
A Scalable and Accurate Targeted Gene Assembly Tool
(SAT-Assembler) for Next-Generation Sequencing Data
Yuan Zhang1, Yanni Sun1*, James R. Cole2

1 Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America, 2 Center for Microbial Ecology, Michigan

State University, East Lansing, Michigan, United States of America

Abstract

Gene assembly, which recovers gene segments from short reads, is an important step in functional analysis of next-
generation sequencing data. Lacking quality reference genomes, de novo assembly is commonly used for RNA-Seq data of
non-model organisms and metagenomic data. However, heterogeneous sequence coverage caused by heterogeneous
expression or species abundance, similarity between isoforms or homologous genes, and large data size all pose challenges
to de novo assembly. As a result, existing assembly tools tend to output fragmented contigs or chimeric contigs, or have
high memory footprint. In this work, we introduce a targeted gene assembly program SAT-Assembler, which aims to
recover gene families of particular interest to biologists. It addresses the above challenges by conducting family-specific
homology search, homology-guided overlap graph construction, and careful graph traversal. It can be applied to both RNA-
Seq and metagenomic data. Our experimental results on an Arabidopsis RNA-Seq data set and two metagenomic data sets
show that SAT-Assembler has smaller memory usage, comparable or better gene coverage, and lower chimera rate for
assembling a set of genes from one or multiple pathways compared with other assembly tools. Moreover, the family-
specific design and rapid homology search allow SAT-Assembler to be naturally compatible with parallel computing
platforms. The source code of SAT-Assembler is available at https://sourceforge.net/projects/sat-assembler/. The data sets
and experimental settings can be found in supplementary material.
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Introduction

Advances in next-generation sequencing (NGS) technologies

enable sequencing of transcriptoms of a large number of non-

model organisms (RNA-Seq) and species from various environ-

mental samples (metagenomic data). Functional annotation is an

important step in analyzing these NGS data sets. For RNA-Seq of

non-model organisms and metagenomic data, which lack quality

reference genomes, a commonly used functional annotation

pipeline conducts de novo assembly first and applies functional

annotation analysis to the assembled contigs. This pipeline has

been widely adopted in functional analysis of RNA-Seq data [1–4]

and gene-centric metagenomic analysis [5–9]. One of the most

informative and practical steps in functional analysis is homology

search, which assigns functions to contigs using significant matches

against non-redundant protein sequence databases or secondary

databases including protein families, domains and functional sites.

The performance of downstream functional analysis largely

depends on the quality of the de novo assembly, which is still a

challenging problem for RNA-Seq and metagenomic data.

The problem of assembling NGS reads has received consider-

able effort [10,11]. Different programs have been developed for

transcriptome assembly [12–17] and metagenomic assembly

[18–24]. De novo RNA-Seq assembly aims to identify tran-

scribed genes, separate isoforms, and quantify gene expression

while metagenomic assembly intends to recover individual

genomes from environmental samples. Often there are specific

sets of genes in pathways that are of special interest, for example

carbon and nitrogen cycling pathways in the response of

permafrost to global warming [25] in soil metagenomic data,

while much of bulk de novo assemblies consist of less interesting

"housekeeping genes" and genes with unknown function that

give little insight to the specific question at hand. Thus, gene-

centric analysis using homology search is a direct and effective

strategy to study complicated transcriptomic and metagenomic

data.

De novo gene assembly for RNA-Seq and metagenomic data

share similar challenges in algorithm design. First, genes that have

divergent expression levels in RNA-Seq data or highly different

abundance in metagenomic data lead to a wide range of sequence

coverage. Even worse, the sequence coverage along the same gene

can be highly different due to bias in sequencing protocols. Using

one set of assembly parameters for all genes or even for different

regions of the same gene leads to unsatisfactory performance,

resulting in either fragmented contigs or chimeric contigs.

Although methods using multiple k-mer sizes have been developed

to identify transcripts in a broader coverage range, the choice of
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k-mer size is still ad hoc. Second, expression of gene isoforms due

to alternative splicing (AS) events and expression of genes with

shared short identical sequence regions in RNA-Seq data as well as

the high similarity of orthologous genes in metagenomic data

grossly compound de novo assembly. Chimeric contigs tend to be

produced between highly similar transcripts or gene homologs.

Third, existing assembly programs suffer from either long

computational time or high memory usage or both. New

developments in sequencing technology such as today’s Illumina

HiSeq can produce up to 150 bp | 180 million reads of a total

of 27 Gbp in a single run in single-end mode. Using all seven lanes

can output up to 189 Gbp in one run and close to double that in

paired-end mode. Two popular RNA-Seq assembly programs,

Trinity and Oases, incur the longest running time and the

maximum memory usage in comparison with other assembly tools

[26], respectively. Using small k-mer size in Osases may require

resources exceeding the memory space of a typical computing

server on existing data [26]. Thus, scalable methods and tools are

urgently needed to analyze new sequencing data.

To improve gene assembly in RNA-Seq and metagenomic data

that lack quality reference genomes, we propose a different

scheme, which conducts homology search first and then family-

specific gene assembly. The proposed assembly method takes

genes of interest as input, which can include specific sets of genes

in pathways that are of special interest or well-characterized

protein or domain families in existing databases. Note that

although we conduct homology search for reads, assembly is still

indispensable for functional analysis because the preferred

products for a majority of users are relatively complete genes.

The main novelties of our method and how those are used to

address the above challenges are summarized below. First, by

conducting homology search on reads directly, all reads will be

first classified into different gene families. De novo assembly will

only be conducted for reads in each family. The input size for

assembly is significantly decreased compared to bulk assembly.

Second, the alignments output by homology search are used to

guide family-specific gene assembly. We propose a novel overlap

graph construction algorithm that can achieve maximum

connectivity and accuracy for genes of both low and high

sequence coverage. Third, we use a modified depth-first-search

(DFS) that carefully incorporates multiple information including

paired-end reads, transitive edges, and coverage information to

guide graph traversal. The novel graph construction algorithm

together with the carefully designed traversal algorithm can

maximumly avoid generation of chimeric contigs.

Related work
As gene families of interest are used as input, our algorithm

employs homology search against gene families in assembly graph

construction. Using genomes or proteome of related species to

boost and optimize genome assembly has been proposed or

implemented in a group of assembly programs [23,24,27–35]. The

contigs belonging to a single gene or a block of genome in the

related species are ordered, oriented, and assembled. Most of these

programs are designed to improve genome assembly. A few of

these comparative or gene-boosted assembly programs are

specifically designed for RNA-Seq or metagenomic assembly.

For example, Surget-Groba et al. [30] carefully considered the

highly heterogeneous sequence coverage of transcripts and

employed multi-k and proteome of a related species to optimize

transcriptome assembly. Dutilh et al. [29] used one closely related

reference genome to increase assembly performance of microbial

genomes in metagenomic data. Ye’s group used homologous genes

to stitch gene fragments for gene assembly in metagenomic data

[24].

Our work is different from existing comparative assembly

approaches in the following aspects. First, our tool does not require

any related species as input. Most of the existing comparative

approaches are limited by the availability of closely related

reference genomes. Low similarity between the to-be-assembled

genes or genomes and the related genes or genomes can lead to

wrongly assembled contigs. Our tool uses well-characterized genes

of particular interest or ubiquitously represented sequence families

such as those from family databases of proteins, domains, or

functional sites as input to guide assembly. Second, as we use

sequence families rather than a single sequence as reference,

profile-based alignment methods rather than pairwise sequence

alignment or exact sequence mapping are applied to conduct

homology search. Profile-based methods tend to be more sensitive

for remote homology search. Third, to our best knowledge, SAT-

Assembler is the first tool that uses consistency between sequence

overlap and alignment overlap for edge creation in an overlap

graph.

Another type of RNA-Seq assembly tool, Cufflinks, assembles

gene isoforms due to alternative transcription and splicing and

improves transcriptome-based genome annotation [17]. Cufflinks

and SAT-Assembler require different types of input and are

targeted at different applications. Their major differences are

summarized below. First, Cufflinks needs the reference genome as

input while SAT-Assembler uses sequence families as input. The

input families do not need to contain any genomic sequence or

protein products from the reference genome. Instead, they may

contain a large number of gene or protein sequences from other

species with variable evolutionary distances. For example, the

average sequence identity of protein (domain) families in Pfam

ranges from 20% to over 90%. The conservation and evolutionary

changes of the member sequences are summarized into a profile

HMM, which can share high or low similarity with the genes in

the reference genome. Second, Cufflinks and SAT-Assembler have

different applications. Cufflinks is used to annotate transcripts and

gene isoforms for species with known reference genomes. SAT-

Assembler is applied to RNA-Seq data of non-model organisms or

Author Summary

Next-generation sequencing (NGS) provides an efficient
and affordable way to sequence the genomes or
transcriptomes of a large amount of organisms. With fast
accumulation of the sequencing data from various NGS
projects, the bottleneck is to efficiently mine useful
knowledge from the data. As NGS platforms usually
generate short and fragmented sequences (reads), one
key step to annotate NGS data is to assemble short reads
into longer contigs, which are then used to recover
functional elements such as protein-coding genes. Short
read assembly remains one of the most difficult compu-
tational problems in genomics. In particular, the perfor-
mance of existing assembly tools is not satisfactory on
complicated NGS data sets. They cannot reliably separate
genes of high similarity, recover under-represented genes,
and incur high computational time and memory usage.
Hence, we propose a targeted gene assembly tool, SAT-
Assembler, to assemble genes of interest directly from NGS
data with low memory usage and high accuracy. Our
experimental results on a transcriptomic data set and two
microbial community data sets showed that SAT-Assem-
bler used less memory and recovered more target genes
with better accuracy than existing tools.
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metagenomic data, which do not have reference genomes. Third,

although both tools conduct sequence alignment between reads

and the reference genomes or sequence families in the first step,

the alignment algorithms are highly different. The read alignment

in Cufflinks relies on read mapping tools such as TopHat [36] and

Bowtie [37], which allow only minor changes caused by, for

example, sequencing errors. On the other hand, the profile HMM-

based alignment in SAT-Assembler can handle a large number of

evolutionary changes including substitutions, insertions, and

deletions.

Methods

Overview of SAT-assembler
Our tool can be divided into two main stages. First, we align

reads against profile hidden Markov models (HMMs), which

effectively represent the underlying gene families. This stage

classifies the whole input data set into subsets of reads sequenced

from different gene families. Second, SAT-Assembler constructs a

family-specific overlap graph and assembles reads from the same

family into contigs using a graph traversal algorithm. The graph

construction is supervised by the alignment information from the

first stage and aims to obtain maximum connectivity between

reads while avoiding false connections. In particular, it can

accurately capture small overlaps between reads from lowly

sequenced regions and improves the assembly of lowly transcribed

or encoded genes. The graph traversal is guided by multiple types

of information to avoid generation of chimeric contigs. Finally,

paired-end reads are used to scaffold contigs from the same genes

into super contigs, which are sets of contigs that are from the same

scaffolds. Fig. 1 is a schematic representation of the pipeline of

SAT-Assembler.

Profile HMM-based homology search
Our method conducts homology search on reads first.

Depending on the algorithms and the target databases, homology

search methods can be divided into two types. The first type

compares the sequences against protein sequence databases using

pairwise alignment tools such as BLAST [38]. The second type

uses profile-based homology search to classify queries into

characterized protein domain or family databases such as Pfam

[39,40], TIGRFAM [41], FIGfams [42], InterProScan [43], etc.

Applying profile-based homology search to NGS reads has

several advantages. First, the number of gene families is

significantly smaller than the number of sequences, rendering a

much smaller search space. For example, there are only about

13,000 manually curated protein families in Pfam. Together these

cover nearly 80% of the UniProt Knowledgebase and the coverage

is increasing every year as enough information becomes available

to form new families [40]. As the profile-based homology search

tool HMMER is as fast as BLAST [44], using profile-based search

provides a shorter search time. Second, previous work [45] has

shown that using family information can improve the sensitivity of

remote protein homology search. For the transcriptomes of non-

model organism and metagenomic data, sensitive remote homol-

ogy search is especially important for identifying possible new

homologs. Third, although short reads can pose challenges to both

types of homology search [46,47], empirical studies on thousands

of families [47] showed that the performance of profile-based

homology search improved quickly with increasing read size. For a

read length of 85 bases, the sensitivity is close to 1.0 for moderately

and highly conserved domains. Thus, for read lengths produced

by modern NGS technologies, profile-based homology search

methods are capable of classifying many reads into their native

families with high specificity.

SAT-Assembler aligns query reads against input families using

HMMER with the default E-value threshold 10. Reads that

generate HMMER hits are classified into the corresponding family

and fed into the next stage. In most cases, a read can only be

classified into a single family. However, because some input

families share similarities, some reads may be classified into

multiple input families. In practice, we only classify a read into at

most three families with the three smallest E-values.

Alignment-informed graph construction
The first stage not only classifies query reads into their native

families but provides important alignment information for de novo
assembly. The alignment positions are used to guide overlap graph

construction. A standard overlap graph is defined as G~ ( V, E) ,

where each non-duplicate read is a node and an overlap larger

than a given cutoff is indicated by a directed edge. Our overlap

graph is different from a standard overlap graph [48–50] in the

edge creation criteria and graph construction procedure.

In a standard overlap graph, edge creation only depends on the

sequence overlap, which is not ideal for genes of heterogeneous

sequence coverage. We add edges by considering the relationship

between two types of overlaps: alignment overlap and sequence

overlap. As HMMER outputs alignments represented by amino

acids, all overlaps are converted into the unit of bp for consistency.

For simplicity of explanation, a read r corresponds to vertex r in

G. For two reads r1 and r2, an edge is created from the

corresponding node r1 to node r2 if the following criteria are

satisfied: i) the alignment position of r1 is smaller than r2; ii) the

alignments of r1 and r2 overlap by at least t� , a user-defined

threshold; iii) the sequence overlap of the two reads is consistent

with the overlap in their alignment positions. Suppose r1 aligns to

the model between s1 and e1, and r2 aligns to the model between

s2 and e2, where s1 and s2 are alignment starting positions in the

model and e1 and e2 are alignment ending positions in the model.

The alignment overlap is the number of bases converted from the

number of amino acids in the overlapping region between s2 and

e1. For example, the overlapping region between s2 and e1 in

Fig. 2.(C) contains 22 amino acids, which are converted into 66

bases of alignment overlap. Criterion 3 is the key observation to

connect reads that are sequenced from the same gene rather than

from orthologous or paralogous genes because the latter can have

very different sequence and alignment overlaps. An example is

given in Fig. 2, in which read r1 and read r2 are from two

homologous genes. Their sequence overlap and alignment overlap

are 25 and 66 respectively. Other assembly tools such as Trinity

will create an edge between r1 and r2 when the k-mer size is 25.

However, because their alignment overlap and sequence overlap

are inconsistent, SAT-Assembler does not connect them, avoiding

a wrong connection between reads from homologous genes.

The consistency-based edge creation also allows us to improve

connectivity in regions with low sequence coverage. For relatively

small overlaps, we still allow an edge if the alignment overlap and

sequence overlap are similar to each other. The intuition is that

the chance that reads with random overlaps can be aligned to the

same model with similar alignment overlap is small.

To quantify the consistency between the two types of overlaps,

we introduce the relative overlap difference defined by

d~
D t { kD

t
, where t is alignment overlap and k is sequence

overlap. Criterion 3 is satisfied only when dƒ d� , where d� is a

predefined cutoff with a default value of 0.15. We examined

relative overlap difference in both real RNA-Seq and metage-

Scalable and Accurate Targeted Gene Assembly
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Figure 1. The pipeline of SAT-Assembler. Reads of the same color belong to the same gene family. Reads from different genes of the same
family are distinguished using different patterns. Reads shared by multiple genes from the same family have multiple patterns.
doi:10.1371/journal.pcbi.1003737.g001
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nomic data sets. For reads sequenced from the same gene and

from different genes, the average relative overlap differences are

0.072 and 0.89 respectively. To avoid small random overlaps, we

use 20 as the default value for t� , the alignment overlap threshold.

Our overlap graph construction is different from standard

overlap graph construction in that it does not need all-against-all

sequence comparison. We first sort the reads by their alignment

positions in a non-decreasing order. We only check the sequence

overlap between two reads if their alignment overlap passes t� .

Therefore, the alignment information increases the efficiency of

graph construction (running time analysis can be found in the

section of Running Time Analysis). To incorporate substitution

sequencing errors introduced by some NGS platforms, we allow a

certain number e of mismatches in the sequence overlap. That is,

the overlap between two hits r1 and r2 is the longest suffix of r1

that has a Hamming distance ƒ e to a prefix of r2. In our current

implementation, e~ 2. The parameter e can be adjusted to fit the

error rate of the input data.

Pruning and optimization of overlap graphs
Transitive edges correspond to edges whose two end nodes are

connected by an alternative path (usually with higher coverage).

They add unnecessary edges without contributing to the

connectivity of the graph and are removed before de novo
assembly. Before removing them, SAT-Assembler keeps a record

of all the pairs of nodes connected by transitive edges because a

transitive edge indicates that a pair of nodes are from the same

gene region. This information will be used to guide the graph

traversal.

If a node has only one outgoing edge that points to another

node that has only one incoming edge these two nodes can be

merged as one node. Tips are identified and removed using the

topology-based pruning methods as in Velvet [11].

Although our edge creation method excludes most random

sequence overlaps, some erroneous edges still exist. An edge is

highly likely to be erroneous if it is inferior to another edge that

shares a head node or tail node with it. An edge a is inferior to

another edge b if the following two criteria are met: i) the sequence

overlap of a is smaller than half of that of b; ii) the Hamming

distance of sequence overlap of a is larger than that of b. A

random overlap is more likely to be much smaller and have more

mismatches than a true overlap. Therefore, these two criteria will

help us remove most erroneous edges.

Guided graph traversal using multiple types of
information

Once a family-specific graph is constructed and optimized, the

goal is to conduct a graph traversal to output paths corresponding

to genes. The traversal starts with nodes without incoming edges.

The challenge arises when two or more genes contain a common

or similar subsequence, leading to chimeric nodes such as v3 and v6

in Fig. 3.

Chimeric nodes add to the complexity of the graph traversal by

leading to chimeric contigs. For example, the path

S v1, v3, v4, v6, v8T contains nodes exclusively from both genes

and thus is a chimeric path. SAT-Assembler employs three types

of information to guide the graph traversal to recover correct gene

paths: transitive edges, paired-end reads, and coverage. We

describe the key steps of our graph traversal algorithm using

Fig. 3. The goal is to output two correct paths corresponding to

the two genes.

Figure 2. Alignment overlap and sequence overlap. (A) Two reads r1 and r2 sequenced from different genes of the same family are aligned to
the profile HMM of the family. Their sequence overlap is indicated in red. (B) Read r1 and read r2 have an alignment overlap of 66 and a sequence
overlap of 25 (in bold). (C) Sequenced from homologous genes, r1 and r2 show higher similarity in their translated peptide sequences than in their
DNA sequences.
doi:10.1371/journal.pcbi.1003737.g002
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A paired-end read represents two reads appearing in the same

genome with known order (by our homology search) and distance

range (insert size). Although transitive edges are removed at the

stage of graph pruning they can act as a paired-end read with a

small insert size. Therefore, both transitive edges and paired-end

reads can be used to examine whether two nodes are from the

same gene. Two nodes that are not connected by an edge are said

to have supports or be supported if there are transitive edges or

paired-end reads between them. For paired-end read supports, we

further require that their distance in the path be consistent with

the insert size.

Different from previous traversal algorithms, we divide supports

into two types, critical supports and non-critical supports. Critical

supports can be used to resolve branching in graph traversal while

non-critical supports are not able to distinguish different gene

paths. For example, a graph traversal generates a path S v1, v3T .

The node v3 has two outgoing edges ( v3, v4) and ( v3, v5) . If

there is a support between v1 and v4, such as the transitive edge in

Figure 3. Graph traversal using multiple types of information. A graph containing reads from two different genes A and B. Nodes in red (v1,
v4 , and v7) and in blue (v2, v5 , and v8) are from gene A and gene B respectively. Nodes in black (v3 and v6) are chimeric nodes because they are shared
by the two genes. Arrows with solid lines are real edges. Arrows with dotted lines and dashed lines indicate transitive edges and paired-end reads
between two nodes respectively.
doi:10.1371/journal.pcbi.1003737.g003
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Fig. 3, the traversal will be guided to visit v4 in next step. This

transitive edge provides a critical support for correct traversal.

However, the support between v3 and v6 is not "critical" for

guiding the graph traversal because any path that has visited v3

needs to visit v6. In Fig. 3, the support between v3 and v6 is a non-

critical support while all the other supports are critical supports.

When there is no support between two non-chimeric nodes,

node coverage will be used to resolve the branches. The coverage

of a node is the total size of reads normalized by the length of the

assembled sequence of the node. For protein-coding genes,

although the sequence coverage is usually not uniform along the

genes its change is gradual rather than sharp. Thus, the coverage

of two consecutive non-chimeric nodes in the same path should

reflect this observation. Any sharp change indicates a wrong path.

For example, in Fig. 3, v4 and v7 have similar coverage, as do v5

and v8. v4 and v8, however, have significantly different coverage.

Therefore, a path that has visited v4 and v6 should next visit v7

instead of v8.

We use a bounded depth-first search (DFS) algorithm to

generate correct paths. While a typical DFS takes exponential time

to generate all simple paths between two nodes, our graph

traversal method makes use of critical supports to bound the

search and only visits the correct paths, effectively reducing the

time complexity of path generation. During search, we will

proceed to those successors of the current node that provide

critical supports. If none of the successive non-chimeric nodes has

supports with any of the previously visited non-chimeric nodes, we

will proceed to the one that has a similar coverage to the recently

visited non-chimeric node given that their coverage is similar

enough. Otherwise, it is highly likely that the current node is not

from the same gene as any of its successors. Therefore, we will

output the current path and start a new path from its successors.

The traversal stops when there is no appropriate successive node

available. All paths with critical supports above a given threshold

will be output.

Contig scaffolding
Assembly tools may output multiple contigs from the same gene.

There are two main reasons for the fragmentation: i) some regions

between contigs are not sequenced due to sequencing bias, PCR

bias, low transcription level or abundance; ii) reads from lowly

conserved regions of the gene may not pass the homology search

and thus are not used to construct the graph. The contigs are

oriented and connected using their alignment positions against the

underlying profile HMM and paired-end reads. The scaffolding

results in super contigs.

Distinguish gene isoforms due to alternative splicing
SAT-Assembler can distinguish not only different target genes

but also gene isoforms caused by AS events. Here we classify the

seven different types of alternative splicing events [51] into four

different groups. Fig. 4 shows how overlap graphs are constructed

for these four groups of AS events. Each of the group is

represented by one AS event in [51]. All the other types fall into

one of these groups.

In Cases (A), (C), and (D) of Fig. 4, different isoforms

correspond to different paths of the overlap graphs. Therefore,

isoforms generated by AS events from these groups can be

distinguished by generating contigs from these paths. In Case (B),

there are two paths that begin with a root node and end with a

sink node: S v1, v2, v4, v5T and S v1, v3, v4, v5T . The first path

recovers the first isoform and the second path corresponds to a

chimeric contig. However, reads in v3 and v5 are not from the

same isoform. Therefore, there will be no paired end support

between them. Our graph traversal algorithm will stop in node v4

without proceeding to node v5. Therefore, SAT-Assembler can

still correctly recover both isoforms in this case. In practice,

different types of alternative splicing events can occur together,

further compounding the assembly. In these cases, SAT-Assembler

relies on multiple types of information such as paired end reads,

transitive edges, and coverage to distinguish different isoforms, as

described in the section of Guided Graph Traversal Using

Multiple Types of Information. The performance of assembly

tools on distinguishing gene isoforms can be found in the section of

Performance of Recovering Gene Isoforms.

Running time analysis
Let the number of input reads be N and the average read length

be D rD . The time complexity of the homology search stage is

O( N : D rD : M) for one input family, where M is length of the

profile HMM and M % N. Suppose N1 reads have passed the

homology search stage. Usually, N1 % N. The time complexity of

graph construction is O( t : D rD 2 : N1) , where t is the average

number of overlapping alignments longer than a given cutoff.

During graph construction, we use alignment positions to guide

the overlap computation, avoiding the all-against-all comparison

needed in a standard overlap graph construction. The time

complexity of graph traveral is O( D ED z D VD z n2 N2) , where

D VD is the number of nodes, D ED is the number of edges, n is the

number of read pairs that have critical supports, and N2 is the

number of correct paths in the graph. The time complexity of the

scaffoding stage is O( N2
2 ) . Because of various optimization

techniques and heuristics, the latest version of HMMER is as fast

as BLAST [44]. Considering n & N2, the time complexity of

scaffolding is much smaller than graph traversal. Therefore, the

overall running time is determined by the graph traversal stage.

Results

To show the utility of SAT-Assembler, we applied it to an

Arabidopsis RNA-Seq data set and two metagenomic data sets.

The first metagenomic data set was sequenced from highly diverse

bacterial and archaeal synthetic communities and the second data

set was sequenced from human gut microbial communities. We

compared the completeness and correctness of assembly, length of

contigs, memory usage, and running time of different de novo
assembly tools, including SAT-Assembler, Velvet, Oases, Trinity,

IDBA-Tran, Trans-ABySS, IDBA-UD, and MetaVelvet.

For targeted gene assembly, we are interested in evaluating the

performance of each tool in recovering the target genes. Thus, for

bulk assembly tools which output contigs containing multiple

genes and intergenic regions, we first extract gene segments from

the contigs. Fig. 5 shows examples of gene segments inside contigs.

In each contig, only segments overlapping target genes are used

for performance evaluation. For all experiments, by mapping

reads to an annotated reference genome or characterized genes

from existing databases, we constructed a set of reference/target

genes, which are transcribed or encoded in an NGS data set. All

contigs output by assembly tools were compared (BLAST) against

reference genes for identifying gene segments.

To quantify the completeness, correctness, and length of gene

segments, we propose four metrics: gene coverage, chimera rate,

contig length, and contig coverage. For one reference gene, gene

coverage is defined as the fraction of bases in the reference gene

covered by at least one gene segment. The chimera rate is defined

as the fraction of chimeric gene segments among all gene segments

recovered by assembled contigs. As read mapping results can be

used to determine the origin of each read, we can evaluate
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whether a gene segment is chimeric by checking the origin of each

read in the gene segment. Contig coverage is the length of the gene

segment normalized by the length of the target gene. This

normalized contig length is used to prevent gene segments of long

reference genes from dominating the average contig coverage of

an assembly tool. Moreover, to evaluate the performance of

assembly tools on recovering complete transcripts for RNA-Seq

data using single contigs, we calculate the percentage of single

contigs that can recover complete gene isoforms as well as the

percentage of non-chimeric contigs among them. These experi-

mental results can be found in the section of Performance of

Recovering Gene Isoforms.

In Fig. 5, the length of gene 1 is 1000 bp and the combined

length of the gene segments from contig a and contig b is 700 bp.

Therefore, the gene coverage of gene 1 by contigs a and b is 70%.

The contig coverages of the two gene segments are 40% and 30%

respectively. Suppose a bulk assembly tool outputs contig c, which

covers both gene 1 and gene 2. Contig c thus contains two gene

segments. If c is a correctly assembled contig, it will generate 100%

gene coverage for both gene 1 and gene 2. And, the chimera rate is

zero for contig c as the two gene segments are not chimeric. To

compare the performance of assembly tools on all input families,

we first calculate a metric for each family and then report the

average of the values of the metric over all families.

Gene assembly in an Arabidopsis RNA-seq data set
In this experiment, we applied SAT-Assembler to an RNA-Seq

data set sequenced from a normalized cDNA library of

Arabidopsis generated using paired-end Illumina sequencing

[52]. There were a total of 9,559,784 paired-end reads of 76 bp.

Pfam was used as our database of input families. Some Pfam

families use sequences from Arabidopsis to train their profile

HMMs. Therefore, we eliminated Arabidopsis sequences from

these families and recomputed the profile HMMs for them. We

compared the performance of SAT-Assembler with Velvet, Oases,

Trinity, IDBA-Tran, and Trans-ABySS. Velvet is a widely used

short read de novo assembly tool. Oases, Trinity, IDBA-Tran, and

Trans-ABySS are assembly tools specially designed for transcrip-

tomic data.

To determine which genes are transcribed in this data set, we

conducted read mapping (using Bowtie [37]) on all the coding

sequences (CDS) of Arabidopsis thaliana of version TAIR10 [53].

59.62% of the input reads were mapped to the CDS with at most 2

mismaches allowed. There is no commonly accepted criterion to

define transcribed genes. In this work, we defined CDS with at

least 10 mapped reads as transcribed CDS. Assembly results of

different tools were compared on these transcribed CDS. There

are 29,030 different transcribed gene isoforms corresponding to

21,452 genes. A total of 3,163 protein or domain families from

Pfam that can be aligned to these CDS using HMMER with

gathering thresholds (GAs) were used as input to SAT-Assembler.

Among the mapped reads, 65.39% generated HMMER hits

against these protein or domain families using HMMER’s default

E-value threshold 10. The rest of the mapped reads failed to be

aligned by HMMER due to the following main reasons: i) some

Arabidopsis genes are not covered by Pfam families; ii) the average

sequence identities of some Pfam families that Arabidopisis genes

belong to are low, rendering marginal alignment scores, especially

Figure 4. Distinguish gene isoforms due to alternative splicing. Overlap graphs constructed from different groups of AS events. Each case
consists of the isoforms due to AS events (left), the positions of reads from the isoforms (middle), and the overlap graphs constructed from these
isoforms (right). Constitutive exons are shown in blue and alternatively spliced regions in yellow. Introns are represented by solid lines, and dashed
lines indicate splicing options. In the middle panel of each case, the red lines represent reads sequenced from exons shared by both isoforms. The
green and purple lines represent reads that are exclusively sequenced from each isoform. In the right panel of each case, the red nodes represent
reads sequenced from exons shared by both isoforms. The green and purple nodes represent reads that are exclusively sequenced from each
isoform. Cases (A), (B), (C), and (D) represent four different groups of AS events.
doi:10.1371/journal.pcbi.1003737.g004

Figure 5. A schematic representation of gene segments. Three contigs and their gene segments. Gene 1 and gene 2 are target genes. Contigs
a and b each contain one gene segment (green parts). Contig c contains two gene segments (green parts). The blue parts of the contigs are not gene
segments.
doi:10.1371/journal.pcbi.1003737.g005
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for short reads [47]; iii) some Arabidopsis genes are too remotely

related to the Pfam families.

Edge creation performance. Before we evaluate the

assembly performance of SAT-Assembler, we first evaluate

the performance of the proposed edge creation strategy. We

name the overlap threshold of SAT-Assembler 20+consistency (or

consistency for simplicity), where 20 is the default threshold for

alignment overlap and consistency stands for the consistency

between alignment overlap and sequence overlap. We compared

edge creation performance of three strategies that used different

overlap thresholds: i) 20; ii) 38; iii) consistency. Three metrics were

used in the comparison: the number of true positive edges (TP),

the number of false positive edges (FP), and positive predictive

value (PPV ), which is
TP

TPz FP
. True positive edges connect

nodes that are from the same genes. As the number of correct

connections is the same for these strategies, TP is proportional to

the sensitivity. Higher TP indicates higher sensitivity. False

positive edges connect nodes that are from different genes. The

performance comparison of three strategies is shown in Table 1.

The consistency strategy provided a better trade-off for edge

creation than the stringent overlap threshold of 38 and the very

loose overlap threshold of 20. Compared with the 20 threshold

strategy, the consistency strategy avoided 115,788 false positive

connections at the expense of missing 68,252 positive connections,

leading to 5.25% increase in PPV . Compared with the 38

threshold strategy, it successfully captured 164,928 more positive

connections, leading to 9.94% increase in TP at the expense of

2.84% decrease in PPV . This showed that the consistency

constraint successfully eliminated a large number of random

overlaps while preserving overlaps between many reads from the

same genes.

The conservation between transcripts and the input gene family

will affect the performance of edge creation. When the conserva-

tion is good, the alignment overlap and sequence overlap are

generally consistent. Therefore, the consistency strategy is able to

capture the true overlaps between reads that are sequenced from

the same transcripts. When the conservation between transcripts

and the input family is poor, the alignment positions become less

accurate. Thus, the two types of overlaps may not be consistent,

making the reads from these transcripts fail to be connected by our

consistency strategy. This is one main reason that the consistency

strategy generated fewer TP cases than the overlap threshold of 20

in Table 1. In our future work, we will incorporate the

conservation of genes in our edge creation strategy to increase

the TP edges while maintaining the PPV at a high level.

Performance comparison with other assembly tools.

Velvet takes a single k-mer value for de novo assembly. Therefore,

we tried k-mer sizes from 35 to 61 with a step size of 2. Oases,

IDBA-Tran, and Trans-ABySS accept a range of k-mer sizes. All

of them first generate assemblies on different k-mer sizes and then

merge them. We ran them with a range of k-mer sizes from 35 to

61 with a step size of 2. Trinity uses a fixed k-mer size of 25 in its

current implementation. We ran it with its default parameters. For

SAT-Assembler, we used "consistency" as its edge creation

strategy and default values for the other parameters. To compare

the consistency strategy with the simple overlap threshold strategy,

we also ran SAT-Assembler with an overlap threshold from 35 to

45 with a step size of 2 without the consistency constraint. Fig. 6

shows chimera rate versus gene coverage when we changed k-mer
sizes or overlap thresholds for Velvet, Trinity, and SAT-

Assembler. Oases, IDBA-Tran, and Trans-ABySS use a range of

k-mer sizes and their performance is compared in Table 2.

Velvet was sensitive to the change of k-mer sizes. The largest

and smallest gene coverage of Velvet were 82.36% and 60.01%

respectively. Its best overall performance was achieved when the k-
mer size was 39. We also ran VelvetOptimiser [54] to search for

the best assembly result by trying k-mer sizes from 35 to 61 bp

with ‘‘K50’’ as the optimization function. It reported an optimal k-
mer size of 57, which generated a gene coverage of 66.39% and a

chimera rate of 19.74%. The performance of SAT-Assembler was

stable when the simple overlap threshold was changed. Overall,

using the consistency strategy showed better gene coverage while

keeping similar chimera rate compared with the simple overlap

threshold.

We further compared the metrics of gene coverage, chimera

rate, contig length, contig coverage, memory usage, and running

time of different assembly tools when their best performance of

gene coverage and chimera rate were achieved in Table 2.

Contigs generated by all assembly tools covered about 80% of

genes on average. SAT-Assembler had the lowest chimera rate due

to our consistency-based edge creation strategy and graph

traversal algorithm. Oases generated the longest contigs (indicated

by contig length and contig coverage) on average. But the price

paid was the highest chimera rate, longest running time, and

second highest memory usage, even with a single k-mer size. As

users will likely apply a range of k-mer sizes, its memory usage will

be further increased. SAT-Assembler had the lowest memory

usage and second shortest running time because of the effective

classification in the homology search stage. The memory usage

and running time of SAT-Assembler include both stages of

homology search and de novo assembly. Our current implemen-

tation of SAT-Assembler uses the Python library of Networkx

[55], which contributes to a large portion of both memory usage

and running time. We plan to implement SAT-Assembler using

C++ in the future.

Performance of recovering gene isoforms. The metric of

gene coverage in the section of Performance Comparison with

Other Assembly Tools shows the overall completeness of

assembled contigs in recovering gene isoforms. Some gene

isoforms with high gene coverage may be recovered by multiple

contigs, which is not desirable for targeted gene assembly. In this

section, we focus on the performance of assembly tools on

producing contigs that recover complete gene isoforms of

Table 1. Edge creation performance of three strategies on the Arabidopsis RNA-Seq data set.

Strategy TP FP PPV

20 1,891,448 184,792 91.10%

38 1,658,268 13,469 99.19%

consistency 1,823,196 69,004 96.35%

The metrics are evaluated on all edges in overlap graphs of 3,163 families.
doi:10.1371/journal.pcbi.1003737.t001
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Arabidopsis. If a single contig recovers more than 90% of a gene

isoform, it is defined as a complete contig. To compare the ability of

different assembly tools in producing complete contigs, we

evaluated the percentage of complete contigs generated by

different assembly tools. Moreover, to evaluate how accurately

these complete contigs recovered gene isoforms, we calculated the

percentage of non-chimeric contigs among complete contigs.

Table 3 shows the values of both metrics for different assembly

tools.

Oases generated the highest percentage of complete contigs,

which was consistent with its high gene coverage and contig

length. Velvet had the lowest percentage of complete contigs,

Figure 6. Chimera rate versus gene coverage. Chimera rate versus gene coverage when k-mer size or overlap threshold changes for different
assembly tools. These values are average values of the assemblers’ performance on 3,163 input families.
doi:10.1371/journal.pcbi.1003737.g006

Table 2. Performance comparison between different assembly tools on the Arabidopsis RNA-seq data set.

Tool Velvet Oases Trinity IDBA-Tran Trans-ABySS SAT

Gene coverage 82.36% 81.12% 81.88% 81.81% 78.31% 80.87%

Chimera rate 13.36% 29.24% 26.14% 21.74% 16.41% 9.05%

Contig length (bp) 346.89 455.75 418.62 450.64 355.08 434.24

Contig coverage 63.25% 84.61% 71.64% 78.19% 62.59% 76.65%

Memory (MB) 8034 22475 34691 3770 4427 2431

Time (m) 140.85 5128.74 1145.05 2774.73 3593.06 215.39

The memory usage for all tools is based on a single overlap threshold or k-mer and is evaluated as the peak memory usage of the tools. The running time was the
average running time on all input families. SAT represents SAT-Assembler here and in all tables hereafter.
doi:10.1371/journal.pcbi.1003737.t002
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showing that it generated a lot of short gene segments. All the

other tools had a percentage of complete contigs around 70%.

IDBA-Tran had a good overall performance for recovering

complete gene isoforms with 74.73% as the percentage of

complete contigs and 79.03% as the percentage of non-chimeric

contigs. SAT-Assembler had the highest percentage of non-

chimeric contigs with 73.93% of its contigs as complete contigs. Its

percentage of complete contigs is 0.8% lower than that of IDBA-

Tran and its percentage of non-chimeric rate is 6.75% higher than

that of IDBA-Tran. Because some true gene reads did not pass the

homology search stage, some contigs generated by SAT-Assembler

were segmented and not able to recover complete gene isoforms.

However, it had the best performance on distinguising gene

isoforms due to AS events. We plan to increase the sensitivity of

the homology search stage using strategies such as PSST [47,56] to

achieve better overall performance of recovering gene isoforms for

RNA-Seq data.

Targeted gene assembly in a metagenomic data set from
synthetic communities

In this experiment, we conducted targeted gene assembly using

a metagenomic data set sequenced from highly diverse bacterial
and archaeal synthetic communities with 16 archaea members and

48 bacteria members [57]. We downloaded all reference genomes

from NCBI ftp site (ftp.ncbi.nih.gov/genomes/). The metage-

nomic data set was downloaded from NCBI Sequence Read

Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra) using Acces-

sion No. SRA059004. After we trimmed low-quality reads, there

were 51,933,622 paired-end reads with an average read length of

100 bp. We were interested in assembling the family of butyrate

kinase pathway genes, which play important roles in butyrate

synthesis. We downloaded the profile HMM of the family from

RDP’s functional gene repository [58]. It was built from 77 seed

butyrate kinase pathway genes. The seed genes are not in the

genomes. We annotated the butyrate kinase gene regions in the

genomes by aligning reference genomes against the gene family

using HMMER with gathering thresholds (GAs). We compared

the performance of Velvet, IDBA-UD, MetaVelvet, and SAT-

Assembler on assembling contigs from these regions. IDBA-UD

and MetaVelvet are both de Bruijn graph based and specially

designed for de novo assembly of metagenomic data.

We used VelvetOptimiser to search for the best assembly result

by trying k-mer sizes from 53 to 83 bp with ‘‘K50’’ as the

optimization function. VelvetOptimiser reported 55 as the optimal

k-mer size. For IDBA-UD, which accepts multiple k-mer values, we

used the same range of k-mer sizes as Velvet in a single run. Meta-

Velvet used the hash table generated by Velvet and its k-mer size

was thus 55 as well. For SAT-Assembler, we used its default

parameters. A total of 15,254 reads were classified into the

butyrate kinase family by the homology search stage, which

accounted for 0.15% of the query reads. Table 4 shows a

performance comparison between these assembly tools.

SAT-Assembler had the best gene coverage, chimera rate, and

memory usage. Its contigs were usually shorter than IDBA-UD. A

closer examination reveals the reason: a number of reads did not

pass the profile HMM homology search and thus were not used as

input to assembly. Gene coverage of assembly tools in this

experiment was much lower than in the first experiment because

of lower sequencing depth and higher data complexity. Meta-

Velvet had the best running time performance because it directly

used the optimal k-mer size and hash table from VelvetOptimiser

while Velvet and IDBA-UD both ran a range of k-mer sizes. The

low memory usage of SAT-Assembler further showed the

advantage of using homology search in targeted gene assembly

for large-scale NGS data. Due to the high complexity of the

metagenomic data set, SAT-Assembler constructed a much more

complex overlap graph compared with the overlap graphs in the

first experiment, leading to higher runtime overhead. Table 4

shows that none of the tested assembly tools is the best in all

metrics. If users prefer high gene coverage and high accuracy,

especially on hardware with limited resources, we recommend

Table 3. Performance comparison of different assembly tools on recovering complete gene isoforms of Arabidopsis.

Metric Velvet Oases Trinity IDBA-Tran Trans-ABySS SAT

Percentage of complete contigs 54.76% 80.17% 70.40% 74.73% 65.22% 73.93%

Percentage of non-chimeric contigs
among complete contigs

79.12% 70.37% 75.65% 79.03% 77.97% 85.78%

doi:10.1371/journal.pcbi.1003737.t003

Table 4. Performance comparison between different assembly tools in assembling genes from butyrate kinase family on the
synthetic metagenomic data set.

Assembly tool Velvet IDBA-UD MetaVelvet SAT-Assembler

Gene coverage 68.17% 75.08% 79.68% 88.37%

Chimera rate 26.31% 12.54% 16.12% 8.43%

Contig length (bp) 367.89 592.29 440.94 487.68

Contig coverage 35.81% 56.62% 42.35% 46.69%

Memory usage (MB) 41404 15162 18340 307

Time (m) 1262.87 956.38 817.11 1093.86

The memory usage for all tools is based on a single overlap threshold or k-mer and is evaluated as the peak memory usage of the tools. The running time was the
average running time on all input families.
doi:10.1371/journal.pcbi.1003737.t004

Scalable and Accurate Targeted Gene Assembly

PLOS Computational Biology | www.ploscompbiol.org 12 August 2014 | Volume 10 | Issue 8 | e1003737

http://www.ncbi.nlm.nih.gov/sra


SAT-Assembler. If long contigs and high contig coverage are more

important, IDBA-UD is the best choice.

Targeted gene assembly in a human gut metagenomic
data set

In this experiment, we compared the performance of SAT-

Assembler with Velvet, IDBA-UD, and MetaVelvet on a human

gut metagenomic data set. There were 47,117,906 paired-end and

5,528,102 unpaired reads of various lengths. The average length of

the query reads was 95.72 bp and 75% of them were 100 bp. We

were interested in assembling butyrate kinase pathway genes as in

the second experiment. The profile HMM of the gene family was

built from 77 seed genes from RDP’s functional gene repository

[58]. We also downloaded a set of 2,352 annotated genes of

butyrate kinase family and eliminated the seed genes from them.

By using read mapping, a total of 58 genes with at least 10 mapped

reads were identified and were used to evaluate the performance of

all assembly tools.

We used VelvetOptimiser to search for the best assembly result

by trying k-mer sizes from 51 to 81 bp with ‘‘K50’’ as the

optimization function. VelvetOptimiser reported 51 as the optimal

k-mer size. For IDBA-UD, which accepts multiple k-mer values, we

used the same range of k-mer sizes as Velvet in a single run. Meta-

Velvet used the hash table generated by Velvet and its k-mer size

was thus 51 as well. For SAT-Assembler, we used its default

parameters. A total of 16,136 reads were classified into the

butyrate kinase family by the homology search stage, which

accounted for 0.31% of the query reads. Table 5 shows a

performance comparison between these assembly tools.

In this experiment, the result of performance comparison was

similar to the second experiment. SAT-Assembler still had the best

gene coverage, chimera rate, and memory usage. IDBA-UD had

the best contig length and contig coverage. Compared with the

second experiment, the chimera rates of all assembly tools

increased. Without knowing all reference genomes, the computed

chimera rates might be an over-estimation for all tools because the

assembled contigs may contain novel members of the family.

Discussion

The experiments on RNA-Seq and metagenomic data sets show

that our novel consistency-based edge creation strategy and guided

graph traversal can effectively avoid chimeric contigs. Moreover,

by reducing the original search space into a much smaller subset of

reads from targeted genes, the memory usage was significantly

decreased, making it a more economical tool for the assembly of

targeted genes from a single or multiple pathways. We have also

tried to use Velvet and Trinity on the reads that passed the

homology search stage on the Arabidopsis RNA-Seq data set. The

gene coverage and chimera rate of Velvet were 64.38% and

17.25% respectively. The gene coverage and chimera rate of

Trinity were 78.72% and 22.90% respectively. Compared with the

performance when using Velvet and Trinity directly on the input

data set, their gene coverages were decreased. One reason is that

the homology search stage does not have 100% sensitivity. The

missed reads may lead to poorer performance of Velvet and

Trinity.

SAT-Assembler also provides an easier way for users to set the

parameters. Our edge creation strategy is based on both the

overlap threshold (t) and the consistency between alignment

overlap and sequence overlap (d ). The consistency strategy poses a

strong constraint on the overlap between two reads. The

alignment overlap threshold t is mainly used to avoid random

overlaps, which are generally very small. The default overlap

threshold 20 is chosen based on the length of the reads in our

experimental data sets. This value is smaller than the k-mer value

chosen by VelvetOptimiser for other assembly tools. This helps us

generate better connectivity between reads from the same genes.

At the same time, the consistency constraint guarantees the

accuracy of the edge creation (Table 1). We have also tried

different t values from 15 to 30 and found that the edge creation

performance is not sensitive to the choice of t unless a very large

value of t is used. The values of d and t control the trade-off

between sensitivity and PPV of edge creation. Users can adjust

them based on their specific need. Based on our observation, an

overlap threshold that is 20% of the read length is recommended.

The value of d is independent of the read length and we suggest

that users use the default value.

There are still some challenges to address to further improve

SAT-Assembler’s performance. First, gene segments from some

poorly conserved gene regions are fragmented because some reads

from these regions fail to pass the homology search. We have

aligned all the reads in the human gut metagenomic data set

against protein/domain families in Pfam using HMMER and

38.65% of them have HMMER hits. There are three main

reasons for the low coverage of Pfam domains in the metagenomic

data set: i) Pfam is a collection of protein/domain families.

Therefore, reads sequenced from intergenic regions will not have

hits. In addition, even reads sequenced from protein-coding

regions may not be part of any domain. They will not have hits

either. ii) Some genes of the microbial species are very remotely

homologous to the families in Pfam. iii) Some reads in the

metagenomic data set are very short, resulting in low sensitivity of

HMMER [47]. This problem can be alleviated by increasing the

Table 5. Performance comparison between different assembly tools in assembling genes from butyrate kinase family on the
human gut metagenomic data set.

Assembly tool Velvet IDBA-UD MetaVelvet SAT-Assembler

Gene coverage 51.97% 60.55% 43.52% 68.89%

Chimera rate 59.26% 36.67% 36.73% 16.87%

Contig length (bp) 505.70 738.64 672.66 661.35

Contig coverage 38.99% 62.06% 49.30% 48.56%

Memory usage (MB) 41248 16648 20330 283

Time (m) 1736.08 1065.77 834.10 1530.63

The memory usage for all tools is based on a single overlap threshold or k-mer and is evaluated as the peak memory usage of the tools. The running time was the
average running time on all input families.
doi:10.1371/journal.pcbi.1003737.t005
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sensitivity of the homology search. In the future, we will

incorporate our proposed position-specific score threshold (PSST)

[47,56] into SAT-Assembler to classify more reads into their

native families.

Second, although the edge creation strategy of SAT-Assembler

captured more overlaps between reads from the same genes, some

positive overlaps still failed to be captured. When the conservation

between the input family and target genes is not good, the

alignment overlap and sequence overlap may not always be

consistent. Therefore, reads from poorly conserved regions of the

genes may lose consistency between their alignment overlaps and

sequence overlaps. In this case, connectivity between these reads

will not be captured by SAT-Assembler’s edge creation strategy,

leading to segmented contigs in the final assemblies. Fig. 7 shows

an example of missing edge connection due to poor conservation

between gene isoforms and the input family. Both gene isoforms

are from the same family X. The first gene isoform has a global

alignment against Family X while the skipped exon 2 in the second

gene isoform leads to two local alignments. According to our edge

creation strategy, all the reads in the first gene isoform can be

correctly connected. However, because the green read shares

sequence overlap but no alignment overlap with neighboring

reads, there will be no edge between the green read and its

neighboring reads, leading to two disconnected contigs. In this

case, the two contigs can usually be connected in our scaffolding

stage using paired-end reads. As part of our future work, we will

take into consideration the conservation between target genes

and the family to improve our edge creation strategy. Moreover,

insertion/deletion (indel) or substitution errors in the overlap-

ping regions may also lead to false negative connections.

Masella et al. [59] proposed a sophisticated method that can

probabilistically correct these errors based on the overlap data

from the paired-end reads. HMM-FRAME [60] can be used to

accurately detect and correct indel errors using profile HMM-

based homology search. We plan to incorporate these methods

in our edge creation strategy to generate more positive

connections.

Third, the running time of the graph traversal stage is the

bottleneck of SAT-Assembler, especially for complex metage-

nomic data. Therefore, we plan to add more bounding strategies

into the graph traversal, such as a more stringent threshold for

critical supports. Moreover, we will implement SAT-Assembler

using C++ to reduce its running time.

Supporting Information

Text S1 Supplementary material. Pseudocodes and exper-

imental settings.

(PDF)

Acknowledgments

We thank C. Titus Brown for helpful discussions about the experiments.

Figure 7. Poor conservation can lead to loss of edge connection. (A) Gene isoforms due to AS events. Constitutive exons are shown in blue
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alignment while the isoform containing exons 1 and 3 produces two local alignments.
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