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ABSTRACT: Structural modeling of proteins from cryo-electron
microscopy (cryo-EM) density maps is one of the challenging
issues in structural biology. De novo modeling combined with
flexible fitting refinement (FFR) has been widely used to build a
structure of new proteins. In de novo prediction, artificial
conformations containing local structural errors such as chirality
errors, cis peptide bonds, and ring penetrations are frequently
generated and cannot be easily removed in the subsequent FFR.
Moreover, refinement can be significantly suppressed due to the
low mobility of atoms inside the protein. To overcome these
problems, we propose an efficient scheme for FFR, in which the
local structural errors are fixed first, followed by FFR using an
iterative simulated annealing (SA) molecular dynamics protocol with the united atom (UA) model in an implicit solvent model; we
call this scheme “SAUA-FFR”. The best model is selected from multiple flexible fitting runs with various biasing force constants to
reduce overfitting. We apply our scheme to the decoys obtained from MAINMAST and demonstrate an improvement of the best
model of eight selected proteins in terms of the root-mean-square deviation, MolProbity score, and RWplus score compared to the
original scheme of MAINMAST. Fixing the local structural errors can enhance the formation of secondary structures, and the UA
model enables progressive refinement compared to the all-atom model owing to its high mobility in the implicit solvent. The SAUA-
FFR scheme realizes efficient and accurate protein structure modeling from medium-resolution maps with less overfitting.

■ INTRODUCTION
Single-particle cryo-electron microscopy (cryo-EM) is a power-
ful tool to determine the three-dimensional (3D) structures of
biomolecules at near-atomic resolution.1 In the method, a 3D
density map of the target molecule is reconstructed from a large
number of 2D images of the molecule. Owing to the
development of various technologies, such as efficient sample
preparation, direct electron detection, and software for image
processing,2 high-resolution analyses have been realized for large
protein complexes and membrane proteins.3−5 The method also
enables us to understand protein dynamics by capturing
snapshots of the structures in their biological processes, such
as gene transcription6 and substrate transport.7 Although atomic
resolution has been recently achieved in some cases,8,9 typical
resolution is still 3−5 Å due to the intrinsic flexibility of proteins
in solution. Thus, reliable structure modeling from low- or
medium-resolution maps is one of the essential issues in
structural molecular biology.
Structure modeling from cryo-EM density maps is usually

conducted with computational techniques such as rigid-body
docking, flexible fitting, and de novo modeling.10−13 In rigid-
body docking, the entire protein structure is treated as an
assembly of component segments, and the positions and
orientations of each component are optimized with rigid-body
translations and rotations (6D search) to fit the density

map.14−16 Flexible fitting uses a complete model of the target
biomolecule. The initial structure, which is typically determined
with other methods such as X-ray crystallography, nuclear
magnetic resonance (NMR), or homology modeling, is
deformed using normal mode analysis (NMA),17,18 molecular
dynamics (MD) simulations,19−25 or their hybrid approach.26

De novo modeling predicts the structure from the density map
and amino acid sequence information. To date, various
methods, including Rosetta,27 EM-Fold,28 Pathwalking,29 and
MAINMAST,30 have been developed. Rosetta constructs a full-
atommodel based on the fragment assembly algorithm, in which
the predicted short fragments are assembled to fit the density
map using a 6D search. EM-Fold builds α-helical proteins by
placing α-helices on rod-shaped densities in the map based on a
Monte Carlo search. Pathwalking traces the Cα atoms in the
density map using a traveling salesman problem solver, while
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MAINMAST employs a minimum spanning tree algorithm and
tabu search.
The model obtained from de novo modeling is usually refined

with MD-based flexible fitting (flexible fitting refinement; FFR)
to remove steric clashes or repack the side chains. In themethod,
biasing potential that guides the structure toward the target
density is added to the molecular mechanics force fields. One of
the popular methods is cross-correlation coefficient (c.c.)-based
flexible fitting, which uses the c.c. between the experimental and
simulated density maps in the biasing potential.19,21 On the
other hand, Molecular Dynamics Flexible Fitting (MDFF)
introduces a biasing potential that is proportional to the
Coulomb potential derived from the experimental density map
and also the secondary structure (SS) restraint potential.20

MAINMAST predicts the Cαmodel, which is further converted
to an all-atom (AA) model with PULCHRA,31 followed by the
refinement with MDFF.30 The iterative MD-Rosetta protocol,
which iteratively performs Rosetta loop prediction and MDFF,
has been proposed to improve the quality of themodel predicted
from EM-Fold.32,33 Enhanced sampling algorithms such as the
replica-exchange method34 have been widely employed to
search the global-energy-minimum structure in flexible
fitting.16,35,36 The CryoFold algorithm37

first performs the
model building using targeted MD38 combined with Bayesian-
inference-based restraints (MELD),39 which utilizes the Cα
atom positions and Cα−Cα distance information obtained from
MAINMAST, and then refines the model with resolution-
exchange MDFF (ReMDFF).35 Although replica-exchange
schemes with the AA model could provide an accurate structure
model compared to the other conventional schemes, they must
employ multiple replicas of the target system, resulting in large
computational cost. Simple protocols with low computational
cost that maintain high accuracy should be needed for efficient
structure modeling.
In structure refinement, another important task besides the

global-energy-minimum search is the removal of local structural

errors such as chirality errors and cis peptide bonds. These errors
are frequently generated in de novo structure modeling,
especially when a full-atom model is constructed after the
main-chain modeling such as MAINMAST and Pathwalking.
The errors can be removed using energy minimization or MD
simulation with error-fixing restraints such as the dihedral angle
restraint at ω = 180° for the cis peptide bond. Many model
building tools provide some functions for automatic or manual
modifications of the errors, including geometry restraint or
inversion of the corresponding atoms.40−42 In particular,
ISOLUDE performs on-the-fly flexible fitting, where the errors
visualized in themonitor can bemanually removed with amouse
or haptics tool.43 Another troublesome error is ring penetration,
where a covalent bond penetrates an aromatic ring. This
situation can accidentally occur, especially when a coarse-
grained (CG) model is converted to an AA model.44 In fact,
PULCHRA can generate penetrated rings, even though the
algorithm tries to minimize the possibility of occurrence of ring
penetration.31 Because ring penetration is difficult to solve, an
effective algorithm that automatically detects or fixes such errors
should be developed.
To solve these problems, we propose an efficient flexible

fitting scheme for refining the decoys obtained from de novo
modeling, where MD-based flexible fitting with an iterative
simulated annealing (SA) protocol is conducted, during which
the united atom (UA) model and implicit solvent model are
employed; this scheme is, therefore, called “SAUA-FFR”. The
UA model, which incorporates hydrogen atoms of CH3, CH2,
and CH groups into the carbon atoms, can maintain the atomic
resolution, and the implicit solvent model considers solvent
effects with low computational cost. We use the decoys obtained
from MAINMAST.30 The local structural errors in the decoys
are automatically fixed using new functions implemented in MD
software GENESIS,45,46 which can address ring penetrations, cis
peptide bonds, and chirality errors. Our refinement scheme is
compared with the original scheme of MAINMAST using eight

Figure 1. Flowchart of the FFR. (A)Original scheme inMAINMAST, (B) improved scheme proposed in this study (SAUA-FFR and SAAA-FFR), and
(C) protocol to fix chirality errors, cis peptide bonds, and ring penetrations in step 2 of the SAUA-FFR or SAAA-FFR.
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selected proteins: F420-reducing hydrogenase α subunit
(FrhA), 20S proteasome core subunit (PCS), Sputnik virophage
(SV), Bordetella phage (BPP-1), transient receptor potential
vanilloid 1 (TRPV1), CARD domain of mitochondria antiviral
signaling protein (MAVS), bombyx mori cypovirus 1 (BmCPV-
1), and porcine circovirus 2 (PCV2). The models refined with
our scheme are also compared with those refined with the
Phenix real_space_ref ine tool. The results demonstrate that our
scheme can achieve progressive formation of SSs due to the high
mobility of atoms in the UA model, realizing efficient FFR.

■ METHODS
MAINMAST.MAINMAST is a powerful method for de novo

modeling.30 In the method, a tree structure is first constructed
by connecting local dense points in the density map (minimum
spanning tree). The structure is further refined with a tabu
search to find the longest pathway, which corresponds to the
main chain of the protein. The amino acid sequence is aligned to
the pathway by evaluating the matching between local densities
in the experimental map and those predicted from each amino
acid on the path, and then, the Cαmodel is constructed. Finally,
the AA model is generated from the Cα model, and it is
subjected to FFR. Previous work demonstrated good perform-
ance [average root-mean-square deviation (rmsd) = 2.68 Å)] for
the selected 30 proteins with 2.6−4.8 Å resolution maps.30

Figure 1A illustrates the flowchart of the original scheme in
MAINMAST, focusing on the protocol after generating the Cα
model. First, 500 possible models (decoys) are generated, and
then, the Cα model is converted to the AA model using
PULCHRA.31 Each model is subjected to energy minimization,
followed by refinement with MDFF.10,11 In the refinement, only
a single run is carried out at 300 K with g-scale 0.5. The restraints
that maintain the trans peptide bond and proper chirality are
employed, while the restraints of the SS are not applied in the
system. The best model is selected from the 500 models
according to the MDFF energy, which is composed of the EM
biasing potential and restraint energy for fixing chirality errors
and cis peptide bonds.
The SAUA-FFR Scheme. In this study, we propose an

efficient scheme for this FFR method (namely, SAUA-FFR)
using the decoys obtained from MAINMAST, which is mainly
composed of four steps after generating the AA model (Figure
1B, left scheme). In step 1, energy minimization is carried out to
remove steric clashes in the initial decoy. In step 2, energy
minimization and restrained MD simulation are further carried
out to fix local structural errors such as chirality errors, cis
peptide bonds, and ring penetrations, where the specific
treatment and restraints are applied to the errors (Figure 1C;
for details, see the next paragraph). In step 3, FFR is carried out
using the UA model in an implicit solvent model, where the SA

MD is iterated five times. In step 4, the UAmodel is converted to
the AA model by generating hydrogen atoms, and the FFR with
the same EM biasing potential is carried out once in the implicit
solvent. In steps 3 and 4, c.c.-based flexible fitting is employed,
which introduces the biasing potential EEM = k (1 − c.c.) with
the force constant k. Here, various force constants ranging from
low to high values (N force constants) are examined to generate
a “pool” containing strongly or weakly fitted structures because
the optimal value for the force constant is unknown. Thus, the
pool contains 500 × N decoys in total. Any restraints except for
the EM biasing potential are not applied in the system. The best
model is selected from the 500 × N decoys based on three
validation scores: the c.c. between the experimental and
simulated density maps, the RWplus score,47 and the
MolProbity score48 (for details, see the Results section). For
comparison, we also examine the AA model in step 3 (SAAA-
FFR; Figure 1B, right scheme).
Local structural errors are frequently observed in the energy-

minimized structure at step 1. The chirality error can occur in
the Cα atoms of the amino acids except for Gly or Cγ atoms of
Thr and Ile. To fix the error, the corresponding hydrogen atom
attached to the chiral center is inverted, and energy
minimization is carried out (Figure 1C top).49 The errors can
also be easily fixed through the MD simulation using the UA
model (step 3 in the SAUA-FFR), because the geometry around
the chiral center, which involves the hydrogen atom, is regulated
with the improper torsion angle potential. In the cis peptide
bond, the backbone dihedral angle ω is close to 0°, which is
energetically unstable. To invert the cis peptide bond to a trans
peptide bond, the dihedral angle restraint at ω = 180° is applied
to the corresponding part during theMD simulation (Figure 1C,
middle). Note that cis peptide bond is not always an error, and it
can often be found even in high-resolution X-ray crystal
structures.49 In this study, we applied restraints to all backbone
peptide bonds except for those in proline. Another typical error
is ring penetration, in which one covalent bond accidentally
penetrates the ring of Phe, Tyr, Trp, His, or Pro (Figure 1C,
bottom). This error can be detected based on the bond length of
the ring because the penetration makes a ring larger. To fix the
error, we first geometrically reduce the ring size and then carry
out energy minimization, which allows the penetrating bond to
escape from the ring owing to the quick recovery of the natural
ring size (see Video S1). The functions for automatically
detecting and fixing errors are available in MD software
GENESIS ver 1.6 or later.45,46

Test Systems. To examine the efficiency and reliability of
our scheme, we selected eight proteins: FrhA, PCS, SV, BPP-1,
TRPV1, CARD domain of MAVS, BmCPV-1, and PCV2 (see
Table 1). In this study, we used the same initial decoys and target
density maps as those used in the previous work.30 We consider

Table 1. Summary of the Target Systems

protein EMD ID res. (Å) PDB ID α-helix/β-sheet chain/residues rmsd (Å)a

FrhA 2513 3.36 4CI0 181/58 A/2−386 3.80
PCS 3231 3.6 5FMG 56/41 K/2−195 15.00
SV 5495 3.5 3J26 29/151 A/1−508 9.46
BPP-1 5764 3.5 3J4U 65/49 A/5−331 33.10
TRPV1 5778 3.275 3J5P 220/0 A/381−719 6.04
MAVS 5925 3.64 3J6J 68/0 A/1−97 3.34
BmCPV-1 6374 2.90 3JB0 103/37 D/1−292 1.67
PCV2 6555 2.90 3JCI 0/86 A/42−231 2.32

aThe Cα rmsd with respect to the native structure calculated with the MMTSB toolset (rms.pl).58
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the PDB coordinates as the answer of the prediction, which have
been determined by fitting the reference X-ray crystal structure
or homology model (MAVS and PCS),50,51 manual building
(SV, BPP-1, BmCPV-1, and PCV2),52−55 or their combinations
(FrhA and TRPV1).56,57 The proteins are composed of α-
helices, β-sheets, or their mixtures (5th column in Table 1).
Note that each system is a part of a large complex (6th column in
Table 1). Thus, to make the target density map, the
corresponding region was clipped out of the experimental
map. The resolution of the original map is approximately 3 Å.
Previous work demonstrated that these test sets show different
qualities in the predicted best model in terms of rmsd with
respect to the native conformation.30 Specifically, the prediction
was successful for BmCPV-1 (rmsd = 1.67 Å) but not for PCS
(15.00 Å), SV (9.46 Å), or BPP-1 (33.10 Å).
Computational Details of SAUA-FFR and SAAA-FFR.

We employed the CHARMMC1959 and C36m force fields60 for
the UA and AA models, respectively. In step 1 of the improved
scheme (Figure 1B), a 1000-step energy minimization was
carried out in vacuum. In step 2, energy minimization and
restrained MD simulations were performed. To fix the cis
peptide bond, we conducted MD simulations at 300 K in
vacuum using dihedral angle restraints with a force constant of
10 kcal/mol/rad2, where the positional restraint was also applied
to all Cα atoms (k = 0.5 kcal/mol/Å2). In step 3 of the SAUA-
FFR, c.c.-based FFR19 was carried out using the UA model with
the SAMD protocol (100 ps × 5 cycles = 500 ps in total), where
the temperature was decreased from 600 to 300 K in each cycle.
We used the effective energy function (EEF1) model for the
implicit solvent model.61 In step 3 of the SAAA-FFR, the AA
model was employed with the generalized Born/solvent-
accessible surface area (GB/SA) implicit solvent model
(OBC2 model) using the same simulation conditions.62 Here,

we examined five different force constants (k = 2000, 4000,
6000, 8000, and 10,000 kcal/mol) in the EM biasing potential
for each system. In the MD simulations, we used a cutoff
distance of 18 Å. The Langevin thermostat was employed for
temperature control, and the equations of motion were
integrated with the leapfrog algorithm. All MD simulations
were performed using GENESIS.45,46

■ RESULTS

Removal of Local Structural Errors from Initial Decoys.
First, we analyzed the number of local structural errors in all
decoys to investigate the efficiency of our error-fixing algorithms.
In Table 2, we list the average number of chirality errors, cis
peptide bonds, and ring penetrations in the 500 decoys obtained
at step 2 of the original scheme, step 1 of the improved scheme,
and step 2 of the improved scheme. Here, the cis peptide bond
was counted using the VMD cispeptide plugin,40 and the chirality
errors and ring penetrations were counted with the GENESIS
check_structure function. Note that the numbers in the table are
based on a “warning” message for the suspicious moiety in the
molecule. We can see that in the original scheme, there are still
some errors even after the FFR with error-fixing restraints. On
the other hand, in the improved scheme, chirality errors, cis
peptide bonds, and ring penetrations are resolved or significantly
reduced. Specifically, in TRPV1, ring penetrations were found in
309 of 500 decoys at step 1 of the improved scheme, but they
were completely removed at step 2. These results suggest that
the simple protocol used in the original scheme cannot fully
solve local structural errors, and careful removal of the errors is
necessary before the FFR.

Structural Change during the FFR. To monitor the
progress of the refinement in each scheme, we analyzed the c.c.
between the experimental and simulated density maps for all 500

Table 2. Average Number of Local Structural Errors (Chirality Errors, cis Peptide Bonds, and Ring Penetrations) in One Decoy
Obtained at Step 1 or Step 2 of the Original and Improved Schemesa

system error original scheme step 2 improved scheme step 1 improved scheme step 2

FrhA chirality error 1.216 (1.703) 0.006 (0.077) 0.000 (0.000)
cis peptide bond 10.708 (3.698) 11.546 (3.578) 3.716 (1.733)
ring penetration 0.226 (0.489) 0.180 (0.428) 0.002 (0.045)

PCS chirality error 1.210 (2.011) 0.000 (0.000) 0.000 (0.000)
cis peptide bond 9.348 (3.393) 9.870 (3.816) 0.192 (0.437)
ring penetration 0.280 (0.605) 0.244 (0.541) 0.000 (0.000)

SV chirality error 2.204 (2.467) 0.002 (0.045) 0.000 (0.000)
cis peptide bond 16.698 (6.353) 19.138 (6.485) 4.080 (2.051)
ring penetration 0.542 (0.867) 0.400 (0.724) 0.006 (0.077)

BPP-1 chirality error 1.260 (2.205) 0.000 (0.000) 0.000 (0.000)
cis peptide bond 12.166 (4.110) 13.504 (4.200) 1.700 (1.302)
ring penetration 0.218 (0.463) 0.206 (0.442) 0.002 (0.045)

TRPV1 chirality error 2.064 (2.467) 0.006 (0.077) 0.000 (0.000)
cis peptide bond 17.014 (5.317) 19.378 (6.296) 1.654 (1.248)
ring penetration 0.668 (1.100) 0.488 (0.700) 0.000 (0.000)

MAVS chirality error 0.574 (1.098) 0.000 (0.000) 0.000 (0.000)
cis peptide bond 4.338 (2.427) 4.648 (2.591) 1.198 (0.942)
ring penetration 0.074 (0.277) 0.058 (0.234) 0.002 (0.045)

BmCPV-1 chirality error 0.234 (0.632) 0.000 (0.000) 0.000 (0.000)
cis peptide bond 4.282 (1.958) 4.990 (2.072) 1.582 (1.050)
ring penetration 0.170 (0.503) 0.158 (0.448) 0.004 (0.063)

PCV2 chirality error 0.788 (1.805) 0.000 (0.000) 0.000 (0.000)
cis peptide bond 3.426 (2.372) 4.406 (2.355) 1.310 (1.118)
ring penetration 0.228 (0.522) 0.216 (0.491) 0.002 (0.045)

aThe values in parentheses represent the standard deviation.
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models. Here, we focus on the five highest c.c. models obtained
at 500 ps of step 3. Figure 2A,B illustrates the time evolution of

the averaged c.c. of the five highest c.c. models for PCV2 in the
SAUA-FFR and SAAA-FFR, respectively. The average was
calculated at the last step of each SA cycle. Note that cycle = 0
corresponds to the initial model generated from PULCHRA.
For comparison, we also plot the results of the original scheme
(black). In all cases in the SAUA-FFR and SAAA-FFR using
different biasing force constant k values, the averaged c.c. value
increased from the initial value, demonstrating that most models
were successfully fitted to the target density map during the
iterative FFR. The original scheme also showed an increase in
the averaged c.c. value, and the result was similar to the averaged
c.c. value of SAUA-FFRk=8000 and SAAA-FFRk=10,000.
The averaged c.c. value also increased as the force constant

increased (from brown to purple lines in Figure 2A,B). If the
same force constant was used in SAUA-FFR and SAAA-FFR, a
higher c.c. value was obtained in SAUA-FFR than in SAAA-FFR.
This is mainly because the structural energy [(i.e., molecular-
mechanics potential energy (EMM) + solvation free energy
(ΔGsolv)] in the UA model is lower than that in the AA model,
and thus, the EM biasing energy (EEM) in the SAUA-FFR had a
relatively larger contribution to the fitting than that in the SAAA-
FFR. Similar tendencies were observed in the other seven
systems (see Figure S1). We also found that the c.c. value could
decrease from the initial value, especially when weak force
constants (e.g., k = 2000 kcal/mol) are used for large systems
such as BmCPV-1. In such cases, EEM is still inferior to the
structural energy, resulting in less fitting to the density map.
These results indicate that the optimal force constant for the
FFR depends on the system size as well as force fields or
molecular models, although it is unknown a priori.
We analyzed the averaged rmsd of the Cα atoms with respect

to the native structure for the five highest c.c. models [Figure
2C,D]. In most cases, except for SAAA-FFRk=2000, the averaged

rmsd value decreased from the initial value by 0.2−0.4 Å, and it
almost converged at cycle = 2 or 3. In SAAA-FFRk=2000, the
biasing forcemight be too weak to guide the initial model toward
the native structure. We can see that a smaller rmsd was mostly
obtained with a strong force constant (e.g., k = 6000, 8000, and
10,000 kcal/mol). However, the smallest rmsd was not always
obtained with the strongest force constant, as in SAAA-
FFRk=6000 [blue line in Figure 2D]. One of the reasons might
be that a moderate force constant is required in some cases to
prevent the structure from becoming trapped in local energy
minima. Another reason might be overfitting, where the
obtained structure is distorted due to fitting to the noisy density
map. This issue is further discussed in the next subsection. A
comparison between the three schemes suggests that the SAUA-
FFR and SAAA-FFR schemes seem to bemore effective than the
original scheme. In fact, SAUA-FFRk=8000 and SAAA-FFRk=10,000
yielded a smaller rmsd compared to the rmsd of the original
scheme, even though these three schemes showed almost
identical c.c. values [compare the black, green, and purple lines
in Figure 2A,B].
For the other systems, we observed similar results, where the

stronger force constant yielded a smaller rmsd (see Figure S1).
In MAVS and BmCPV-1, the averaged rmsd successfully
decreased by 0.2−0.6 Å using k = 6000−10,000 kcal/mol in
both SAUA-FFR and SAAA-FFR. On the other hand, in FrhA,
PCS, SV, BPP-1, and TRPV1, the rmsd did not change even with
the strongest force constant. This is presumably because the
structure of the initial model deviated largely from the native
structure (e.g., averaged initial rmsd = 6.5−8.8 and 3.5−4.6 Å in
TRPV1 and FrhA, respectively), and the conformational search
was not conducted sufficiently. These results suggest that the
FFR seems to work effectively if the initial rmsd is less than 3.5 Å.

Evaluation of the Decoys. One of the difficult issues in
protein structure prediction is the selection of the best model
from a large number of decoys. In typical flexible fitting
approaches using an X-ray crystal structure as the initial model,
we may simply choose a model according to a score that
represents goodness of fitting, such as c.c., because the model
would already have a protein-like structure. In the FFR for de
novo models, however, many structures that show a high c.c.
value but include a nonprotein-like conformation might be
contained in the decoys and should be discriminated from near-
native structures. In addition, we should address overfitting.
Thus, the best model must be carefully selected based on not
only the goodness of fitting but also any scores that validate the
protein structure.
To examine this, we first analyzed the distribution of rmsd as a

function of c.c. Figure 3A shows the c.c.−rmsd plot obtained at
the last step of SAUA-FFR (step 4 in Figure 1B) for PCV2,
where the brown, orange, blue, green, and purple points were
obtained with k = 2000, 4000, 6000, 8000, and 10,000 kcal/mol,
respectively. Hereafter, we define the 500 models obtained with
each force constant as a “decoy set”. We see that the rmsd
decreases as the c.c. increases in each decoy set, and the
distribution shifts toward a higher c.c. as the force constant
increases. Each decoy set exhibits a funnel-like distribution,
where the bottom decoy is close to the native structure (black
point). Similar distributions were observed in the other systems
except for PCS and BPP-1 (see Figure S2). In these two cases,
improvement of the initial main-chain modeling might be
required to reproduce the funnel-like distribution. We suggest
that if higher c.c. models are selected, smaller rmsd models can
be obtained.

Figure 2. Time evolution of the averaged c.c. and Cα rmsd values for
the five highest c.c. models of PCV2. (A) c.c. in SAUA-FFR, (B) c.c. in
SAAA-FFR, (C) Cα rmsd in SAUA-FFR, and (D) Cα rmsd in SAAA-
FFR. Brown, orange, blue, green, and purple lines are the results
obtained from the FFR using k = 2000, 4000, 6000, 8000, and 10,000
kcal/mol, respectively, and the black line corresponds to the original
scheme (previous work).30
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Here, the model with the highest c.c. was usually obtained
with the strongest force constant, and it corresponded to the
model with the smallest rmsd in some cases (e.g., SAUA-FFR for
FrhA and SAAA-FFR for TRPV1). However, in most cases, the
smallest rmsd was often obtained with amoderate force constant
(see Table S1). Particularly, in SAUA-FFR for PCV2 [Figure
3A], the model with the highest c.c. was found in the decoy set
with k = 10,000 kcal/mol (c.c. = 0.816 and rmsd = 1.75 Å), while
the model with the smallest rmsd was in k = 6000 kcal/mol (c.c.
= 0.778 and rmsd = 1.37 Å). These results suggest that to select a
model with a smaller rmsd, we should search all decoys
generated with various force constants ranging from low to high
values. Then, we can eliminate the dependency of the force

constant or simultaneously determine the optimal force constant
that gives the best model.
The best model should have a protein-like conformation. To

investigate the accuracy of the protein structure in the decoys,
we first examined the RWplus score, which is a statistical energy
function that evaluates the protein structure based on the
orientation of the side chains.47 Figure 3B shows a heat map of
the rmsd projected onto the c.c.−RWplus plot obtained from
SAUA-FFRk=8000 for PCV2. The decoy set exhibits a funnel-like
distribution, where the RWplus decreases as the c.c. increases.
The rmsd also decreases as the c.c. increases and RWplus
decreases, and thus, the bottom of the funnel is close to the
native structure (black point). Similar tendencies were observed
in the other decoy sets (data not shown). We also found that the
model with the best RWplus does not always correspond to the
model with the smallest rmsd (rmsd = 5.6 Å) if it has a low c.c., as
indicated by the arrow in Figure 3B. Therefore, to find near-
native and protein-like structures in the decoys, we should
choose decoys that have good scores for both c.c. and RWplus.
Another useful method to validate the protein structure is

MolProbity, which assesses protein geometry using clash-score
and conformational outliers in the main chain and side chains.48

Figure 3C shows a heat map of the MolProbity score projected
onto the c.c.−RWplus plot. We can see that the MolProbity
score decreases as the c.c. increases and the RWplus decreases,
suggesting that the decoys at the bottom of the funnel are again
likely to have a protein-like structure. Interestingly, as indicated
by the arrow, the model with a high c.c. showed worse
MolProbity and RWplus scores than the other nearby decoys.
For such decoys, we should suspect overfitting, in which the
structure is distorted to some extent due to fitting to the noisy
density. Thus, we exclude such decoys from the candidates of
the best model.

Selection of the Best Model. Based on the above
observations, we propose a scheme for the best model selection,
which consists of three steps (Figure 4). After obtainingN decoy

sets (N × 500 decoys in total) using various force constants, we
first decide the Top5N models, where the 5 highest c.c. models
are selected from each decoy set. This step can filter out large
rmsd models or less-fitted models. Then, we select Top5 models
from the Top5Nmodels based on the RWplus score to filter out
nonprotein-like structures and eliminate the dependency of the
force constant. Finally, we select the best model from the Top5
models based on the MolProbity score to further filter out

Figure 3. Distribution of the decoys obtained from SAUA-FFR for
PCV2. (A) Distribution of the Cα rmsd with respect to the native
structure. Note that decoys with a large rmsd (>10 Å) were excluded.
(B) Heat map of the rmsd projected onto the c.c.−RWplus plot
obtained from SAUA-FFRk=8000. (C) Heat map of theMolProbity score
projected onto the c.c.−RWplus plot obtained from SAUA-FFRk=8000.

Figure 4. Proposed scheme for the selection of the best model from the
decoys obtained from either SAUA-FFR or SAAA-FFR.
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nonprotein-like structures and eliminate the possibility of
overfitting.
Figure 5A shows the best model of each system obtained from

the original scheme (blue), SAUA-FFR (purple), and SAAA-

FFR (green) compared to the native structure (gold). Note that
the best model in the original scheme was selected using the
previous protocol (see the Methods section).30 Obviously, all
best models obtained from the SAUA-FFR and SAAA-FFR have

Figure 5. Best models obtained from the original, SAUA-FFR, and SAAA-FFR schemes. (A) Comparison of the native structure and the predicted best
models. (B) Deviations of the predicted best model from the native structure (blue: small deviation and red: large deviation). The PyMOL
colorbyrmsd.py tool was used to make a color map.63
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much more SS than those from the original scheme. In the case
of FrhA, both α-helices and β-strands are successfully yielded in
the SAUA-FFR and SAAA-FFR but not in the original scheme.
The rmsd in the original, SAUA-FFR, and SAAA-FFR schemes
was 3.80, 3.30, and 4.21 Å, respectively, demonstrating the good
performance of SAUA-FFR. Similar tendencies were observed in
PCS, SV, BPP-1, MAVS, BmCPV-1, and PCV2. In the case of
TRPV1, SAUA-FFR showed a larger rmsd (9.45 Å) than that of
the other two schemes. However, the latter two schemes also
showed a large rmsd (6.04 or 5.95 Å). These large rmsds mainly
originate from a specific region of the protein. Figure 5B
illustrates the deviations of the predicted model from the native
structure, where the red and blue regions have large and small
deviations in the Cα atom position, respectively. In the case of
TRPV1, the prediction for most regions was successful, but one
α-helix (indicated by the arrow) shifted by three turns, resulting
in a large rmsd. This shift in the α-helix might be difficult to
discriminate from the native conformation using the current
protocol. This point will be discussed later.
In Table 3, we summarize the structural properties of each of

the best models. In most cases, the rmsd in SAUA-FFR is smaller
than that in the original scheme or SAAA-FFR. Some structural

errors were generated in the original scheme, while they were
significantly reduced in SAUA-FFR and SAAA-FFR. The
reproducibility of the SS in SAUA-FFR is better than that in
the original scheme or SAAA-FFR. One of the most remarkable
results was 85.7% in SAUA-FFR for BmCPV-1, in which both α-
helices (93.2%) and β-strands (64.9%) were well formed in the
predicted model. SAUA-FFR also showed better MolProbity
and RWplus scores. Similar tendencies were observed in the
averaged structural properties of the Top5 models (see Table
S2). In Tables 3 and S2, we also show the results of the
refinement using Phenix real_space_ref ine.42 We carried out a
basic scheme consisting of minimization global, local grid search,
morphing, and SA (simulated_annealing = every_macro_cycle
and the other options are default) for the AA model generated
from PULCHRA. The best model was selected based on the c.c.
value. We see that the results are similar to those in the original
scheme, and the reproducibility of the SS is still low. If the initial
model deviates largely from the ideal structure, the refinement
might not work well in the basic protocol of Phenix. Overall, the
SAUA-FFR showed better performance for most cases than the
other schemes.

Table 3. Summary of the Structural Properties of the Best Model Predicted from Each Schemea

system scheme c.c. rmsd (Å) rank chiral errors/cis peptide bonds/ring penetrations SS (%) MolProbity RWplus (kcal/mol)

FrhA original 0.795 3.80 9 0/6/0 3.8 2.55 −67,852
SAUA-FFR 0.793 3.30 3 0/1/0 53.1 2.42 −74,796
SAAA-FFR 0.739 4.21 100 0/0/0 48.5 2.37 −72,563
Phenix 0.781 3.82 4 0/4/0 16.7 2.46 −67,886

PCS original 0.725 15.00 102 1/7/0 0.0 2.43 −33,168
SAUA-FFR 0.737 8.87 4 0/1/0 26.8 2.57 −35,001
SAAA-FFR 0.640 14.62 273 0/0/0 9.3 2.49 −33,713
Phenix 0.698 14.50 14 0/5/0 4.1 2.64 −33,728

SV original 0.758 9.46 1 0/8/0 15.6 2.52 −89,093
SAUA-FFR 0.732 9.36 3 0/0/0 44.4 2.15 −88,184
SAAA-FFR 0.528 10.05 10 0/0/0 21.7 2.19 −90,578
Phenix 0.757 9.43 1 0/8/0 12.8 2.49 −88,216

BPP-1 original 0.799 33.10 417 0/4/0 3.5 2.94 −42,912
SAUA-FFR 0.667 27.58 274 0/0/0 7.0 2.25 −44,807
SAAA-FFR 0.709 33.04 2201 0/0/0 7.9 2.35 −45,125
Phenix 0.781 33.18 411 0/1/0 0.0 2.93 −42,729

TRPV1 original 0.755 6.04 6 0/17/0 9.1 2.60 −55,334
SAUA-FFR 0.705 9.45 396 0/0/0 54.1 2.03 −62,981
SAAA-FFR 0.710 5.95 25 0/1/0 42.7 2.18 −61,773
Phenix 0.732 7.99 40 0/6/0 9.5 2.42 −50,946

MAVS original 0.830 3.34 31 1/4/0 14.7 2.69 −14,178
SAUA-FFR 0.803 2.91 110 0/0/0 64.7 1.62 −18,265
SAAA-FFR 0.820 4.01 1406 0/0/0 57.4 2.23 −17,147
Phenix 0.805 3.43 22 0/4/0 17.6 2.47 −15,059

BmCPV-1 original 0.837 1.67 2 0/4/0 43.6 2.22 −58,214
SAUA-FFR 0.856 1.51 3 0/0/0 85.7 2.15 −62,604
SAAA-FFR 0.834 1.73 16 0/1/0 70.7 1.90 −61,319
Phenix 0.802 1.86 2 0/2/0 50.7 2.18 −58,035

PCV2 original 0.777 2.32 30 0/0/0 23.3 2.21 −29,185
SAUA-FFR 0.798 2.08 124 0/1/0 69.8 2.09 −33,403
SAAA-FFR 0.798 2.50 168 0/0/0 69.8 1.82 −33,314
Phenix 0.772 1.72 1 0/1/0 38.4 2.30 −31,378

armsd: Cα rmsd with respect to the native structure using the MMTSB toolset (rms.pl).58 c.c.: cross-correlation coefficient between the
experimental and simulated density maps using the VMD mdff i tool.20,40 Rank: rank of the rmsd over all decoys (500 decoys in the original scheme
and 500 × 5 decoys in the improved schemes). Chirality errors: number of chirality errors using the GENESIS check_structure function. Cis peptide
bonds: number of cis peptide bonds using the VMD cispeptide plugin. Ring penetrations: number of ring penetrations using the GENESIS
check_structure function. SS: reproducibility of the α-helix and β-strand residues using the DSSP program (symbols H and E were counted).64
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In the 5th column of Table 3, we show the rank of the best
models in terms of the rmsd. Some best models have a high rank.
In particular, the rank of the best model obtained from the
SAUA-FFR for FrhA, SV, and BmCPV-1 was 3/2500. On the
other hand, the rank was 124/2500 in the case of PCV2. In this
case, the smallest rmsd decoy (1.37 Å) was filtered out because it
had worse validation scores (MolProbity = 2.56 and RWplus =
−32,867 kcal/mol) and a lower reproducibility of SS (66.3%)
than those in the best model. Basically, our scheme aims to
reduce overfitting as much as possible in the candidate decoys.
Here, we also emphasize that the Top5 models actually
contained the smallest rmsd model in some cases (e.g., SAUA-
FFR for TRPV1, SAAA-FFR for MAVS, and SAAA-FFR for
BmCPV-1; see Table S2), demonstrating the good performance
of our scheme.
Why the Formation of SS Was Enhanced? One of the

remarkable features of our improved schemes is the progressive
formation of SS (7th column in Table 3). To investigate how SS
were formed during the refinement, we analyzed the time
evolution of the average number of residues that formed α-
helices or β-strands. Figure 6A shows the results of the DSSP
analysis64 for the five highest c.c. models of BmCPV-1 in SAUA-
FFR (left panel) and SAAA-FFR (right panel). In the native
structure, there are 140 residues that form SS (103 α-helix and
37 β-strand residues). We found that in the SAUA-FFR, SS were
quickly generated at cycle 1 and gradually increased up to ∼135
at cycles 2−5. On the other hand, fewer SS were generated in the
SAAA-FFR (∼120) and the original scheme (∼70). Similar
results were obtained in the other seven systems (see Figure S3).
One of the reasons for the progressive formation of SS is

presumably the high mobility of atoms in the UA model. Figure
6B shows the averaged displacement of the Cα, Cβ, Cγ, and Cδ
atoms in the surface-exposed residues (left panel) and buried
residues (right panel) of PCV2. Here, the purple, green, and blue
bars were obtained from SAUA-FFRk=4000, SAUA-FFRk=8000, and
SAAA-FFRk=8000, respectively. We see that the displacement is
suppressed if the stronger force constant is used (compare

purple and green bars) or if the residues are buried inside the
protein (compare left and right panels). If we compare SAUA-
FFRk=4000 (purple) and SAAA-FFRk=8000 (blue), which showed
identical results in terms of c.c. and rmsd (see Figure 2), the
displacement of the UA model is larger than that of the AA
model. In the UAmodel, hydrogen atoms of CH3, CH2, and CH
groups are incorporated into the carbon atoms. Therefore, the
molecule represented with the UA model is less dense than that
with the AAmodel, resulting in a higher mobility of atoms in the
UAmodel. The implicit solvent model can also contribute to the
high mobility of atoms or quick relaxation of the system because
there are no explicit waters around the protein.
Treatment of local structural errors such as chirality errors, cis

peptide bonds, and ring penetrations is important for the
formation of SS because these errors can prevent polypeptides
from forming a proper hydrogen bond network. In Figure 6C,
we show two examples, where SS were correctly formed by fixing
cis peptide bonds (top panels) and ring penetrations (bottom
panels). Particularly, fixing ring penetrations is important to
stabilize theMD simulation because these errors can easily cause
the SHAKE error around the aromatic ring or penetrating
covalent bonds. Chirality errors in the Cα atom can also disrupt
the α-helix due to steric clashes between side chains.66 Overall,
we suggest fixing these errors before the FFR, and using the
combination of the UA model and implicit solvent model are
useful for the efficient structure refinement of the decoys
obtained from de novo modeling.

■ DISCUSSION
Computational de novo modeling is usually useful for the
density maps at 3.5−5 Å. In fact, if the resolution of the density
map is high enough to recognize the type of side chains (e.g.,
higher than 3.0 Å), manual de novomodeling should be possible
by tracing the high dense points in the map. If the resolution is
not so high (e.g., lower than 4.0 Å), computational de novo
modeling can give us a good hint for reliable structure modeling.
MAINMAST is useful for 4−5 Å or higher resolution maps

Figure 6. Formation of SS during the FFR. (A) Time evolution of the average number of SS (α-helix + β-strand) in the five highest c.c. models of
BmCPV-1 during SAUA-FFR (left) and SAAA-FFR (right). In the analysis, symbols H (α-helix) and E (β-strand) obtained from DSSP were counted.
(B) Average displacement of the Cα, Cβ, Cγ, and Cδ atoms in the surface-exposed residues (left) and buried residues (right) before and after the FFR.
Here, exposed and buried residues were defined according to the relative solvent accessibility of each residue (criteria = 50%), which was computed
with the Naccess program.65 (C) Examples of the local structural errors that prevented the formation of α-helices (top) and β-sheets (bottom). Right
panels show the correct formation of SS after fixing the errors using our algorithms.
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because the backbone is recognized in such maps.30 In this
study, we employed the PDB coordinates determined from the
density maps at a slightly higher resolution (2.9−3.6 Å) because
the native structure, which is needed to evaluate the protocols, is
more reliable.
Although the obtained model can be refined with the flexible

fitting, local structural errors such as chirality errors, cis peptide
bonds, and ring penetrations should be fixed in advance to
obtain a more realistic model. Fixing of the errors can enhance
the formation of SS during the refinement. We note that the
errors can be mainly generated when the full-atom model is
constructed from the main-chain model. In fact, we found that
the full-atom model constructed from the Cα-model predicted
with Pathwalking contained some local structural errors in the
tested systems as in MAINMAST (see Table S3). On the other
hand, there were no chirality errors, no ring penetrations, and a
small number of cis peptide bonds in the Rosetta model, which
directly constructs a full-atom model.
Because more than 99.5% of peptide bonds in the native

proteins have cis conformation,67 we applied the dihedral angle
restraint (ω = 180°) to all peptide bonds for simplicity.
Spontaneous transition from cis to trans is difficult due to a high
energy barrier. To examine the possibility of the transition in the
decoys, we performed SAUA-FFR without the dihedral angle
restraints starting from the structure in which almost all peptide
bonds have cis conformation. We observed that 50% of the
peptide bonds had still cis conformation after the refinement in
the case of BmCPV-1 with SAUA-FFRk=10,000, suggesting that
the dihedral angle restraints are essential to fix the cis peptide
bonds.
In the proposed SAUA-FFR scheme, iterative SA MD

simulation is carried out using the UA model (CHARMM19
force field) in combination with the implicit solvent model
(EEF1). One of the advantages of the UA model is its low
computational cost compared to that of the AA model. The
EEF1 model is also faster than the GB/SA model.61 In fact, the
benchmark performance of SAUA-FFR was 46.5 ns/day for
FrhA using a typical Linux machine (Intel Xeon Gold 6130 2.10
GHz; 32 CPU cores), while it was 6.0 ns/day in SAAA-FFR. In
the scheme, a short MD simulation (typically 10−100 ps) seems
to be enough to obtain a converged structure because the
implicit solvent model enables quick equilibration of the system.
These features allow us to perform many parallel runs using a
supercomputer.
Another advantage of the UA model is that the model is

already close to the atomic resolution, enabling an easy
conversion to the AA model by just adding hydrogen to the
heavy atoms. To date, various CG models, such as Go-model,68

PRIMO,69 and SICHO,70 have been utilized for structure
modeling, including not only cryo-EM flexible fitting24,36,71 but
also general de novo protein structure prediction.72 Although
low-resolution molecular models are usually used to reduce
computational cost or to enhance conformational sampling, they
should eventually be converted to the AA model, which in turn
may cause structural errors such as ring penetration. Amultiscale
protocol combining the CG and AA models can avoid such
issues. For example, targeted MD simulation is carried out
starting from a certain conformation with the AA model using
the Cα atom positions as the reference, as in the CryoFold
algorithm37 or our multiscale flexible fitting protocol proposed
recently.73 However, such a conversion scheme requires
additional computation in addition to structure refinement.

In this study, we also proposed a new scheme for the best
model selection, where the decoys obtained from multiple FFR
runs with various force constants are screened using the
combination of the c.c., RWplus score, and MolProbity score.
This idea is based on the fact that we do not know the optimal
force constant that can minimize overfitting. In the first
screening, we use the c.c. to select the models that are fitted to
the density map. In the second and third screenings, we try to
find a model that has a protein-like conformation and minimal
overfitting using the RWplus and MolProbity scores without
considering the density map. For validation of themap-to-model
quality, various algorithms have been proposed.74−76 EMRinger
is useful to evaluate the side chain modeling based on the
consistency between the dihedral angle in the rotamer and the
local density of the map.77 The solvation free energy is also
useful for scoring because it can evaluate the exposure of
hydrophobic and hydrophilic residues on the protein surface.78

We suggest that screening decoys through multiple steps and
scores with and without the density map is essential in de novo
modeling from cryo-EM density maps.
Finally, we discuss further improvements of our scheme.

Among the eight proteins employed in this study, TRPV1 is the
only membrane protein. For such cases, using the implicit
membrane model79 is more reasonable than the implicit water
model. We applied the implicit micelle model (IMIC)80 to
TRPV1 in SAUA-FFR but found that the obtained results were
similar to those in the implicit water model. The structural
properties of the best model were rmsd = 6.79 Å, c.c. = 0.716,
reproducibility of SS = 55.5%, MolProbity score = 2.29, and
RWplus score = −59,940 kcal/mol. This is presumably because
the membrane environment does not significantly affect the
movement of atoms in the flexible fitting. The fitting force still
seems to be superior to the effect from the membrane or solvent.
However, we expect that the solvation free energy calculated in
the membrane environment is useful to select the best model or
to filter out the decoys that have abnormal conformations, such
as the shift of the transmembrane α-helices, as observed in our
calculations. Yuzlenko and Lazaridis81 and Dutagaci et al.82

suggested using a scoring function that includes the solvation
free energy calculated in the implicit membrane model for the
discrimination of the native conformation from decoys of
membrane proteins. The early stage of MAINMAST should also
be improved by considering the effect of the solvent and/or
membrane environment.

■ CONCLUSIONS

In this study, we propose the SAUA-FFR scheme for efficient
FFR, in which c.c.-based flexible fitting with the iterative SAMD
protocol is carried out using the UA model in combination with
the implicit solvent model. To obtain a model with less
overfitting, we carried out multiple FFR runs with various force
constants ranging from weak to strong values and screened the
decoys using a combination of the c.c., RWplus score, and
MolProbity score. Our scheme showed progressive formation of
SS owing to the high mobility of atoms in the UA model. Our
new algorithm for fixing local structure errors also contributed to
the correct formation of the hydrogen bond network in SS. We
expect that our scheme is useful for reliable de novo structure
modeling from cryo-EM density maps with low computational
cost.
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