5 1-85)-(Ste20 | PR_Prk1 = KSRPPRPPPKPLHLR This study
312-939)

pPP4523 CEN URA3 myc13-(PY_53BP2 motif)-(Ste5 1-85)- PY_53BP2 = YPPYPPPPYPSG This study
(Ste20 312-939)

pPP4524 CEN URA3 myc13-(PY_Marburg motif)-(Ste5 1-85)- PY_Marburg = MQYLNPPPYADH This study
(Ste20 312-939)

pPP4525 CEN URA3 myc13-(PY_Rabies motif)-(Ste5 1-85)- PY_Rabies = DLWLPPPEYVPL This study
(Ste20 312-939)

pPP4526 CEN URA3 myc13-(REctrl motif)-(Ste5 1-85)-(Ste20 REctrl = GSGSRLKPRGGN This study
312-939)

pPP4531 CEN URA3 myc13-(p53 motif)-(Ste5 1-85)-(Ste20 312- | p53 = SQETFSDLWKLLPEN This study
939)
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pPP4532 CEN URA3 myc13-(p53-W23A motif)-(Ste5 1-85)- p53-W23A = SQETFSDLAKLLPEN This study
(Ste20 312-939)

pPP4533 CEN URA3 myc13-(p53-P27A motif)-(Ste5 1-85)- p53-P27A = SQETFSDLWKLLAEN This study
(Ste20 312-939)

pPP4534 CEN URA3 myc13-(NUMB motif)-(Ste5 1-85)-(Ste20 NUMB = PVYDPFEAQWAALENK This study
312-939)

pPP4536 CEN URA3 myc13-(3BP2 motif)-(Ste5 1-85)-(Ste20 3BP2 = LQRSPPDGQSFR This study
312-939)

pPP4537 CEN URA3 myc13-(3BP2-E5 motif)-(Ste5 1-85)-(Ste20 | 3BP2-D5E = LQRSPPEGQSFR This study
312-939)

pPP4538 CEN URA3 myc13-(3BP2-A5 motif)-(Ste5 1-85)-(Ste20 | 3BP2-D5A = LQRSPPAGQSFR This study
312-939)

pPP4539 CEN URAS3 myc13-(RPGopt motif)-(Ste5 1-85)-(Ste20 RPGopt = LAREAGDGEEAR This study
312-939)

pPP4540 CEN URA3 myc13-(NUMA1 motif)-(Ste5 1-85)-(Ste20 NUMA1 = LPRTQPDGTSVP This study
312-939)

pPP4541 CEN URA3 myc13-(MCL1 motif)-(Ste5 1-85)-(Ste20 MCL1 = VARPPPIGAEVP This study
312-939)

pPP4649 CEN URA3 myc13-(3BP2-Q5 motif)-(Ste5 1-85)- 3BP2-D5Q = LQRSPPQGQSFR This study
(Ste20 312-939)

pPP4650 CEN URA3 myc13-(3BP2-S3 motif)-(Ste5 1-85)-(Ste20 | 3BP2-P3S = LQRSSPDGQSFR This study
312-939)

pPP4651 CEN URA3 myc13-(3BP2-M3 motif)-(Ste5 1-85)- 3BP2-P3M = LQRSMPDGQSFR This study
(Ste20 312-939)

pPP4652 CEN URA3 myc13-(3BP2-A4 motif)-(Ste5 1-85)-(Ste20 | 3BP2-P4A = LQRSPADGQSFR This study
312-939)

pPP4653 CEN URA3 myc13-(AXIN1 motif)-(Ste5 1-85)-(Ste20 AXIN1 = APRPPVPGEEGE This study
312-939)

pPP4654 CEN URA3 myc13-(AXIN1-P2A motif)-(Ste5 1-85)- AXIN1-P2A = APRAPVPGEEGE This study
(Ste20 312-939)

pPP4655 CEN URA3 myc13-(AXIN1-P3A motif)-(Ste5 1-85)- AXIN1-P3A = APRPAVPGEEGE This study
(Ste20 312-939)

pPP4656 CEN URA3 myc13-(AXIN1-V4A motif)-(Ste5 1-85)- AXIN1-V4A = APRPPAPGEEGE This study
(Ste20 312-939)

pPP4657 CEN URA3 myc13-(AXIN1-P5A motif)-(Ste5 1-85)- AXIN1-P5A = APRPPVAGEEGE This study
(Ste20 312-939)

pPP4745 CEN URA3 myc13-(Ste20 1-86)-(Ste5 1-85)-(C3RE C3RE = DVCTPR This study
control motif)-(Ste20 312-939)

pPP4747 CEN URA3 myc13-(Ste20 1-86)-(Ste5 1-85)-(LP_Ste5 | LP_Ste5 = SPLLPPFGLSYT This study
motif)-(Ste20 312-939)

pPP4748 CEN URA3 myc13-(Ste20 1-86)-(Ste5 1-85)-(Cnon2 Cnon2 = GSNGGSGSNGGS This study
control motif)-(Ste20 312-939)

pPP4749 CEN URA3 myc13-(Ste20 1-86)-(Ste5 1-85)-(Cctrl Cctrl = GGSGGSGGSGGS This study
control motif)-(Ste20 312-939)

pPP4750 CEN URA3 myc13-(Ste20 1-86)-(Ste5 1-85)- LP_Ste20 = VSLDDPIQFTRV This study
(LP_Ste20 motif)-(Ste20 312-939)

pPP4751 CEN URA3 myc13-(Ste20 1-86)-(Ste5 1-85)- LP_Lam5 = KQLGPPFEHASN This study
(LP_Lam5 motif)-(Ste20 312-939)

pPP4762 CEN URA3 myc13-(3BP2 motif)-(Ste5 1-85)-(Ste20 3BP2 = ggsgLQRSPPDGQSFRggsg | This study
312-939)

pPP4763 CEN URA3 myc13-(3BP2-D5E motif)-(Ste5 1-85)- 3BP2-D5E = This study
(Ste20 312-939) ggsgLQRSPPEGQSFRggsg

pPP4764 CEN URAS3 myc13-(RPGopt motif)-(Ste5 1-85)-(Ste20 RPGopt = This study
312-939) g9sgLAREAGDGEEARggsg

pPP4765 CEN URA3 myc13-(NUMA1 motif)-(Ste5 1-85)-(Ste20 NUMA1 = This study
312-939) ggsgLPRTQPDGTSVPggsg

pPP4766 CEN URA3 myc13-(MCL1 motif)-(Ste5 1-85)-(Ste20 MCL1 = ggsgVARPPPIGAEVPggsg This study
312-939)

pPP4767 CEN URA3 myc13-(AXIN1 motif)-(Ste5 1-85)-(Ste20 AXIN1 = ggsgAPRPPVPGEEGEggsg | This study
312-939)

pPP4768 CEN URA3 myc13-(Ste20 1-86)-(Ste5 1-85)-(3BP2 3BP2-WT = This study
motif)-(Ste20 312-939) ggsgLQRSPPDGQSFRggsg

pPP4769 CEN URA3 myc13-(Ste20 1-86)-(Ste5 1-85)-(NUMA1 NUMA1 = This study
motif)-(Ste20 312-939) ggsgLPRTQPDGTSVPggsg

pPP4836 CEN URA3 myc13-(p53 motif)-(Ste5 1-85)-(Ste20 312- | p53 = This study
939) g9sgSQETFSDLWKLLPENggsg

pPP4837 CEN URA3 myc13-(NUMB motif)-(Ste5 1-85)-(Ste20 NUMB = This study
312-939) ggsgPVDPFEAQWAALENKggsg
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CYCLIN fusion plasmids

Name Description Binding Domain Insert Source
pPP3573 CEN HIS3 Pgal1-GST-CLN2(1-372) Tcyc1 none This study
pPP4517 CEN HIS3 Pgal1-GST-(YAP_WW1)-CLN2(1-372) YAP_WW1 = aa 164-227 This study
pPP4520 (T:Cgrfl1H|sa Pgal1-GST-(Abp1_SH3)-CLN2(1-372) Abp1_SH3 = aa 535-592 This study
pPP4527 (T:Cgrfl1H|sa Pgal1-GST-(NEDD4_WW3)-CLN2(1-372) NEDD4_WWS3 = aa 834-878 This study
pPP4542 (T:Cgrfl1H|sa Pgal1-GST-(TNKS2_ARC4)-CLN2(1-372) TNKS2_ARC4 = aa 488-649 This study
pPP4543 (T:Cgrfl1H|sa Pgal1-GST-(MDM2_SWIB)-CLN2(1-372) MDM2_SWIB = aa 17-109 This study
pPP4544 (T:Cgrfl1H|sa Pgal1-GST-(MDM4_SWIB)-CLN2(1-372) MDM4_SWIB = aa 24-108 This study
pPP4575 ;Ctglating HIS3 Pgal1-GST-(MDM2_SWIB)-CLN2(1- | MDM2_SWIB = aa 17-109 This study
pPP4576 iii:érzfiﬁ?msa Pgal1-GST-(TNKS2_ARC4)-CLN2(1- | TNKS2_ARC4 = aa 488-649 This study
pPP4643 iii:érzfiﬁ?msa PgalL-GST-(MDM2_SWIB)-CLN2(1- | MDM2_SWIB = aa 17-109 This study
pPP4644 iii:érzfiﬁ?msa PgalS-GST-(MDM2_SWIB)-CLN2(1- | MDM2_SWIB = aa 17-109 This study
pPP4659 iii:érzfiﬁ?msa PgalL-GST-(TNKS2_ARC4)-CLN2(1- | TNKS2_ARC4 = aa 488-649 This study
pPP4660 iii:érzfiﬁ?msa PgalS-GST-(TNKS2_ARC4)-CLN2(1- | TNKS2_ARC4 = aa 488-649 This study
pPP4866 iii:érzfiﬁ?msa Pgal1-GST-(YAP_WW1)-CLN2(1-545) | YAP_WW1 = aa 164-227 This study
pPP4867 Eﬁ%}liﬁn%HIS(B Pgal1-GST-(NEDD4_WWS3)-CLN2(1- | NEDD4_WWS3 = aa 834-878 This study

545) Tcyc
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Figure 1. Overview of the SIMBA system

(A) Generic diagram emphasizing how SLiM sequence variants can differ in binding strength. (B) Top, CDK activity associated
with the cyclin CIn2 blocks signaling through a pheromone-stimulated growth arrest pathway. Bottom, a chimeric signaling protein,
Ste208e5PM, contains a plasma membrane binding domain (PM) and flanking phosphorylation sites from Ste5 joined to signaling
domains from Ste20. A SLiM docking site for CIn2 promotes CDK phosphorylation of Ste2051¢5PM at multiple sites, which inhibits
signaling. (C) The role of cyclin docking can be replaced using foreign SLiMs and their binding domains. (D) Libraries of
Ste20Se5PM derivatives harboring large numbers of SLiM variants are introduced into yeast cells and analyzed by competitive

growth. (E) The rate of SLiM enrichment or depletion is an indicator of binding strength.
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Figure 1. Overview of the SIMBA system

(A) Generic diagram emphasizing how SLiM sequence variants can differ in binding strength. (B) Top, CDK activity associated
with the cyclin CIn2 blocks signaling through a pheromone-stimulated growth arrest pathway. Bottom, a chimeric signaling protein,
Ste208e5PM, contains a plasma membrane binding domain (PM) and flanking phosphorylation sites from Ste5 joined to signaling
domains from Ste20. A SLiM docking site for CIn2 promotes CDK phosphorylation of Ste2051*5PM at multiple sites, which inhibits
signaling. (C) The role of cyclin docking can be replaced using foreign SLiMs and their binding domains, such that the foreign
interaction allows cells to escape the growth arrest signal. (D) Libraries of Ste20S5PM derivatives harboring large numbers of
SLiM variants are introduced into yeast cells and analyzed by competitive growth. (E) The rate of SLiM enrichment or depletion is
an indicator of binding strength.
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Figure 2. Test cases and low-throughput assays of SLiM binding via the SIMBA system

(A) Top, tested domains and their motif types. Bottom, summary of results presented in Figures 2B and S1D-F. The plot shows
functional strength measured by SIMBA in vivo vs. previously measured affinities in vitro. Error bars are omitted for clarity. See
also Figure S1C. (B) CIn2 and a TNKS24RC4-CIn2 fusion were coexpressed with Ste20S5PM derivatives harboring known
TNKS2/RC4binding peptides, and then pheromone signaling was assayed. Top, representive blots; SLiM binding blocks activation
of the MAPK Fus3 (P-MAPK) and promotes a mobility shift of the myc-tagged Ste2051¢5PM substrate. Bottom, quantification of
results (mean + SD; n = 2 [CIn2] or n = 6 [TNKS2RC4CIn2]), compared with in vitro binding affinity [54]. See also Figure S1A-B.
(C) Improved resolution of strong interactions by expressing the MDM25WB domain from a weaker promoter (PgaL) vs. the full
strength promoter (PgaL1). Bars, mean £ SD (n = 4). See also Figure S1C.
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Figure 3. Interrogation of TNKS24RC4.binding peptides by SIMBA

(A) Heatmap showing effects of all single-position substitutions in the 3BP2 motif. Colors denote enrichment (red) or depletion
(blue) relative to the wild-type motif, calculated as log scores by Enrich2 software (see Methods). The asterisk denotes a
termination codon. The data average four independent experiments using Pgai1-driven TNKS2ARC4-CIn2 (two each of N-site and
C-site libraries). (B) Logos showing TNKS24RC¢4 sequence preferences observed for the 3BP2 motif in vitro [54] and in vivo (this
study), plus the average in vivo results from 5 distinct motifs (see also Figure S2B-D). For clarity, only positive preferences are
shown (see Methods). (C) Plots of SIMBA scores vs. Kp for all 3BP2 variants as well as representative individual positions.
Yellow, wild-type; pink, missense variants. SIMBA scores are mean = SEM (n = 4). Kp values [54] are the mean of technical
duplicates (n = 1 + SE of the regression fit); Kp values that were not quantifiable in vitro were assigned values of 200 uM to allow
inclusion in the plot. See also Figure S2A. (D) SIMBA scores vs. Kp values [54] for the wild-type AXIN1 peptide plus 9 Ala
mutants, plotted as in panel (C). See also Figure S2B-D. (E) Comparison of STOP-normalized SIMBA scores to in vitro Kp [54] for
6 wild-type peptides. See also Figure S2B-D. (F) Diagram of N-site and C-site locations for inserting SLiM sequences. (G)
Correlation of SIMBA scores for variants of the RPGopt motif in N-site vs. C-site locations. Data are the mean + range (n = 2).
See also Figure S2E. (H) Correlation of SIMBA scores for RPGopt motif variants when the TNKS2AR%-CIn2 fusion was expressed
from different strength promoters (PgaL1 vS. PcaLs). Data are the mean + SEM (n = 4; two each of N-site and C-site libraries). See
also Figure S2F. (I) Summary of Pearson correlation coefficients (r) for the indicated pairwise comparisons. See also Figures
S2E-F.
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Figure 4. Local context affects residue preferences at some positions

(A) Logo comparing the residue preferences at each peptide position in the context of 5 different parent peptides that bind
TNKS24RC4 (labeled i-v; see panel [B]). (B) Sequence and Kp of parent peptides (i-v) analyzed in panel (A). Yellow, Pro residues
flanking p4 in MCL1 and AXIN1. Blue, residues that are atypically preferred in MCL1 and AXIN1. (C) Preference ranks of Pro and
Gly at p4 in 5 different parent motifs. (D) Similar trajectories and p4 contacts of 3BP2 and MCL1 peptides bound to TNKS2ARC4

[54]. PDB IDs: 3twr, 3twu. (E) Rotated view of the TNKS2R®4-bound MCL1 peptide, showing left-handed trajectory of poly-proline
sequence from p2 to p4.
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Figure 5. Determinants of binding strength for MDM25WE peptide ligands
(A) Top, heatmaps of DMS results for p53 and NUMB peptides (mean, n = 2, for each peptide). Middle, sequence preference
logos derived from the SIMBA scores. Bottom, logo from the ProP-PD database (https:/slim.icr.ac.uk/proppd/) [33] showing
residue frequencies in peptides captured by MDM25WB phage display; this logo is shown twice to facilitate comparison with the
SIMBA preferences in each of the two peptide contexts above. (B) Distribution of SIMBA scores for all missense variants (black
circles) and the average STOP codon (red X symbols) at the 15 positions in each of the 2 parent motifs. (C) SIMBA scores vs. Kp
values [65] for the wild-type p53 peptide (yellow) and 12 Ala mutants (pink). Kp values that were not quantifiable in vitro were
assigned as 200 pM to allow inclusion in the plot. (D) Plot of SIMBA scores for Ala residues (large, orange-filled circles) vs. all
other residues (small, unfilled circles) at each position in the p53 and NUMB peptides. (E) Bars show Gini coefficients, calculated
from normalized SIMBA scores, for each position in the p53 and NUMB peptides. Black dots connected by a grey line show
previous scoring of the number of unpermitted substitutions at each position of an optimized MDM25"B-pinding peptide

(MPRFMDYWEGLN) [66].
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(A) Scatterplot of z-scores (median, n = 6) for peptides tested for YAPYW! and NEDD4"Y*3 binding. (B) Sequences and binding z-
scores (median, n = 6) for 22 peptides, sorted by YAP"W! binding strength. The core [LP]PxY muotif is colored red, and Pro
residues at p+1 are colored blue. (C) Logos showing average sequence preferences for each WW domain. (D) Logos comparing
preferences at each peptide position in the context of multiple parent peptides (identified at right for each WW domain). At bottom,
plum and tan bars mark the distinct type 1 and 2 preference patterns summarized in panel (E). (E) Logos showing distinct
YAP"W1 preferences for type 1 and 2 peptides. (F) Sequences of the type 1 and 2 peptides that contribute to the logos in panel
(E). Yellow highlighting and blue font mark Pro residues at non-core positions in type 2 peptides. (G) AARDC3 peptide bound to
the NEDD4""2 domain (PDB ID: 4n7h) [71]. Hydrophobic regions on the NEDD4""W3 surface are colored yellow [104].
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Figure 7. Contingency relationships between distinct peptide positions

(A) Logos of p-1 preferences in 21 different peptide contexts. Seven 4-residue C-flank sequences were appended to each of
three core motifs (...[LP]PxY), and then the p-1 codons were randomized and tested for binding YAP"W! and NEDD4"W3. For
clarity, the logos show only the most preferred residues, and they omit data from peptides for which the difference in z-score
between the tested WW-CIn2 fusion and unfused CIn2 was less than 1. (B) Logos showing preferences at p-1 when the p+2
residue is varied (left), or preferences at p+2 when the p-1 residue is varied (right). (C) Logos showing preferences at p+3 or p+4
when the p+1 residue is varied. Data in panels A-C are derived from the median synonym z-scores from 3 independent
experiments. (D) Predicted conformations of peptides bound to YAP"W!, Bottom, prediction for the UGR2 peptide, showing 3 side
chains for reference (-2P, QY, +1S). Above, analogous predictions for peptides with p+1 Trp substitutions (+1W), aligned with the
bottom structure and hiding the YAP"W! domain for clarity. The Trp groups are predicted to lie next to the p0 Tyr groups (0Y) with

their planar faces in a perpendicular geometry.
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Figure 8. Stratification of [LP]PxY matches by PSSM scoring

All 1730 matches to the [LP]PxXY consensus sequence ("hits") in disordered regions of the human proteome were scored using 6
different PSSMs. For each of 2 WW domains, 3 PSSMs were derived from the DMS results: one from all motifs (average), one
from type 1 motifs only, and one from type 2 motifs only. The PSSM values for individual residues were summed across 10 motif
positions (xx[LP]PxYxxxx) to calculate a predicted score (PSSM sum) for all sequences. For all hits, the distribution of sums
obtained using each PSSM is shown; pink lines denote median and quartile values. For all motifs tested by SIMBA ("tested"),
PSSM sums were calculated similarly, and their symbol sizes are proportional to their observed SIMBA scores (see Figure 6B).
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Figure S1. Low-throughput assays of SLiM binding to six domains
(A) List of tested TNKS2ARC4-binding peptides. Kp values are from [54]. (B) The experiment shown in Figure 2B was repeated
using the transcriptional reporter, FUS1-lacZ (mean + SD; n = 4). (C) Comparison of the fold inhibition in FUS1-lacZ vs. P-MAPK
assays, for all peptides in panel A. Both assays show affinity-dependent inhibition, but the P-MAPK assay detects weak binding
with greater sensitivity. Fold inhibition (mean + SD, n = 4) is the difference in signal between the test peptide and the control, as a
fraction of the control signal. Kp values are mean + SE [54]. (D) SLiM recognition by the Abp1SH domain, assayed using the
FUS1-lacZ reporter. Bars, mean + SD (n = 3). Kp values from [53]. (E) SLiM recognition by MDM2S"!® and MDM43® domains,
assayed as in Figure 2B. Bars, mean + range (n = 2). Kp values from [33, 65]. (F) SLiM recognition by YAPYW! and NEDD4"W3
domains, assayed as in Figure 2B. Bars, mean * range (n = 2). Note that Kp values from distinct studies [55, 56] might not be
directly comparable. (G) Protein levels of GST-tagged CIn2 fusions expressed from promoters of different strengths (PgaL1, PaaLs,
PcaLL). Expression was induced with galactose for 105 min. G6GPDH served as a loading control.

1.0 0.45 0.16



Figure S2

A Pcar1
& all 3BP2 variants  Arg1 variants Ser2 variants Pro3 variants Pro4 variants Asp5 variants Gly6 variants GIn7 variants Ser8 variants
< 11e 1 1 1 1 1 194
2 ] o ol % 0 a ol” o 0 ° 0 o 0 éﬁ 0] oo
g By o -3 %
g -1 -1 % -1 -1 g -1 & -1 % -1 ¥ -1 »e%
w
- - - - - R $ %
<2 ! 2 2 b i 2 a2 2 a2
»n 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100
Kd (uM) Kd (uM) Kd (uM) Kd (uM) Kd (uM) Kd (uM) Kd (uM) Kd (uM) Kd (uM)
Pcacs
& all3BP2variants  Arg1 variants Ser2 variants Pro3 variants Pro4 variants Aspb5 variants Gly6 variants GIn7 variants Ser8 variants
1
H 1 1 1 1 N 1 1 1 11e
0 . o] . o] = of " e of - o] - o] ‘& 0f o
Q oo, e
8 4 i B % o o . % - ogity ! -1 1 i
@ 3
é -2 -2 -2 -2 -2 -2 -2 GIn7Pro -2
D B
2 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100
Kd (uM) Kd (uM) Kd (uM) Kd (uM) Kd (uM) Kd (uM) Kd (uM) Kd (uM) Kd (uM)
B C
..12345678.. Kp(uM) RPGopt MCL1 3BP2 AXIN1 NUMA1 3BP2-E5
RPGopt 1aREAGDGEEar 0.6 1aREAGDGEEar vaRPPPIGAEvp 1L1qRSPPDGQSfr apRPPVPGEEge 1pRTQPDGTSvp 1qRSPPEGQSTr
MCL1 vaRPPPIGAEvp 2.4 i i i i i 'rg‘l._lr
3BP2  1qRSPPDGQSfr 5.4 R | R § | K K K a
AXIN1 apRPPVPGEEge 6.1 E E E E E E
NUMA1 LpRTOPDGTSvp 17.2 g ! g g g !
3BP2-E5 LqRSPPEGQSTfr 22.0 T T T T T T
c c C [o c c ke
} A i ! } me
D RPGopt] 4w = : : : : : R L
MCL1H et v v v v v v
3BP2-  dpessde- y . | y v y o
AXINTS o = : g g : :
NUMA1 Y — - * * * * * ¢ [ |
3BP2-E5 - x ™
I T T T T T T T T 1 -N ° .N N- - P . P o !
4-32-1012345 ' ' '
SIMBA score (wt = 0) SIMBA score (wt = 0)
E F G
5.  RPGopt 5. MCL1 ~ 3BP2 s . RPGopt ~ MCL1 s . 3BP2 5-motif average
n v o o ([ P Ao ¥
H g AR i 5 g g ' Pecar1
2| |3 Fan Pl | E Fa ]
2 2 2 ] 9 9 -
D A1 r=0.97 P - r=0.92 P 1 r=0.95 5 1 r=0.99 5 - r=0.99 5 r=0.98 <3
©%s 0 5 975 0 5 975 0 5 & 75 0 5 %75 0 5 & 75 0 5 2
N-site score (wt=0)  N-site score (wt=0)  N-site score (wt = 0) PgaL1score wt=0)  Pgp qscore (wt=0)  Pgp 4 score (wt=0) 2
— AXIN1 — NUMA1 — 3BP2-E5 —~ AXIN1 —~ NUMA1 — 3BP2-E5
S5 S5 S 5 5 S ¢ o 5
n Ao n [ B 7o ® o .
z A2 A Az 4|3 Rl
o o y o v o o o y 2
o o Eoy 2 2} 2] B 5
7 L r=092| % | r=092| % | r=093 z | r=0s8| 2 | r=098| 3 | r=0.98 A s
©75 0 5 975 0 5 975 0 5 & 75 0 5 %75 0 5% s 0 5 S
N-site score (wt=0)  N-site score (wWt=0)  N-site score (wt = 0) Pgaq score (Wt =0)  Pgp 4 score (wt=0)  Pga 4 Score (wt=0)

Figure S2. SIMBA interrogation of multiple TNKS2R%.binding peptides

(A) SIMBA scores vs. Kp for all 3BP2 variants as well as variants at each of 8 individual positions, plotted as in Figure 3C, with
the TNKS2ARC4.CIn2 fusion driven by Pga 1 or Pgacs. All SIMBA scores are mean + SEM (n = 4). (B) Sequence and Kp of each
motif subjected to DMS and SIMBA. Residues in the 8 core positions are colored where identical to (blue) or different from
(orange) the 3BP2 sequence. (C) Heatmaps of DMS results from six parent peptides, plotted as in Figure 3A. (D) Distribution of
SIMBA scores for all missense variants (black circles) and the average STOP codon (red X symbols) at the 12 positions in each
of the 6 parent motifs. (E) Correlation of SIMBA scores for variants inserted a the N-site vs. C-site locations, plotted as in Figure
3G, for six parent peptides. (F) Correlation of SIMBA scores when the TNKS24RC4.CIn2 fusion was expressed from Pga1 vs.
PcaLs, plotted as in Figure 3F, for six parent peptides. (G) Sequence preference logos, averaged from 5 motifs (excluding 3BP2-
E5), comparing when the TNKS2ARC4-CIn2 fusion was expressed from Pga1 vs. Pgacs.
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Figure S3. DMS data and characteristics of WW domain-binding peptides
(A) WW domain peptides used in this study, and their reported binding affinities. The consensus peptides (PYcon1-4) were
designed based on “multiple PWM” sequences from Figure S1B of Ref [74], which were proposed as improved predictors of
binding specificity compared to single PWMs. (B) Heatmaps of DMS results for 12 peptides combined with 2 WW domains. Data
are the mean of 3 independent replicate experiments. (C) Conformations of WW domain bound peptides in published structures.
The orientation is comparable to that in Figure 6G. PDB IDs: 4n7h, 2m3o, 2ez5, 5ydx, 2ltw. (D) Plot of buried surface area (BSA)
for residues in WW-bound peptides, expressed as a percentage of accessible surface area in the unbound peptide. Data are from
4 NEDD4Y"W3 complexes (all type 1) and 2 YAP"W! complexes (type 2). Peptide names include PDB IDs.




