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Abstract

Background: There is a vast need to find clinically applicable protein biomarkers as support in cancer diagnosis
and tumour classification. In proteomics research, a number of methods can be used to obtain systemic
information on protein and pathway level on cells and tissues. One fundamental tool in analysing protein
expression has been two-dimensional gel electrophoresis (2DE). Several cancer 2DE studies have reported partially
redundant lists of differently expressed proteins. To be able to further extract valuable information from existing
2DE data, the power of a multivariate meta-analysis will be evaluated in this work.

Results: We here demonstrate a multivariate meta-analysis of 2DE proteomics data from human prostate and
colon tumours. We developed a bioinformatic workflow for identifying common patterns over two tumour types.
This included dealing with pre-processing of data and handling of missing values followed by the development of
a multivariate Partial Least Squares (PLS) model for prediction and variable selection. The variable selection was
based on the variables performance in the PLS model in combination with stability in the validation. The PLS
model development and variable selection was rigorously evaluated using a double cross-validation scheme. The
most stable variables from a bootstrap validation gave a mean prediction success of 93% when predicting left out
test sets on models discriminating between normal and tumour tissue, common for the two tumour types. The
analysis conducted in this study identified 14 proteins with a common trend between the tumour types prostate
and colon, i.e. the same expression profile between normal and tumour samples.

Conclusions: The workflow for meta-analysis developed in this study enabled the finding of a common protein
profile for two malign tumour types, which was not possible to identify when analysing the data sets separately.

Background

Emerging molecular pictures of cancer makes it evident
that cancer portrays a group of diseases with numerous
mutations and effected cellular pathways cross many dif-
ferent tumour types. The same permuted pathways drive
tumour growth and metastasis in various cancer types;
however some of the molecular features are tissue and
tumour type specific. The key to personalized cancer
therapy is the ability to classify and characterize
tumours by molecular features to then be able to select
the therapy [1]. Proteome analysis can provide valuable
phenotypic information of tumour tissue on the molecu-
lar level. Proteomics, the global analysis of a proteome,
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has contributed to the understanding of global protein
changes in cells [2].

Two-dimensional gel electrophoresis (2DE) has been,
and still remains, a fundamental tool in expression pro-
teomics. Several of the 2DE studies published over the
years have reported lists of differently expressed proteins
that regardless of experiment, tissue and species to a
large extent overlap [3]. To be able to further extract
valuable information from existing 2DE data, meta-ana-
lysis in combination with multivariate methods will be
explored in this work. A multivariate approach allows
studying protein patterns rather than one protein at a
time. A meta-analysis combines the data from several
studies and can for example be used to study more gen-
eral protein patterns over several different tumour types.
Merging data from several tumour types enables the
investigation of several clinical issues not possible to
answer based on a single data set. Le. general molecular
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changes related to tumour progression such as proteins
and protein patterns manifesting highly metastatic
tumours, but also biomarkers specific for a certain
tumour type as well as those biomarkers that reveal tis-
sue of origin of metastatic disease. Specific biomarkers
thus have the potential to help provide a more certain
tumour diagnosis in cases where patients have a tumour
for which the site of origin remains uncertain after the
initial diagnose. Knowing the tumour origin enables
more appropriate cancer treatment by using therapies
that target specific tissues. General tumour biomarkers
on the other hand can be used to better understand
tumour biology and address common issues such as
malignity, severity, survival rates and risk of metastasis.
Identifying one common cancer-type independent pro-
tein signature is important to better understand cancer
pathogenesis and ultimately also to improve diagnostics
and therapeutics. A meta-analysis also allows distin-
guishing the common proteins playing a crucial role in
oncogenic processes from those that are differently
expressed only in certain tumour types.

Prerequisites to perform a valid meta-analysis of pro-
teomics data are standardised methods from sample pre-
paration to proteomics data generation. Over the last
ten years a large amount of human tumours have been
analyzed using 2DE standardised operation procedure at
the Department of Oncology-Pathology (Karolinska
Institute). The tumours have been handled using a stan-
dardized protocol, reproducible commercial IPG strips
and standard gel electrophoresis as well as staining pro-
tocol have been applied and the expression data have
been analyzed using the same software; PDQuest™, Bio-
Rad Laboratories [4]. So far, each tumour type has been
treated as a separate data set and the results have been
published as individual publications [5,6]. Only a few
other publications have looked at data from more than
one tumour type [7,8]. These papers show common fea-
tures between tumour types and demonstrates the
potential of classifying tumours based on proteome
changes. The aim of this study is to perform a meta-
analysis of existing 2DE data and couple together data
from colon and prostate human tumours. By establish-
ing an expression database containing expression levels
of the detected protein spots for 73 samples, a larger
and hence better material for the selection of biomar-
kers is generated. The standardized handling of samples
in this study and the following expression analysis using
the same software forms the basis for a unique possibi-
lity. We can now take charge of data from previous stu-
dies and analyze the raw spot data on a higher level in a
meta-analysis.

To answer the biological questions at issue, to iden-
tify proteins distinguishing between normal and
tumour samples independent of tissue origin, a
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bioinformatic workflow was developed, dealing with
pre-processing of data and handling of missing values
followed by the development of a multivariate model
for variable selection. Proteomics generates measure-
ments of thousands of proteins in parallel, placing a
large demand on the statistical method used to analyze
it. Various methods for selecting variables have pre-
viously been used in proteomics biomarker studies,
both univariate methods investigating the behaviour of
one variable at a time, and multivariate methods look-
ing at the behaviour of several variables simultaneously
[9,10]. The information held in a large scale proteo-
mics data set is complex, changes in expression by one
protein may not be significant alone but rather a pro-
file of protein expression changes can better describe
the complex biology. The strength of multivariate
methods is the possibility to define combinations of
proteins that maximizes the model predictive ability.
The use of multivariate methods such as Partial Least
Squares (PLS) [11,12], where the expression of several
genes or proteins are studied simultaneously, is
increasing and has earlier shown to be powerful in
tumour classification and biomarker discovery [13-17].
In this study, PLS was utilized to select the most
important proteins for distinguishing between normal
and tumour samples.

This work aims to show how to use existing 2DE data
to perform analysis of tumour and normal tissue cross
different tumour types by multivariate meta-analysis
towards molecular based classification and characteriza-
tion of tumour diseases.

Methods

Samples and 2D gel electrophoresis

The multivariate meta-analysis performed in this study
was based on 39 prostate samples and 34 colon sam-
ples, collected and prepared as described in [5] and [6].
The tissue samples analysed by 2DE were from malign
tissue as well as from corresponding benign tissue. The
prostate data set contains 10 normal samples and 29
tumour samples. The colon data set contains 13 normal
samples and 14 tumour samples, as well as 7 metastasis
samples.

Two-dimensional gel electrophoresis was performed
as described in references [18] and [6]. Briefly, the
proteins were separated in the first dimension of
isoelectric focusing using precast immobilized pH-
gradient (IPG) strips with a pH 4-7 linear gradient
(Bio-Rad Laboratories). The second dimension was
performed in an Iso-Dalt tank (Hoefer, San Fransisco,
CA USA) using 10-13% linear gradient SDS/PAGE
gels. The gels were stained with silver nitrate and
scanned using a flatbed scanner GS-710 (Bio-Rad
Laboratories).
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Establishment of an expression database

The 2DE images from the prostate and colon sample
sets were analyzed using the PDQuest software (ver-
sion 7.0 and 7.3) [4]. The two sample sets were first
analysed individually in the software. The software
detects spots on every single gel image in the data set
separately. The gel image containing the most spots is
then selected as template (master) and all spots of the
remaining gel images are matched onto it. The
matched gels in the two data set form the “lower
level” match sets. The prostate match set consisted of
39 samples and 1264 spots while the colon match set
consisted of 34 samples and 1935 spots. Each spot in
the match set was given a unique database identifica-
tion number (SSP). PDQuest quantifies valid indivi-
dual spots as parts per million of the total integrated
optical density in the gel. The spot quantity corre-
sponds to the amount of protein in the actual spot in
the gel.

The “higher level” matching between the prostate
and colon “lower level” match sets was done in
PDQuest (version 8.0.1). Using “higher level” matching
the masters from the “lower level” match sets were
matched to each other and thereby linked all the gels
in the two data sets together. The resulting “higher
level” match set consisted of 73 samples and 2121
spots in total (Figure 1). The intensity levels of the
2121 spots in all 73 gels were exported to perform
statistical analysis in R [19].

There is of course a risk of mismatches in the match-
ing procedure. That is, one spot from one protein is by
accident matched to a spot from another protein, or
alternatively not matched to any other spot. The risk of
mismatches is largest in areas where clusters of spots
appear. The automatic matching performed by the
PDQuest software was therefore followed by manual
inspection and improvement of the matches. This was
done with special care in crowded gel-areas.

In addition to the true biological missing values, the
image mapping approach in PDQuest can cause missing
values. If a spot is missing in one of the lower level
match sets, it will be replaced by the software with an
estimate of the minimum detectable spot value. A spot
missing in the higher level match set is replaced by
zero. Approximately 59% of all data points in the higher
level match set were missing. 30% of the missing data
points are missing between data sets; that is they are
completely missing in one of the two data sets; and 29%
are missing within the data sets. One significant contri-
buting factor to the large number of missing values is
the very different amount of detected spots/proteins in
the two data sets, 1935 and 1264 in colon and prostate
respectively, resulting in many missing spots in the
prostate data set.
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Data distribution and quality

Various diagnostic plots were used to assess the distri-
bution and quality of the data and thereby judge
weather any outliers were present in the data set and if
any normalization or standardization was needed. The
intensity values were log2 transformed to bring high
intensity values together and stretch low intensity values
to achieve a more symmetric data distribution. The den-
sity plot of log2 intensities (Additional file 1, Figure S1)
revealed a rather homogenous data set with similar dis-
tributions of detected values for the different samples.
The distribution of intensities is bimodal because of the
missing values, which are given a low value by the soft-
ware, different from the actual detected values. The
intensity distributions for the different samples were
further compared in a box plot (Additional file 1, Figure
S2), excluding missing values. The plot revealed differ-
ences in median both between gels and between the tis-
sue types, although not that pronounced considering the
very different tissues. Principal Component Analysis [20]
(PCA) was used for looking at trends and groups in the
data. The PCA scores plot (Additional file 1, Figure S2)
did not indicate any obvious outliers and also pointed
out that the largest variation in the data is the origin of
the samples. We tried to minimize the “batch effect”
between the prostate and colon data sets seen in the
PCA plot by normalization. Three different normaliza-
tion methods were evaluated; normalization to equal
total spot intensity between gels (“total intensity”), nor-
malization to zero median intensity between gels (“gel
median”) and quantile normalization [21]. The normali-
zations were based on only non-missing data. Gel med-
ian and quantile normalization resulted in a more
homogenous data distribution and removed the gel
effect, although the “batch effect” seen in the PCA plot
was unchanged for the normalized data (see Additional
file 1, Figure S2).

Based on these observations, the decision was made
not to perform any normalization of the data. The ratio-
nale behind this decision is that the “batch effect” still
remained regardless of normalization method. Also,
choosing the wrong normalization method gives a risk
of introducing false differences and cancel out true dif-
ferences between normal and tumour samples.

Filtering of missing values

The alignment of the 2D gels in this study is a challenge
because of the different origins of the analysed tissues.
The differences in protein composition between samples
give many missing values. A missing value can have sev-
eral origins. It can be that the corresponding protein is
absent in the sample, or the intensity was too low to be
discriminated from the background level, or due to a
problem of spot to spot matching (despite an extensive
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Figure 1 Expression database. 2-D gel photos from the two
match sets A and B representing the samples and spots from the
colon (A) and prostate (B) data sets. The match sets includes both
different malign samples and the corresponding benign samples. In
the higher level expression database (C) both match sets are linked
together so that information from all the tissue types can be
analyzed simultaneously.

manual data curation). The amount of missing data can
affect the multivariate analysis and which variables that
will be selected. Although PLS can handle a small
amount of missing values (5-20%), too many missing
values can distort the multivariate analysis [22]. Thus, a
filter had to be applied to remove some of the spots
with a large amount of missing values before any further
statistical analysis. Since the objective of this study is to
compare cancer proteomes cross tumour types to reveal
proteins connected to common tumour processes, the
filter was based on the fraction of present values in both
the prostate and colon gels. Using only the spots present
in all gels in this study would result in only 60 spots,
which is a great loss of data and a possible loss of inter-
esting spots. Different fractions were investigated and
the filtered data sets were studied by PCA to reveal how
the filtering affected the grouping of the data.

Estimation of missing values

Despite the exclusion of spots described above, the data
set still contains missing data that has to be estimated
with values. Many methods for handling missing values
have been evaluated on microarray data [23], a field
were the missing value problem is well known. Simple
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approaches are to impute the missing value by the aver-
age of the present values for the spot across all samples
or to impute missing values by some minimal intensity
value. Alternatively, local similarities in the data can be
used to impute missing values, as in the k-nearest-
neighbour imputing (KNN) [23]. Several of the methods
for imputing missing values were recently evaluated on
gel-based proteomics data [24]. The study revealed, in
agreement with earlier literature, that KNN outper-
formed row mean and minimal value when applied to
spots with low number of missing values (max 25%).
For spots with high number of missing values (>25%)
there was no effective method for imputing. The imput-
ing methods also rely on different assumptions for the
missing values, the KNN method for example assumes
random occurrence of missing values and other spots
having similar expression profile.

The distribution of the missing values over the whole
data set as well as the distribution of missing values
over the tissue types was investigated for this data set
(Additional file 1, Figure S3). As seen in the plot, the
distribution of missing values is not random for this
data set; the amount of missing data is dependent on
tissue type. Because of the very different tissues ana-
lysed, many of the missing values are also expected to
be biological differences. Several of the assumptions
mentioned are hence generally not applicable in this
2DE data study. Therefore, the expression patterns for
present proteins provides a poor basis for estimation of
missing values in the current study [25]. The values
missing because of low or lacking expression of the cor-
responding protein are best exchanged by some low
value. A value missing because of a mismatch is more
difficult to estimate. The true protein level can be both
low and high. Estimating it with a mean value will influ-
ence the model least, and hence cause as little false
effects as possible [22]. Since the true state of the miss-
ing values is not known, and a manual inspection of
2121 spots in 73 gels is not feasible, two basic methods
for estimating the missing values were tried out in this
study. At first, all the missing values were exchanged by
the mean value over samples (from all tissues) for the
spot. Secondly, all the missing values were exchanged by
the value for the sample at the 10% lowest value. The
two methods for estimating the missing values were run
in parallel through out the multivariate analysis and
evaluated at the end of the project.

Multivariate analysis of data - PLS

The number of predictor variables (2121) in this data set
greatly exceeds the number of observations (73). PCA
and PLS are multivariate projection methods that can
handle high dimensionality of the data, as well as the
presence of a large amount of biological noise [15]. PCA
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is an unsupervised method, useful for getting an
unbiased overview of the data as well as to detect trends
and outliers. PCA reduces the dimensionality of the data
set, X, by introducing a new set of variables, latent vari-
ables, which maximize the variance of a linear combina-
tion of the predictor variables. To be able to integrate
information about the response variable y into the
model, a supervised method like PLS has to be used.
PLS models are based on finding the latent variables
(also called PLS components) in the data that maximize
the covariance between the response variable, y, and a
linear combination of the predictor variables [12]. PLS is
suitable for analyzing data where the number of vari-
ables greatly exceeds the number of observations.
Further, the PLS model relies on linear algebra which
gives transparent models and a straight forward inter-
pretation of the variable’s influence on the model and
on the classes in data. In this study, PLS discriminant
analysis (PLS-DA) [15,26] was utilized to select the opti-
mal set of protein spots for discriminating between nor-
mal and tumour samples. For the multivariate analysis
purpose the data was divided in two classes: normal
consisting of colon normal (13 samples) and prostate
normal (10 samples) and tumour consisting of colon
tumour (14 samples) and colon metastasis (7 samples)
and prostate tumour (29 samples). Because of the malig-
nant property of the metastasis samples (verified by the
PCA plot where the metastasis samples group with
tumour samples), they were placed together with the
tumour samples in this study. The response variable vy is
thus a binary vector of classes coded as 0 for normal
samples and 1 for tumour samples.

Variable selection and validation of PLS model

Although PLS can handle a large number of predictor
variables (thousands), only a subset of the variables are
expected to be of biological interest for this study.
There are several approaches for reducing the number
of variables [9,10], in this project a wrapper method was
used where the variable selection is connected to the
variables performance in the PLS model. The variables
were ranked by the PLS dependent Variable Importance
on Projection (VIP) score [27], a summary of the impor-
tance of an X variable for both X and y. In a backward
elimination strategy starting with the full set of vari-
ables, the number of variables was then decreased by 5%
in each step, excluding the lowest ranked variables.

To avoid the risk of over-fitting the model to the data
and to be able to evaluate the model performance on a
held-out test set, different kind of cross-validation can
be used. The modelling procedure in this study was per-
formed in two nested cross-validation loops, an inner
loop to optimize model parameters and select variables
and an outer loop to measure the optimized model
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performance on a held-out test set [28,29]. A schematic
view of the double cross-validation scheme is shown in
Figure 2. In the outer loop, a full cross-validation was
used, by randomly dividing the data in five parts once,
making sure each subset contained at least one sample
from each of the classes normal and tumour. One part
in turn is set aside as a test set (20%) and the rest was
used to optimise the PLS model and select variables. In
the inner loop, a bootstrap cross-validation [30] was
used. The data was then randomly divided in a 80%
training and a 20% test data set 500 times (see Results),
and the mean predictive performance were calculated.
The bootstrap validation was chosen due to the few and
diverse samples in this data set, to establish a stable esti-
mate of prediction power. The minimum number of
bootstrap rounds needed to give stable success measures
was investigated. The different number of PLS compo-
nents and variables were evaluated by calculating the
success measures when applying the model to the test
sets and the optimal PLS parameter settings was decided
as the minimal number of PLS components and vari-
ables still giving a good predictive power. The final set
of variables was selected based on stable variables from
the bootstrap validation in the inner loop; variables
selected in at least 50% of bootstrap rounds. The final
set of variables and the optimal PLS model was used to
predict the test set excluded in the outer loop. The
cross-validation in the outer loop was repeated for all
five parts and the resulting success measures and vari-
able lists were compared.

The success measure used to evaluate the PLS models
was the geometric mean of sensitivity and specificity, a
measure not influenced by the size of the classes
[31,32]. The success measures for the original model,
using VIP selected variables, were compared to results
based on the same number of randomly drawn variables.

The R code (Additional file 2) written for the multi-
variate analysis is available from the first author upon
request.

Results

Handling of missing values

The matching of gels between the two tissue types is a
very difficult task because of the inheritably different
protein expression patterns. Missing spots can be a
result of mistakes in the matching procedure as well as
truly missing proteins. The amount of missing values
strongly affects the multivariate analysis and which vari-
ables that are picked up as important. Pre-filtering of
spots was hence necessary to remove some of the uncer-
tain spots with missing values in many of the samples.
The filtering of spots was based on fraction of present
values over both prostate and colon samples. The cri-
teria of 25%, 50% and 75% present values in both
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Figure 2 Double cross-validation scheme. In the inner loop, PLS
model parameters and variables are estimated based on a
bootstrap cross-validation. Based on performance of the PLS models
and stability of variables over bootstrap rounds, the optimal
parameters and final set of variables are selected. Model
performance of the optimized parameters and selected variables are
then evaluated on the held-out test set in the outer loop. The outer
loop is repeated within a 5-fold cross-validation procedure.
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prostate and colon samples were investigated. The filter-
ing of missing values had a strong impact on the group-
ing of the data which is visualized in the PCA scores
plots in Figure 3. When including all 2121 spots the lar-
gest variation is between the data sets (prostate and
colon) - called the “batch effect”, while the second lar-
gest variation is the spread within the data sets. This is
most likely a result of the many missing values, spots
with missing values in one of the data sets but not in
the other contributes to a large variation in the data.
When excluding spots missing in one data set (using
25%, 50% or 75% present as filter criteria) the largest
variation is shifted towards the spread within the data
sets. This filtering thus decreases the “batch effect” seen
in the PCA scores plot (Figure 3) caused by integrating
the two disparate data sets generated by two different
prior studies. Based on these results, the decision was
made to exclude any spots that are totally missing from
either prostate or colon data set. The minimum level of
present values was set to 25%, not to exclude any spots
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present in only the smallest subclass of the data (10/39
= 26%). This filter criterion implies that a spot has to be
present in at least 25% of both prostate samples and
colon samples simultaneously to be included. After
applying the filter the data set consisted of 731 spots
which formed the basis for the continued multivariate
analysis.

Once the spots with a large amount of missing data
were filtered out the remaining missing data points had
to be estimated with values. The missing values were
either exchanged by the mean value of the spot (from
now on called “row mean”) or by the 10% lowest value
for the spot (called “ten lowest”). The two different
methods were run in parallel through out the following
analysis and evaluated first at the end of the project.

Multivariate analysis of data

500 bootstrap rounds in the inner loop of validation
were found to give stable success measures (Additional
file 1, Figure S4). The mean success rate over the 500
bootstrap rounds for the missing value method “ten
lowest” can be seen in Figure 4. Results for the same
number of random variables are presented in the same
plot. The optimal number of variables in the PLS model
is a trade-off. The number of selected variables should
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Figure 4 Prediction success for different PLS model parameter
settings. Average of geometric mean of sensitivity and specificity
over 500 bootstrap rounds in inner loop using different number of
PLS components and different number of variables. Results for
missing value method “ten lowest”. Black lines are results for the VIP
selected variables and grey lines are the corresponding results for
the same number of randomly picked variables. Solid lines represent
two PLS components, dashed three PLS components and dotted
four PLS components.
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be small enough to enable further validation of the pro-
teins using a more targeted protein analysis method for
measuring the expression levels in clinical samples. At
the same time, the number of variables has to be large
enough to achieve a good predictive PLS model. When
decreasing the number of variables in the PLS model,
the VIP selected variables outperforms the randomly
picked variables. As seen in figure 4, including more
than around 50 variables does not give any significant
improvement of the success rate and with fewer vari-
ables the success rate starts decreasing rapidly.

Regarding the optimal number of PLS components,
for more than 60 variables four PLS components gives a
slightly better result than three. For models with less
than 60 variables, three PLS components seem to be
enough. Hence, three PLS components is enough to
describe the data with 60 or less variables and the fourth
PLS component is most likely just describing noise.
Thus, three PLS components and 50 variables were
selected as optimal PLS parameter settings for the miss-
ing value method “ten lowest”. Using the same reason-
ing for the missing value method “row mean” gave a
PLS model with three PLS components and 60 variables
(Additional file 1, Figure S5).

The final selection of variables was based on stability
over the bootstrap validation rounds from the inner
loop. Variables selected in at least 50% of the 500 boot-
strap rounds were identified for each of the five cross-
validation sets in the outer loop. This five lists of
variables (named “stable variables” from now on) is
thought to represent variables generally good for pre-
dicting the classes and not specific for certain subsets of
the data. Despite such different tissues in the data, there
were around 40 variables (from the lists of 50 variables)
that were selected in at least 50% of the bootstrap
rounds for the missing value method “ten lowest”. For
missing value method “row mean” there were around 50
variables (from the lists of 60 variables) that were
selected in at least 50% of the bootstrap rounds. Those
stable variables were together with the optimised PLS
model applied to predict the held-out test sets in the
outer loop. The resulting prediction success measures
are presented in Table 1. The missing value method
“ten lowest” gave a better prediction performance than
the missing value method “row mean”. The average geo-
metric mean of sensitivity and specificity over five cross-
validation rounds was 0.93 (+ 0.06) and 0.73 (+ 0.16) for
“ten lowest” and “row mean” respectively.

Further analysis of stable variables

After assessing the optimal number of PLS components
and number of variables based on bootstrap cross-vali-
dation, the full data set is used to further point out the
most important variables. The five lists of stable
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Table 1 Prediction success measures for held out test-sets
Row mean Ten lowest
CV round Sensitivity Specificity G mean* Sensitivity Specificity G mean*
1 0.90 040 0.60 1.00 0.83 091
2 1.00 0.75 0.87 1.00 1.00 1.00
3 1.00 038 1.00 1.00 1.00
4 0.88 1.00 094 1.00 038 0.89
5 0.96 040 0.63 1.00 0.75 0.87
Average 0.96 0.59 0.73 1.00 0.88 093
Std 0.06 0.28 0.16 0 012 0.06

*geometric mean of sensitivity and specificity

Prediction success measures for the two missing value methods “row mean” and “ten lowest” for held-out test sets in the outer loop cross-validations using

optimised PLS model and stable variables.

variables from outer loop cross-validation rounds were
merged and redundancy removed. The resulting lists
contained 103 variables for the missing value method
“row mean” and 74 variables for the missing value
method “ten lowest”. The amount of overlap over cross-
validation rounds for the lists is presented in Figure 5.
Using the missing value method “ten lowest” results in a
larger overlap of stable variables over all five cross-vali-
dation rounds than using “row mean”, 17 variables are
present in all the five lists using “ten lowest” while the
corresponding number for “row mean” is 12. The over-
lapping variables, 17 and 12 respectively, hence repre-
sents variables with a strong profile that are selected
independently of which samples that are used as train-
ing samples. The prediction performance using only the
17 overlapping variables for the missing value method
“ten lowest” were compared to the performance using
all stable variables (one list for each cross-validation set)
as well as using 17 randomly selected variables from the

B row mean
B ten lowest
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Figure 5 Overlap of variables over cross-validation rounds.
Overlap of stable variables over outer loop cross-validation rounds
for the two methods of handling missing values. Black bars
represent the “ten lowest” and grey bars represent the “row mean”
method.

stable ones (Table 2). Despite the much smaller number,
the overlapping 17 variables gives as good prediction
performance as the around 40 stable variables. This is
not seen for the same number (17) of randomly selected
variables. The average expression profile for the two
tumour types for the 17 overlapping variables from the
missing value method “ten lowest” are seen in Figure 6.
As seen in the figure there are differences between the
expression levels between the two tumour types, colon
and prostate. It can also be seen that the differential
expression direction for 14 of the 17 variables agrees.
Eight of the variables with an up-regulation in expres-
sion between normal and tumour samples agree
between colon and prostate and six of the variables with
a down-regulation in expression agree.

The two different methods for handling missing values
were evaluated also by studying the gel images of the spots
selected in the PLS analysis. It was found that most of the
missing values among those spots were results of truly
missing spots on the gel, a result of a missing or low abun-
dant protein in that sample. This finding implies that the
method of exchanging the missing values with the 10%
lowest value for the spot is the preferred method.

Table 2 Prediction success measures for overlapping
variables

Sensitivity Specificity Geometric mean*
Variables Average Std Average Std Average Std
~40 Stable 1.00 0.00 0.88 0.12 093 0.06
17 Overlap 1.00 0.00 0.89 0.10 0.94 0.05
17 Random 094 0.09 0.79 0.14 0.86 0.10

*geometric mean of sensitivity and specificity

Average prediction success measures for variables selected using the missing
value method “ten lowest”. A PLS model with a five fold cross-validation
(according to Figure 2) was built for three sets of variables: ~40 stable
variables (one list for each cross-validation round), 17 overlapping variables
and 17 variables randomly selected from the stable ones.
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Figure 6 Expression profiles for overlapping stable variables.
Average expression profiles for the 17 stable variables selected in all
five cross-validation rounds for the missing value method “ten
lowest”. The arrows indicate the differences in expression levels
going from normal to tumour samples, starting in average
expression level for normal samples and ending in average
expression level for tumour samples. Black arrows represent up and
down regulations in the colon samples and grey arrows represent
the regulations in prostate samples. The SSP XXX are spot
identification numbers given by the PDQuest software.

Comparison of meta-model to individual models

To compare the results from the combined colon-pros-
tate model to individual colon and prostate models the
above described PLS modelling was also applied to the
colon and prostate data sets separately. The same
classes, normal and tumour, was used in the modelling
as well as the same set of 731 protein spots remaining
from the missing value filtering. The resulting lists of

Figure 7 Overlap of variables selected in different models.
Venn diagram showing overlap between stable variables selected
using the meta-model (74 proteins) and individual prostate and
colon models (40 and 43 proteins respectively). Results for the
missing value method “ten lowest".
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variables selected from the five cross-validation rounds
were compared. A Venn diagram showing the overlap
between merged stable variables for the three models
(prostate-colon, prostate and colon) can be seen in Fig-
ure 7. The figure reveals that most variables are unique
to the models and few overlaps are identified, 46 vari-
ables selected in the meta-analysis of prostate and colon
are not picked up in the individual models, 27 variables
are unique to the colon model and 25 variables to the
prostate model. Only three variables overlap between all
three models, their average expression profile for the
two tumour types colon and prostate are found in Addi-
tional file 1, Figure S6.

Discussion

The aim of this project was to develop a data handling
workflow to compare tumour proteomes cross different
tumour types and use these methods to find proteins
whose expression levels separate between normal and
tumour samples independently of which tissue the sam-
ples come from. This was achieved by performing a
meta-analysis. Gels from 2DE analysis of colon and
prostate samples were matched and an expression data-
base containing the intensity levels of detected spots in
all samples was created. The tissues were very different
and the corresponding gels were thereby very dissimilar
and thus difficult to match. Many missing values existed
in the merged data set, which effected the modelling
result, thus the missing value problem had to be
handled with care. Most methods for handling missing
values rely on several assumptions not fully met for this
data set. Furthermore, with the purpose of finding pro-
teins with common expression patterns over the two
tumour types, the analysis was restricted to those pro-
teins that were expressed in both data sets. A novel
workflow for handling this type of clinical proteomics
data hence had to be developed.

The number of proteins that could be used in this
meta-analysis were decreased because of the inherent
biological difference of the tissue types studied, the
rather small sample sizes of the individual studies and
the variation due to experimental differences. At first, a
filtering of spots with a large amount of missing values
had to be used for excluding any spot completely miss-
ing from one of the datasets prostate and colon. A lim-
itation of this ad-hoc procedure of filtering out the
proteins missing in one dataset is of course that many
potentially informative proteins may be excluded. The
missing values remaining after applying the filter were
exchanged by a value using two different approaches,
which were run in parallel through out the multivariate
analysis workflow. No data set fulfils all assumptions
and there exist no perfect method for imputing missing
values. Any choice made is more or less a compromise.
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The best is to treat biological missing values (that
should be zero or a low intensity value) and technical
missing values (with unknown levels) separately. Since
the main cause of missing values in our data set was
unknown, we had no assumption for guiding in choos-
ing the best methodology for missing data estimation.
The methods hence had to be evaluated at the end of
the study, by comparing the variables selected and the
prediction success.

This study utilized PLS-DA to build predictive models
and to select variables important for separating between
the classes normal and tumour no matter colon or pros-
tate cancer. In any statistical modelling there is a risk of
over-fitting the model to the data which in turn can
lead to over-optimistic results and bad generalization of
the model. Thus the validation of the model is a crucial
step [9,10]. The key to protect against overly optimistic
prediction performances and biases in variable selection
is to avoid testing the model on the same data set that
was used for model training and variable selection. In
clinical proteomics, the sample numbers are often lim-
ited because the methods used for comprehensive pro-
teomics studies are laborious and expensive. This was
the case also in this study. With limited amount of data
available, resampling techniques such as bootstrap- and
cross-validation are useful to give an estimation of valid-
ity of the model. The optimal PLS model and the
selected variables were evaluated in two nested loops of
cross-validation in this study. The final set of variables
was then selected based on several criteria: prediction
performance, appropriate numbers of variables and sta-
bility of variables over bootstrap rounds. Despite such
different tissues in the data sets, there were around 40
variables selected in at least 50% of the bootstrap rounds
for the missing value method “ten lowest”. From those
variables, 17 were selected in all five cross-validation
rounds, which reveal a strong profile for those variables.
Studying the mean expression profiles in the data for
the 17 proteins (Figure 6) it is also clear that there exist
some common trends within the tissue types even
though the expression levels are different between the
tissue types.

The comparison of selected variables between the
combined colon-prostate model and the individual
colon and prostate models disclose that many of the
variables are unique to the models. As many as 46 of
the variables from the meta-analysis of colon-prostate
did not show up in the individual models, while 27 and
25 variables were unique to the colon and prostate mod-
els respectively (Figure 7). This result supports the
hypothesis that a meta-analysis adds extra value to the
analysis of large scale cancer proteomics data and has
the potential to identify proteins not found when analyz-
ing the data sets in separate. The small number (three)
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of overlapping proteins between the individual colon
and prostate models indicates that just comparing the
signatures from the two data sets would probably result
in very few common proteins. In the individual models,
the more tissue specific proteins are picked up by the
model and the common protein patterns are not as pro-
nounced in comparison. By combining several tumour
data sets we have identified protein profiles that can be
used in addressing several clinical questions which are
impossible to answer based on analysis of a single study.
The 46 protein spots unique to the meta-analysis repre-
sent proteins whose expression levels discriminate
between normal and tumour samples independent of
tissue type in this study, i.e. a common protein profile
for malign tumour types. The protein spots unique to
the individual models on the other hand represent pro-
teins that are specific for the certain tumour types pros-
tate and colon. Since many cancer types share common
characteristics, it is important to identify common pro-
tein signatures to better understand cancer biology. The
finding of a common tumour profile can have potential
to develop into useful biomarkers for diagnostics and
ultimately to improve therapeutics. The results from this
meta-analysis will also give clues to the complex biology
of the human tumours prostate and colon. Further ana-
lysis will aim at identifying the selected proteins and
gain more insight into their functions and interactions
with each other and with other proteins in biological
pathways. The study so far includes data from prostate
and colon tumours and can function as a proof of con-
cept of a meta-analysis workflow for 2DE data. The
potential of including more tumour types is apparent.

Conclusions

The workflow for meta-analysis developed in this study
enabled the finding of a common protein profile for
malign tumour types as well as tumour specific proteins.
Despite the limited number and diverse samples
included in this meta-analysis, resulting in a small num-
ber of overlapping proteins, variables that yielded a
good predictive performance (93% geometric mean of
sensitivity and specificity) were selected. For this study,
when very different data sets were fused, a filter of non-
overlapping proteins followed by a simple approach for
estimating missing values proved to work well.

Availability and requirements
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