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Abstract: Cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored protein most
abundantly found in the outer membrane of neurons. Due to structural characteristics (a flexible tail
and structured core), PrPC interacts with a wide range of partners. Although PrPC has been proposed
to be involved in many physiological functions, only peripheral nerve myelination homeostasis has
been confirmed as a bona fide function thus far. PrPC misfolding causes prion diseases and PrPC

has been shown to mediate β-rich oligomer-induced neurotoxicity in Alzheimer’s and Parkinson’s
disease as well as neuroprotection in ischemia. Upon proteolytic cleavage, PrPC is transformed into
released and attached forms of PrP that can, depending on the contained structural characteristics of
PrPC, display protective or toxic properties. In this review, we will outline prion protein and prion
protein fragment properties as well as overview their involvement with interacting partners and
signal pathways in myelination, neuroprotection and neurodegenerative diseases.

Keywords: prion protein; prion protein fragments; neuroprotection; myelination; ischemic stroke;
neurodegenerative disease

1. Introduction

Prion protein (PrP) is a highly conserved ubiquitous glycoprotein. It exists in two
forms; the normal or cellular isoform, PrPC, and the disease-associated infectious isoform
or scrapie PrP, PrPSc. The pathological role of PrPSc has been extensively studied in prion
disease and has been reviewed in several papers [1–3]. PrPC is expressed in a variety
of different organs and tissues with high expression levels in the central and peripheral
nervous systems. It is abundantly present on the cell surface of neurons [4–6] and has
been shown to be involved in many physiological mechanisms. The function of the protein
remains to be elucidated; nevertheless, intensive studies link PrPC to myelin homeosta-
sis [7], neuroprotection [8,9], the circadian rhythm [10,11], metal ion homeostasis [12,13],
mitochondrial homeostasis [14] and intercellular signaling [6,15,16]. In neurons, PrPC is
present in the presynaptic and postsynaptic compartments of axon terminals where it is
involved in anterograde and retrograde axonal transport [17–20]. PrPC is cleaved at the
cell membrane by proteases, forming released and attached forms. In recent years, prion
protein and prion protein released forms have received attention in correlation with neu-
roprotection in neurodegenerative diseases. In this review, we present prion protein and
prion protein released forms, summarize their involvement in myelination, neuroprotection
and neurodegenerative diseases and discuss the most recent discoveries in this field.

2. Prion Protein

Mature human PrPC is composed of a flexible unstructured N-terminal domain (amino
acid residues 23–120) and a structured C-terminal domain (amino acid residues 121–231). It
is anchored to the cell membrane with a glycosylphosphatidylinositol (GPI) anchor [21,22].
The flexible N-terminal domain contains an octarepeat region whereas the structured
domain consists of three α-helices, two β-sheets, a disulfide bond connecting cysteines 179
and 214 and two N-glycans on amino acid residues 181 and 197 [23,24] (Figure 1).
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Figure 1. Schematic presentation of PrPC with associated cleavages. Mature PrPC is approximately
210 amino acids long. The flexible unstructured N-terminal part (residues 23–120) contains the oc-
tapeptide repeat region (OR, purple) whereas the highly structured C-terminal part (residues 121–231)
is composed of three α-helices (green), two β-sheets (orange), a disulfide bond, two N-glycans (CHO;
positions 181 and 197) and a C-terminal GPI anchor. PrP can undergo four cleavages: α-cleavage
(cleavage site position 111/112); β-cleavage (cleavage site position 89/90); γ-cleavage (cleavage site
presumably between positions 170–120); and shedding (near the C-terminus of PrP). Cleavages result
in released (N1, N2, N3, shed PrP) and attached (C1, C2, C3) fragments of PrPC.

PrPC can transform into a β-sheet-rich isoform PrPSc, which is prone to autocatalytic
conversion and aggregation into insoluble aggregates [22,25,26]. An abnormal accumu-
lation of the pathologic protein in the brain can cause the development of transmissible
spongiform encephalopathies (TSEs), also known as prion diseases. Prion diseases include
Creutzfeldt–Jakob disease (CJD), Gerstmann–Sträussler–Scheinker syndrome (GSS), fatal
familial insomnia (FFI) and kuru in humans, bovine spongiform encephalopathy in cattle,
scrapie in goats and sheep and chronic wasting disease in cervids. All prion diseases are
rare fatal neurodegenerative disorders. The clinical and neuropathological features of
prion diseases in humans are similar to those of Alzheimer’s disease (AD) such as rapid
memory loss and loss of brain function as well as dementia, spongiform deformation of the
brain, personality changes and difficulties with movement [15,27]. Although prion diseases
occur due to the accumulation of toxic PrPSc aggregates in the brain, the mechanism that
underlies the conversion of PrPC to PrPSc and the development of prion disease remains an
unknown. Apart from being a substrate for the development of prion diseases, PrPC can
serve as a receptor for cytotoxic amyloid-β (Aβ) oligomers [20,28] and toxic soluble aggre-
gates of tau protein in AD and other tauopathies [29,30]. There are also opposing studies
on PrPC binding of α-synuclein (α-syn) oligomers in Parkinson’s disease (PD) and other
synucleinopathies, opening the debate on the role of PrPC in toxicity of α-synuclein [30–33].

3. Prion Protein Fragments

PrPC can undergo four posttranslational cleavages, forming PrP fragments (Figure 1).
The α-cleavage and β-cleavage occur within the unstructured N-terminal domain whereas
the γ-cleavage and PrP shedding occur within the structured C-terminal domain. Apart
from the mentioned cleavages, PrPC has been cleaved under experimental conditions with
phospholipase C, which cleaved PrPC within the GPI anchor [34,35]. The site of cleavage,
length of fragment and membrane attachment allow fragments to take part in various
mechanisms.
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3.1. α-Cleavage

The α-cleavage is the most studied cleavage of PrPC. It occurs under physiological
conditions in the central hydrophobic region of mature PrPC (amino acid residues 105–120
in human sequence 111/112) [36–38] (Figure 1). The cleavage releases an ~11 kDa frag-
ment N1 whereas the ~18 kDa part C1 remains attached to the cell membrane by the GPI
anchor [36,39]. For now, there is no unique enzyme responsible for the α-cleavage [24,40].
Although cleavage sites have been determined with respect to species, the α-cleavage is
tolerant to sequence variation in this region as long as its hydrophobicity remains pre-
served [38]. Studies have shown that α-cleavage in the human brain, mouse models
and neuronal cultures occurs in the presence of enzymes ADAM10 and ADAM17 [41–43].
ADAM10 contributes to a constitutive N1 production whereas ADAM17 mainly partici-
pates in N1 formation upon stimulation [44,45]. ADAM8 has also been shown to cleave
PrPC to form N1 and C1 in muscles [46]. A role of ADAM8, ADAM10 and ADAM17
in the α-cleavage has also been supported in a biophysical study [47]. Fragment N1 has
a relatively low stability; nevertheless, it was found to be present in body fluids, tissue
homogenates or cell culture supernatants [39,48,49]. The cleavage was initially thought
to take place in acidic endosomal compartments [50,51] but later studies demonstrated
that the α-cleavage occurs during the vesicular trafficking of PrPC along the secretory
pathway [52,53]. The α-cleavage uses PrPC as a substrate, leading to its reduction of the
cell surface. As PrPC is also a substrate for prion replication and a key mediator of toxicity
in prion diseases, AD and other neurodegenerative diseases, the cleavage has a positive
biological effect. The flexible N-terminal part of PrPC is essential for the interaction of the
protein with the binding partners that regulate PrPC uptake in trafficking [54,55]. Lacking
N1, C1 forms complexes on the cell membrane [56] and is more stable and persistent at the
cell surface than PrPC [50]. Fragment C1 can be cleaved at the cell surface and released
into the extracellular space [57]. C1 was found to inhibit prion replication in mice [58,59]
whereas fragment N1 is neuroprotective [60,61]; the absence of the α-cleavage is toxic for
both cells and mice [47,62].

3.2. β-Cleavage

The β-cleavage takes place at the end of the octapeptide repeat region N-terminal
of the α-cleavage site. The β-cleavage is mostly observed under pathological conditions
and is similar to the α-cleavage. It seems to act protectively. It takes place around amino
acid residue 90, forming fragment N2 (~9 kDa) and fragment C2 (~20 kDa) [36,37,48,63]
(Figure 1). The β-cleavage of PrPC is mediated by reactive oxygen species (ROS) [37,63–66].
By removing ROS, the cleavage protects cells from oxidative stress [65]. Apart from ROS,
the β-cleavage is induced by calpains [67], lysosomal proteases [68,69] or even ADAM8 [47].
Proteinase K cleaves the protease-resistant core of PrPSc (PrP27–30) near position 90, creat-
ing a fragment with a length similar to C2. Similar to fragment C1, fragment C2 can also be
shed from the cell surface [70]. The formation of such a fragment indicates that proteases
involved in the β-cleavage could also be involved in the cellular attempts to break down
PrPSc [71,72].

3.3. γ-Cleavage

The most recently discovered protease cleavage of PrPC is the γ-cleavage. The cleavage
site in PrPC remains to be determined but the sizes of the released fragment N3 (~20 kDa)
and GPI-anchored fragment C3 (~5 kDa) suggest that protein cleavage occurs in the re-
gion between amino acid residues 170 and 200 [73,74] (Figure 1). Studies indicate that
the γ-cleavage occurs late in the secretory pathway on an unglycosylated protein in the
presence of members of the matrix metalloproteases (MMP) family [73]. The reason the
γ-cleavage occurs only on unglycosylated PrPC is proposed to be due to the steric hin-
drance of proteases by glycans in the proximity of the proposed cleavage site [40,75]. The
γ-cleavage has been found to exist in different species, tissues and cell culture models.
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The determination of its role requires further study although an indication of increased
amounts of fragment C3 in a CJD brain may lead to a possible pathogenic significance [73].

3.4. Shedding of Prion Protein

There is also an important cleavage of PrP in proximity to the C-terminus. The cleav-
age sheds PrP into the extracellular space, leaving a small number of amino acid residues on
the cell surface. The cleavage was described in early research [35,39,76,77] but has received
more attention in recent years due to the involvement of shed PrP in diseases [40,63,78–83].
Similar to the α-cleavage, the shedding of PrP occurs in the presence of enzymes from the
ADAM family. In vitro and in vivo experiments suggest that ADAM9 and ADAM10 are
involved in the process of cleavage and the shedding of PrP [47,84–86] where ADAM10
is the primary sheddase for PrP and ADAM9 is the modulator of ADAM10 activity [24].
Shed PrP was first determined in hamsters. In the prion-infected brain of hamsters, shed
PrP represented approximately 15% of the PrPSc molecules [76]. A further analysis showed
that ADAM10 cleaved shed PrP between Gly228 and Arg229 and formed shed PrP that
terminated at Gly228 [84]. An analysis exploring the cleavage site profile of ADAM10 re-
vealed that cleavage is not induced by a unique sequence [87]. Consequently, the ADAM10
protease can produce variants of shed PrP depending on the protein sequence and confor-
mation. Jansen and coworkers described the existence of unanchored PrP forms ending
with Tyr225 and Tyr226 in patients with prion disease [88]. The authors characterized two
patients with prion disease who carried stop mutations at positions Y226X and Q227X and
expressed the respective forms. Using a monoclonal antibody V5B2 [89] that specifically
binds to a fragment of PrP ending with Tyr226, we concurrently described the existence of
a free form of PrP named PrP226* [90–94]. The distribution of PrP226* in the human brain
has been associated with the distribution of PrPSc [90,94]. Due to the existence of more
than one shed form, we hypothesized that the proteolytic site in the human sequence is not
exclusively located between amino acid residues 228 and 229 but is located in the proximity
of the C-terminus [95] (Figure 1). Recently, Linsenmeier et al. published a comprehen-
sive study on the mechanism stimulating PrPC proteolytic shedding [81]. Using animal
models and controls, they showed that PrP shedding negatively correlates with prion
conversion and that shed PrP is abundantly present in amyloid plaques. They also studied
the influence of the binding of PrP-directed antibodies to PrPC in relation to shedding
propensity. The binding of whole anti-PrP antibodies to the C-terminal structured domain
of PrPC or single-chain antibody derivatives, directed towards repetitive epitopes within
the octarepeat region of the N-terminal domain stimulated shedding, when the binding
of whole anti-PrP antibodies to the octarepeat region of the N-terminal domain locked
the N-terminal domain structure and evoked PrPC surface clustering, endocytosis and
degradation in lysosomes [81].

4. Prion Protein and Myelination

PrPC is abundantly expressed in the central nervous system (CNS) and in the periph-
eral nervous system [4,5]. Studies in primate brains, rodent brains and transgenic mice
showed that it is enriched along axons and in presynaptic terminals where it is involved
in anterograde and retrograde axonal transport [4,17,18,96–98]. Deletions in the PrPC α-
cleavage region showed severe demyelination in both the spinal cord and cerebellar white
matter in vivo [99,100] Later, it was confirmed that axonal PrPC and its α-cleavage are
necessary for pro-myelination in the peripheral nervous system [101]. Using a co-isogenic
PrP-knockout mice model, Kuffer et al. discovered that axonal PrPC promotes myelin
maintenance in trans via binding to the adhesion G-protein-coupled receptor Adgrg6 on
Schwann cells with an N-terminal flexible tail [7]. They also confirmed that mice lacking
PrPC developed chronic demyelinating neuropathy, which suggests that myelination home-
ostasis in the peripheral nervous system is a bona fide physiological function of PrPC [7].
Myelin maintenance was found to be regulated through the binding of an N-terminal
released fragment of PrPC (presumably N1 or shed PrP) to Adgrg6 on Schwann cells.
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The interaction activated Adgrg6, increased the cellular levels of cAMP and triggered a
signaling cascade that promoted myelination [7]. The regulation of peripheral myelin
maintenance by PrPC was confirmed in five different PrP-knockout mouse model strains
that developed late-onset peripheral neuropathy [101–103]. Recently, there was an attempt
to develop a treatment for peripheral demyelinating diseases based on binding between
the N-terminal domain of PrPC and Adgrg6 [104]. In this study, they constructed an im-
munoadhesin molecule consisting of two flexible N-terminal domains of PrPC linked to a
crystallizable fragment (Fc) of immunoglobulin G1 (FT2Fc) [104]. The molecule showed
favorable pharmacokinetic properties and showed potential in vitro but failed to have a
therapeutic effect on the early molecular signs of demyelination in PrP-knockout mice [104].
PrPC was also studied in connection to peripheral myelin development and regeneration
after nerve injuries [105]. As PrP was found to be dispensable in this mechanism, it could
be presumed that PrP has no major role in the peripheral nerve repair process or its absence
might be compensated by other ligands [105].

Myelination and other physiological roles of PrPC have been intensively studied on
animal models with a knocked-out or knocked-down PrP gene expression. Studies have
shown limited negative effects in mice [102,106–109], cattle [110] and goats [68,111,112]
whereas studies on PrP-knockout mice or goats showed defects in the nervous system
and sensitivity to oxidative stress [6,101,111,113]. Several PrP-knockout mice models were
generated with a mixed background [106,109,114–116]. As the studies are not reproducible
among models, this might raise the question of whether any observed phenotypes were
actually due to polymorphisms in genes flanking Prnp or the result of PrPC absence. To
avoid this issue, it would be advisable to repeat key experiments using co-isogenic PrP-
knockout mice.

Although the role of PrPC in the CNS needs to be elucidated, PrPC and PrPC released
fragments are indispensable in peripheral nerve myelin homeostasis but they may be
dispensable in nerve recovery.

5. Prion Protein and Ischemic Strokes

In the previous section, we observed that knockout animals are more vulnerable to
oxidative stress. Studies support the idea that PrPC acts as an antioxidant by regulating
glutathione reductase activity [117,118] and by regulating superoxide dismutase (SOD)
through ion binding [119–123]. PrP-knockout mice showed a reduced protection against
ROS whereas prion-infected mice showed increased levels of oxidative stress, most likely
as a consequence of a PrPC loss of function [124–126]. Under oxidative stress conditions,
PrP mRNA levels increase, which implies that oxidative stress upregulates PrPC expres-
sion [127]. Ischemic stroke is a condition where the loss of blood flow in a brain area
causes hypoxic conditions and brain damage [128]. PrP-knockout animal models subject to
ischemia showed intensive ischemic damage and a reduced chance of regeneration whereas
the possibility of PrPC synthesis resulted in PrPC overexpression and decreased ischemic
damage [127]. Studies on ischemic strokes have indicated that PrPC overexpression can
reduce the lesion size compared with wild-type mice, ascribing PrPC a protective role in
ischemia damage [129–135]. After an ischemic insult, PrPC is associated with neuroprotec-
tive and regenerative processes by interacting with various cytosolic and transmembrane
signal proteins. Among others, PrPC has been associated with the upregulation of extracel-
lular signal-regulated kinase (ERK1/2) [133,136,137], activation of the phosphatidylinositol
3-kinase/protein kinase B/Akt (PI3K/Akt) pathway [138–142], modulation of N-methyl-
D-aspartate (NMDA) receptor-mediated toxicity [143], activation of the cAMP-dependent
protein kinase A (PKA) pathway [144–146] and interaction with stress-inducible protein 1
(STI1) [146], all resulting in neuron survival, neurite outgrowth and neuroprotection.

PrPC is a receptor of Fyn kinase, a member of the Src family of tyrosine kinases
(SFKs) [146]. Through Fyn kinase activation, PrPC mediates oligomer-induced toxicity in
neurodegenerative diseases [147–150] and promotes neurite outgrowth by the phosphory-
lation of the GluN2A domain of the neuronal cell adhesion molecule (NCAM) [151]. Fyn
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kinase and other members of the SFK family are involved in ischemic damage [152–155].
The inhibition of SFKs in a global ischemia model and the inhibition of the Fyn-mediated
phosphorylation of GluN2A in a model of neonatal HII resulted in an increased neuronal
survival [156–158] whereas the overexpression of Fyn in the model of neonatal HII led to
increased brain damage [159]. The inhibition of SFKs in a mouse model of an ischemia also
resulted in a decreased ischemic volume and improved cerebral function after provoca-
tion [155]. As this effect was not seen in Fyn-knockout mice, we suspect that ligands other
than Fyn kinase may also affect ischemia insult recovery [155].

PrPC fragments were also shown to be involved in ischemic stroke. Fragments N1 and
N2 were shown to act protectively under cellular stress [160–162] and modulate the quies-
cence of neural stem cells in adult neurogenesis upon stroke [163] whereas PrPC fragments
C1 and C2 were involved in regulating p53-dependent apoptosis and cell survival [164].
Fragment C1 was found to be enriched in small EVs (sEVs) where it acted similarly to
viral surface proteins [165,166]. Due to this, it may affect the intercellular information
exchange between sEVs and their target cells as well as contributing to their uptake [63].
Brenna et al. studied the similarities between the cellular uptake of brain-derived sEVs
from PrP-knockout mice and wild-type mice after a stroke [128]. They showed that sEVs
lacking PrP were taken up significantly faster with a greater efficiency and were more
easily sorted into lysosomes than sEVs containing PrP and fragment C1 [128]. Fragment
N1 was also found to be involved in regulating the interactions between microglia and
other brain cells. A recent in vitro study on a mixed neuronal lineage and microglia co-
culture system showed that fragment N1 stimulated a change in the cell morphology and
metabolism and induced Cxcl10 secretion [167]. Furthermore, fragment N1 was shown to
influence microglia to change the membrane composition to a higher GM1 content at the
interaction sites with the surrounding cells in a co-culture yet only upon direct cell-to-cell
contact [167]. Fragment N1 was also proposed to protect neurons against staurosporine-
induced Caspase-3 activation in an ischemic model of the rat retina [60]. These results
are supported by in vitro studies where the expression of PrPC was protective against
staurosporine or anisomycin-induced apoptosis [144,146]. Fragment N1 is also related
to neuroprotection in neurodegenerative diseases, which is discussed in more detail in
the next section. In the presence of anchored PrPC, recombinant PrP (recPrP) can induce
ERK1/2 and Akt signaling on mesenchymal stem cells that may support neuronal differen-
tiation [168], promote neurite outgrowth and facilitate axonal growth cone guidance [169].
Recently, it was reported that recPrP promotes neurite outgrowth and Schwann cell migra-
tion through the ERK1/2 pathway [170]. The activation involved NMDA receptors, low
density lipoprotein receptor-related protein-1 (LRP1), SFKs and Trk receptors; it seemed to
take place independently of anchored PrPC [170]. In this mechanism, SFKs played a critical
role in recPrP-initiated cell signaling by activating Trk receptors, which are upstream of
ERK1/2 [170,171]. Although recPrP lacks glycosylation, it might be considered to be a
suitable analog of shed PrP.

Prion protein and prion protein fragments are linked with intercellular communication
and signaling, oxidative stress and neuroprotection and present an attractive target for the
treatment and regulation of these mechanisms. Nevertheless, further studies should be
conducted to confirm the effects of these molecules in the mentioned mechanisms.

6. Prion Protein and Neurodegeneration

Neurodegeneration is the progressive loss of the structure or function of neurons,
which may ultimately involve cell death. On the molecular level, neurodegeneration is
connected to accumulation of misfolded proteins. Accumulation of protein aggregates
causes mitochondria dysfunction, induces oxidative stress and ultimately causes chronic
inflammation. Neurodegeneration occurs in diseases such as prion disease, PD and AD
due to the aggregation of PrPSc [26,172,173], α-syn [174–177] and Aβ isoforms [178,179]
and tau protein [180–183], respectively. Prion protein or prion protein fragments have been
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found to interact with aggregating agents in different neurodegenerative diseases but their
roles depend on the studied conditions [24,81,184,185].

It has been reported that PrPC binds a wide range of β-sheet-rich oligomers associated
with neurodegenerative diseases [148–150]. PrPC engages metabotropic glutamate receptor
5 (mGluR5) and mediates oligomer-induced toxicity through Fyn kinase [175,186–188].
Activated Fyn kinase can phosphorylate the GluN2A and GluN2B subunits of NMDA
receptors, which are then hyperactivated and cause calcium influx and cell death [20,189].
It has also been shown that PrPC can activate Fyn kinase-mediated Aβ oligomer toxicity
by an interaction with LRP1 [190]. A recent study in this field suggested that, apart from
LRP1, this process includes activated a2-macroglobulin and tissue-type plasminogen activa-
tor [191]. Studies have implied that binding between soluble protein aggregates and PrPC

causes neurotoxicity and inhibits long-term potentiation (LTP) [30,192]. Opposing studies
have also been published that report no significant effect of PrPC levels on Aβ-induced
LTP in PrP-knockout mice [193], cell ablation or PrP overexpression [194]. The reasons for
these discrepancies are unclear but they could be due to the use of different model systems
and toxic or nontoxic species [195].

Aβ oligomers bind to PrPC at two binding sites within the flexible N-terminal part
of PrPC, between amino acid residues 23–27 and 92–110 [192,195,196]. Apart from Aβ

oligomers, PrPC has been reported to be a receptor for α-syn oligomers and tau aggregates.
Similar to Aβ oligomers, anchored PrPC binds small soluble aggregates or shorter fibrils of
α-syn oligomers or tau aggregates within the flexible N-terminal part [30,175,185,197–199].
PrPC has also been shown to uptake recombinant α-syn fibrils. A model system lack-
ing PrPC showed a lower uptake of α-syn and α-syn fibrils in comparison with con-
trols [177,185,197], resulting in less α-syn aggregation, astroglial activation and loss of
dopaminergic neurons in the brains of PrP-knockout mice [185]. Furthermore, PrP-knockout
mice did not exhibit α-syn-induced LTP impairment whereas treatment with an anti-PrP
antibody prevented α-syn-induced LTP defects in a model of PD [175]. Although the men-
tioned studies support a PrPC and α-syn oligomer interplay, La Vitola et al. showed that
PrPC was not mandatory for the mediation of α-syn oligomer detrimental effects in vitro
or in vivo [33]. Although the discrepancy could not be explained in the study, it could also
occur due to the use of a different protocol of soluble aggregate preparation or the use
of different model systems. Anchored PrPC was also shown to bind tau aggregates and
seemed to facilitate their uptake [30,198,200]. Absence of PrPC or pretreatment with anti-
PrP blocking antibodies was shown to decrease the uptake of recombinant tau aggregates
and abolish tau aggregate-induced toxicity [30,198,200].

Studies regarding recombinant PrP fragment N1 in neurodegenerative diseases have
shown that these molecules can bind toxic Aβ oligomers at regions between amino acid
residues 23–31 and 95–105. Fragment N1 neutralizes toxic Aβ oligomers by seizing them
in the extracellular space and reduces oligomer-induced toxicity [61,195,201–204]. The
protective effects of fragment N1 have also been observed in vivo in mice exposed to acute
Aβ-induced toxicity [203]. Beland and coworkers observed increases in the α-cleavage
of PrPC in the brains of AD patients [205]. As the N1 fragment abundantly binds Aβ

oligomers, it may be indicated that the cleavage acts protectively in the development of
diseases [205] whereas the inhibition of N1 production promotes AD progression [42].

PrP shedding reduces the level of cell-anchored PrPC [78]. This results in a decreased
level of the substrate for prion replication and a decreased level of the receptor for toxic
oligomers [85,206]. Similar to fragment N1, shed PrP is also believed to be protective
in prion diseases and other neurodegenerative diseases [40,79,81]. As mentioned in the
previous section, recPrP is similar to shed PrP. Although it lacks glycans, recPrP may be
used as a model to predict the role of shed PrP in diseases. RecPrP was found to increase the
development of synapses and neurite outgrowth in the presence of anchored PrPC [170,207].
Similar to fragment N1, recPrP also inhibited Aβ oligomer formation and neutralized Aβ

oligomer toxicity in an AD model [203]. In vitro studies using recPrP and its derivatives
showed that both the N-terminal and C-terminal domains of PrP are required for an efficient
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inhibition of Aβ fibril elongation [202,208] and support the protective role of shed PrP in the
inhibition of Aβ fibril formation. RecPrP was also shown to bind tau aggregates and α-syn
oligomers and may neutralize their toxicity [30]. Although PrPC shedding acts protectively,
enhanced PrPC shedding could lead to negative biological activity such as inflammation in
the CNS [83,209]. Jarosz-Griffiths et al. [82] recently reported on the protective role of PrP
shedding. The authors reported that siRNA-mediated ADAM10 knockdown reduced PrPC

shedding and increased Aβ oligomer binding whereas acitretin promoted PrPC shedding
and decreased Aβ oligomer binding in the neuroblastoma cells and in human-induced
pluripotent stem cells [82].

In a recent paper by Linsenmeier et al., researchers evaluated the role of shed PrP in
different models [81]. Using a polyclonal antibody sPrPG228 that specifically recognized
murine PrP ending with G228 [210] they showed that in prion-diseased mice, shed PrP
colocalized with PrPSc in amyloid plaques. Similar to the model of prion disease, shed PrP
was also distributed to Aβ deposits in the brains of 5xFAD mice where it was found bound
to Aβ oligomers and seen in the center of many amyloid plaques. Due to the knowledge in
this field thus far, the authors proposed that physiologically shed PrP may act protectively
in prion diseases and AD by blocking toxic oligomers and/or by precipitating them into
less toxic deposits [81,211].

RecPrP and N1 may also inhibit Aβ oligomerization, neutralize cytotoxicity of preex-
isting Aβ oligomers, prevent the binding of oligomers with cell surface PrPC and rescue the
Aβ-induced impairment of LTP [212]. As recPrP and N1 both contain proposed binding
sites of protein oligomers, both molecules were reported to also bind α-syn oligomers
as well as mediate the co-clustering of α-syn oligomers and AD-associated amyloid-β
oligomers [199].

PrPC is enriched in extracellular vesicles (EVs) [128,213,214]. Little is known regarding
the physiological functions of PrPC in EVs. Several studies have suggested that PrPC in
EVs protect cells against Aβ toxicity [214–217]. The mechanism behind the neutralization
of toxic Aβ oligomers by EVs is not known; nevertheless, it is presumed that it is similar to
the recPrP or N1-mediated process. It has been proposed that exosomal PrPC catches Aβ

oligomers at the N-terminal PrP region (amino acid residues 23–31 and 95–105) [203], neu-
tralizes the oligomers, promotes the formation of Aβ fibrils and upregulates internalization
and degradation of the aggregates by microglia [214–217]. As recPrP and anchored PrPC

have been shown to bind tau and α-syn oligomers [30], exosomal PrPs are expected to act
in the same manner. By binding free toxic tau or α-syn oligomers in the extracellular space,
exosomal PrPs prevent toxic oligomer binding to anchored PrPC and inhibit toxic signaling
in the CNS of patients with diseases. Exosomes associated with PrPSc have been shown to
be infectious and pose a danger of spreading prion disease [218–222]. Although there is no
direct study yet, exosomal PrPC might also induce CNS inflammation. More work needs to
be undertaken to examine other biological activities that exosomal PrPC may possess.

On the basis of the determined oligomer binding domains, researchers have designed
potential treatment strategies for AD based on synthetic peptides [204,223] and functional
Aβ oligomer-binding compounds [149]. The designed synthetic peptides have been shown
to reduce the initial rate of Aβ fibrillization, inhibit the aggregation pathway of Aβ by
reducing Aβ oligomer uptake and protect cultured hippocampal neurons from the oligomer-
induced retraction of neurites and loss of cell membrane integrity [204] whereas D-peptide
RD2D3 has been shown to be successful in interfering with the PrPC-Aβ oligomer assembly
and has been proposed as a promising therapeutic agent in AD [223].

7. Conclusions

The reviewed studies support the fact that prion protein and/or prion protein frag-
ments are involved in myelin homeostasis, ischemia and neurodegeneration where they
may take on different roles (Figure 2). According to the current information, anchored
PrP and/or released fragments (N1, shed PrP) interact with Adgrg6 to regulate peripheral
nerve myelin homeostasis. Although there have been attempts to connect PrP to other
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Adgrg6-mediated processes, no direct involvement has been perceived. In strokes, the
expression of PrP is upregulated. Anchored PrP takes part in mediating signaling pathways
through transmembrane and cytosolic receptor proteins. Although further study is needed,
the released forms may play decisive roles in neuroprotection and regeneration, including
the regulation of interactions between microglia and brain cells and the promotion of
neurogenesis. EVs and sEVs highly enriched in PrP fragments may be important deliv-
ery mechanisms in neuroprotection and neurodegeneration; further studies are needed
to prove their roles. In neurodegenerative diseases, anchored PrP acts as a receptor for
Aβ oligomers, α-syn oligomers and tau aggregates and may mediate oligomer-induced
cytotoxicity. The point of interaction between the oligomer and PrP may be an attractive
site for drug development but therapy may also include the regulation of other partners
involved in this process. Arguing their protective role, released PrP fragments may bind
toxic oligomers and enable their depletion. Supporting this role, shed PrP has been shown
to bind PrPSc and Aβ oligomers in amyloid plaques, which may be less toxic than oligomers.
To conclude, there are many indications suggesting that prion protein and prion protein
fragments may have multiple (sometimes even intertwined) roles in strokes and neurode-
generation. To undoubtedly elucidate their role(s) in these processes, further studies are
needed in these fields.
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Figure 2. Proteins, signaling pathways and interactions that may be affected by PrP and/or PrP
fragments. This scheme presents various proteins, signaling pathways and interactions that report-
edly involve PrP and/or its fragments. In ischemic stroke, PrP species were found to be involved
in modulating neuroprotection, neurite outgrowth, neurogenesis and angiogenesis. In neurode-
generative diseases, released PrP fragments may act protectively whereas anchored PrP regulates
oligomer-induced toxicity. PrP and its derivatives are also involved in Adgrg6-induced myelination
homeostasis (orange) and may be involved in microglia communication and differentiation as well as
regulating intercellular communication through EVs and sEVs, etc. Several of the proposed interplays
are regulated by a direct interaction with PrP species whereas others are regulated indirectly. Protec-
tive pathways and interactions are colored blue whereas green color presents harmful outcomes.



Int. J. Mol. Sci. 2022, 23, 1232 10 of 18

Author Contributions: V.K. conceptualized the manuscript scope and wrote the first draft; V.Č.Š.
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