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Abstract

Mental disorders, especially schizophrenia, still pose a great challenge for diagnosis in early

stages. Recently, computer-aided diagnosis techniques based on resting-state functional

magnetic resonance imaging (Rs-fMRI) have been developed to tackle this challenge. In

this work, we investigate different decision-level and feature-level fusion schemes for dis-

criminating between schizophrenic and normal subjects. Four types of fMRI features are

investigated, namely the regional homogeneity, voxel-mirrored homotopic connectivity, frac-

tional amplitude of low-frequency fluctuations and amplitude of low-frequency fluctuations.

Data denoising and preprocessing were first applied, followed by the feature extraction mod-

ule. Four different feature selection algorithms were applied, and the best discriminative fea-

tures were selected using the algorithm of feature selection via concave minimization (FSV).

Support vector machine classifiers were trained and tested on the COBRE dataset formed

of 70 schizophrenic subjects and 70 healthy subjects. The decision-level fusion method out-

performed the single-feature-type approaches and achieved a 97.85% accuracy, a 98.33%

sensitivity, a 96.83% specificity. Moreover, feature-fusion scheme resulted in a 98.57%

accuracy, a 99.71% sensitivity, a 97.66% specificity, and an area under the ROC curve of

0.9984. In general, decision-level and feature-level fusion schemes boosted the perfor-

mance of schizophrenia detectors based on fMRI features.

1 Introduction

Early diagnosis of mental disorders is considered a challenging task. Schizophrenia is one of

these chronic mental disorders that typically appear in late adolescence or early adulthood and

affect about 1% of the population around the world [1–4]. This disorder is characterized by hal-

lucinations, delusions and negative symptoms such as social withdrawal, self neglect, etc. [5].

Within the last decade, most studies have shown that machine learning and pattern classifi-

cation techniques are useful for finding potential biomarkers for schizophrenia based on dif-

ferent types of discriminative features: structural features [6–18], functional features [19–25]

or combination of functional and structural features [12, 26–27].
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Structural studies reveal the anatomical changes of the brain such as expansion of the lateral

ventricles [28], decreased volumes of medial temporal structures such as the amygdala, the

parahippocampal gyrus, the hippocampus [29–31], the prefrontal cortex [32, 33], the superior

temporal gyrus [30], and the inferior parietal lobule [34, 35]. Furthermore, the abnormal

enlargement of the left hemisphere compared to the right hemisphere can be considered as a

sign of schizophrenia in male patients [36, 37]. Moreover, other studies revealed structural cor-

relations between temporal lobe and prefrontal brain volumes [38, 39], in addition to some

disturbances of functional brain connectivity between temporal and frontal lobes. These

changes confirm the disconnectivity hypothesis [40, 41], which explains the widespread prob-

lems of the functional connectivity in schizophrenia.

Resting-state functional magnetic resonance imaging (Rs-fMRI) is considered as one of the

most promising tools in the diagnosis of different mental disorders specially schizophrenia, as

it allows exploring the brain functions at rest [24, 42]. Recently, most studies have examined

the automatic diagnosis of brain disorders using Rs-fMRI [43–51].

Slow activity fluctuations, measured by the blood oxygenation level dependent (BOLD) sig-

nal in Rs-fMRI, allow defining the resting-state networks and obtaining the correlated activity

between the various brain regions. The functional connectivity [52, 53] maps can be created

through calculating the correlation measures of these fluctuations. These maps may be used as

biomarkers or distinctive features for mental or individual variations. Tang et al. [54] reached

an accuracy of 93.2% using 22 schizophrenic patients and 22 healthy subjects based on func-

tional connectivity. Yu et al. [55] achieved a 62% accuracy for a system trained and tested on

the functional connectivity measures of 24 schizophrenic patients, 25 healthy siblings and 22

healthy subjects. The major drawback of the previously stated studies is the employment of the

small datasets. Guo et al. [56] achieved an accuracy of 75% using a dataset formed of 46 unaf-

fected siblings of schizophrenic patients and 50 healthy subjects based only on the fractional

amplitude of low frequency fluctuations (fALFF). While this study enjoys a relatively large

dataset, it still suffers from the limited investigation of suitable features for schizophrenia diag-

nosis and the relatively low reported accuracy. Chyzhyk et al. [57] employed a classification

system based on an Rs-fMRI dataset provided by the Center of Biomedical Research Excellence

(COBRE) in mental illness and brain function. Experiments were conducted with four feature

types, namely: regional homogeneity (ReHo), voxel-mirrored homotopic connectivity

(VMHC), fractional amplitude of low-frequency fluctuations (fALFF) and amplitude of low-

frequency fluctuations (ALFF), where the reported accuracy reached 91% using the VMHC

features.

Recently, data fusion techniques have been explored for improving the performance of

detection and classification systems in numerous applications [58, 59]. Fusion can be generally

performed on different levels, especially the feature and decision levels. Such fusion schemes

have been particularly applied in biomedical signal analysis [60], and multiple medical imaging

modalities [61]. In particular, fusion of brain imaging data has been consistently improving

the performance of automated systems for mental illness detection [62].

In this paper, we investigated a schizophrenia detection framework based on the individual

ReHo, VMHC, fALFF and ALFF feature types. The resultant feature sets were optimized using

different feature selection techniques. For this framework, we explored decision-level fusion

between the outputs of classifiers trained on single-feature types. We also investigated feature-

level fusion schemes in which pairs, triples, and quadruples of feature types are combined and

used for classifier training. In the first single-feature-type scheme, each of the four feature

types is exploited independently. The second scheme applies majority-vote fusion on the deci-

sion level to three classifiers trained on the ReHo, VMHC, and fALFF features, respectively.

The third scheme explores feature-level fusion through combining different types of features

PLOS ONE Feature and decision-level fusion for schizophrenia detection based on resting-state fMRI data

PLOS ONE | https://doi.org/10.1371/journal.pone.0265300 May 24, 2022 2 / 20

group_id=296) for researchers who meet the

criteria for access to confidential data.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0265300
https://www.nitrc.org/project/request.php?group_id=296


before feature selection. The different schemes are shown in Fig 1, where the colored arrows

represent the flow between the different modules forming the different schemes. The red

arrows trace the flow of the single-feature-type schemes, while the blue arrows are associated

with the feature-level fusion schemes. For the decision-level fusion schemes, the single-fea-

ture-type schemes are combined through the orange arrows to reach the final decisions.

The rest of the paper is organized as follows. Section II describes the whole system modules

including dataset description, preprocessing, resting-state functional activity measures, feature

selection, and pattern classification. Section III reports and discusses the experimental results.

Section IV concludes the paper and gives suggestions for future work.

2 Materials and methods

2.1 Dataset description

We employed a dataset created for studying the neural mechanisms of schizophrenia. This

dataset was collected by the Center for Biomedical Research Excellence (COBRE) http://

fcon1000.projects.nitrc.org/indi/retro/cobre.html through the Mind Research Network for

Neurodiagnostic Discovery (MRN) at the University of New Mexico. The dataset was collected

in accordance with the recommendations of the Declaration of Helsinki. The COBRE data

acquisition protocol was approved by the Institutional Review Boards of all of the participating

institutions. Informed written consent was obtained from all participants at each site. The

dataset includes raw functional and anatomical MR data for 140 subjects distributed equally

for normal and schizophrenic patients. Diagnostic information was collected using the struc-

tured clinical interview utilized for DSM disorders (SCID). A multi-echo MPRAGE (MEMPR)

sequence was utilized for anatomical imaging with the following parameters: TR/TE/

TI = 2530/[1.64, 3.5, 5.36, 7.22, 9.08]/900 ms, flip angle = 7, slab thickness = 176 mm,

FOV = 256 × 256 mm, data matrix = 256 × 256 × 176, number of echoes = 5, total scan

time = 6 min, voxel size = 1 × 1 × 1 mm, pixel bandwidth = 650 Hz. With 5 echoes, the TI, TR

Fig 1. A general block diagram of the proposed schizophrenia detection schemes. The single-feature-type schemes

follow the red arrows. The feature-fusion schemes are indicated by the blue arrows. For the decision-level fusion

schemes, the orange arrows trace the path from the single-feature-type schemes to the final fused decisions.

https://doi.org/10.1371/journal.pone.0265300.g001
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and time to encrypt partitions for MEMPR are similar to those of conventional MPRAGE, and

lead to similar GM/WM/CSF contrast. Data for Rs-fMRI was collected using echo planar

imaging (EPI) with ramp sampling correction using the intercomissural line (AC-PC) as a ref-

erence (TR: 2 s, TE: 29 ms, matrix size: 64 × 64, 32 slices, voxel size: 3 × 3 × 4mm3). Rs-fMRI,

anatomical MRI, and phenotypic data are recorded for every subject. A brief summary of the

demographic data found in the COBRE schizophrenia dataset is shown in Table 1.

2.2 Data preprocessing

All the preprocessing steps were executed in MATLAB using the data processing & analysis for

brain imaging (DPABI) software tool [63]. For each participant, slice time correction was

applied for interleaved acquisition. Head motion correction based on Friston’s 24-parameter

motion model [64] was performed. Co-registration of structural and functional images in

order to map the functional information to the anatomical space was executed. Then, the

images were spatially normalized to the Montreal Neurological Institute (MNI) standard using

the DARTEL template [65] and resampled to 3 × 3 × 3 mm3. The generated images were spa-

tially smoothed with a 4-mm full-width half-maximum (FWHM) Gaussian kernel. Moreover,

the images were linearly detrended and temporally filtered by a bandpass filter (0.01–0.1 Hz)

to reduce low-frequency drifts and remove physiological high-frequency noise [66].

2.3 Resting-state functional activity measures

We explain here the functional activity measures calculated over the Rs-fMRI dataset.

2.3.1 ALFF and fALFF features. The ALFF [67] and fALFF [68] features measure the

magnitude of low frequency fluctuations (LFFs) of the BOLD signal. The ALFF features are

calculated as the average power spectrum, obtained across the range (0.01—0.1 Hz) for each

voxel. The fALFF features represent the ratio of the signal power of the low-frequency range

(0.01 to 0.1 Hz) to the power associated with the total detectable frequency range (0 to 0.25

Hz) [67].

2.3.2 VMHC features. This feature set measures the brain functional homotopy through

a voxel-wise measure of connectivity among the brain hemispheres, under the assumption of

synchrony in spontaneous brain activity among the homotopic regions for each hemisphere.

An approximation of the homotopic connectivity is computed between an individual voxel in

one of the brain hemispheres and its symmetric counterpart in the other hemisphere of the

brain, assuming morphology regularity between them. This connectivity is calculated based on

the Pearson correlation coefficient between voxel pairs across the hemispheres. Then, the Pear-

son correlation coefficient value is converted into a Fisher z-transformed value representing

the VMHC activity measures [69].

2.3.3 ReHo features. This feature set measures the similarity between the time series of a

particular voxel and those of its nearest neighbors [70]. To compute the similarities inside a

voxel cluster, Kendall’s coefficient of concordance (KCC) is applied. Here, each cluster

Table 1. Summary of participant demographics in the COBRE schizophrenia dataset.

Patients Controls

No. of subjects 70 70

Age 37.9 (18-65) 35.8 (18-65)

Gender (M/F) 56/14 48/22

Handedness (R/L) 59/11 67/3

https://doi.org/10.1371/journal.pone.0265300.t001
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contains 27 neighboring voxels. For each subject, a voxel-based map is built by standardizing

and smoothing the KCC values based on a 4-mm FWHM Gaussian kernel [71].

For each of the above-mentioned four feature types, 271633 features were originally

extracted.

2.4 Feature selection

To improve the classification performance, we examined 15 different feature selection mea-

sures [72]. Each feature selection algorithm provides a list of features ranked by the feature

strength or discriminability from the most discriminating feature to the least discriminating

one. Then, we followed a sequential forward selection approach. That is, we use the most sig-

nificant feature, followed by the most two significant features, where the system has been

trained and the performance is evaluated using the validation dataset for each case. This pro-

cess is continued where the significant feature subset is enlarged by adding one feature at a

time. This process was employed for the different feature selection algorithms. We selected the

following four top-performing feature selection algorithms: feature selection via concave mini-

mization (FSV) [73], L0-norm [74], Relief [75] and Wilcoxon sum-rank test [76].

2.5 Decision and feature fusion

Several schemes for decision-level and feature-level fusion are investigated to improve the

schizophrenia detection performance. For decision-level fusion, we applied majority voting on

three SVM classifiers which are based on the ReHo, VMHC, and fALFF feature types, respec-

tively. Feature-level fusion combines different fMRI feature types to exploit the strengths of

each type.

2.6 Support vector machine (SVM) classification

A support vector machine (SVM) is a linear classifier that learns the best hyperplane that has

the maximum possible distance to the closest data point in the training set belonging to any

class using the support vectors. Thus, a SVM is typically more robust compared to other classi-

fiers. The SVM effectiveness is enhanced mainly through the employment of the kernel trick

in order to handle data nonlinearity in the feature space. This trick basically transforms the

data points into a higher-dimensional feature space in order to increase the linear separability

between the data points. The most commonly used kernels include linear, quadratic, and radial

basis function (RBF) kernels [77].

After feature selection and fusion, supervised machine learning procedures were used to

discriminate the schizophrenic patients from healthy subjects. The COBRE dataset, employed

in this work, was divided into training, validation and testing subsets. Training and testing of

the classifiers were performed using the LIBSVM http://www.csie.ntu.edu.tw/cjlin/libsvm/

library. SVM, with a linear kernel, was employed for the classification task for all proposed

schemes, with soft margin C = 10. Five repetitions of nested loop 10-fold cross-validation were

performed, in this study, in order to demonstrate the robustness of the system, where the

inner 10-fold cross validation was employed only in the feature selection task, i.e. selecting the

optimum number of features. It is worth noting that the inner 10-fold cross-validation was

employed only in selecting the optimum number of features, while the SVM kernel and

parameters were selected by trial and error.

For each fold in the outer loop, one-tenth of the data is randomly selected for the testing

and performance evaluation, while the rest is employed in training and validation in the inner

10-fold cross-validation loop. In this inner loop, one-tenth of the remaining samples is ran-

domly selected for the validation and optimization of the feature selection process, while the
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rest is employed for classifier training. Accuracy, specificity and sensitivity are used to evaluate

the classifier performance, select the hyper parameters and verify the system robustness. The

overall system performance was evaluated using the accuracy, sensitivity and specificity, which

are computed as follows:

Accuracy ¼
TPþ TN

N
ð1Þ

Specificity ¼
TN

TN þ FP
ð2Þ

Sensitivity ¼
TP

TP þ FN
ð3Þ

where the true positive (TP) is the number of correctly classified schizophrenia patients, the

false positive (FP) is the number of healthy subjects incorrectly classified as schizophrenia

patients, the true negative (TN) is the number of correctly classified healthy subjects, and the

false negative (FN) is the number of schizophrenia patients incorrectly classified as healthy

subjects. Moreover, the 5x2 cross-validation statistical test was employed to measure the statis-

tical significance of the difference in accuracy between the classifier based on the ReHo activity

measure and the classifiers based on other activity measures [78]. The test is carried out as fol-

lows. Let A be the ReHo-based classifier and B be the classifier based on another activity mea-

sure. The null hypothesis is that the ReHo-based classifier A has the same accuracy as the other

classifier B. The alternative hypothesis is that the two classifiers have different accuracies. For

each classifier, five repetitions of 2-fold cross-validation are made. Then, for each pair of classi-

fiers, the differences in accuracy are used to compute the following t-statistic:

t ¼
pð1Þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

5

X5

i¼1
S2

i

r
ð4Þ

where

• pð1Þ1 is the difference of the classifier scores for the first fold of the first iteration,

• S2
i is the estimated variance of the score difference for the ith iteration (This variance is com-

puted as ðpð1Þi � �piÞ
2
þ ðpð2Þi � �piÞ

2
),

• pðjÞi is the difference of the classifier scores for the jth fold of the ith iteration,

• �pi ¼
ðpð1Þi þp

ð2Þ

i Þ

2
is the mean score for the ith repetition over the two associated folds.

The t-statistic is assumed to follow a t-distribution with 5 degrees of freedom. We assume a

significance level of 0.05. The corresponding threshold is t� = 2.57. For any two classifiers, the

null hypothesis is rejected (i.e. the difference in accuracy for the two classifiers is statistically

significance) if |t|> t�. Thus, an absolute t-statistic larger than t� indicates that the null

hypothesis can be rejected and hence that the ReHo-based classifier accuracy is indeed differ-

ent from the accuracy of the other classifier.

3 Results

3.1 Classification outcomes

We experimented with 15 feature selection algorithms and reported the top four best perform-

ing ones as shown in Table 2.
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Our experimental results show that the FSV method gives the best performance for the

COBRE http://fcon1000.projects.nitrc.org/indi/retro/cobre.html dataset. The FSV algorithm

lists the features according to their discriminability. In our experiments, we used the best sin-

gle feature to train and test a SVM classifier and obtain the corresponding average validation

accuracy over 10 folds. Then, we used the best two features to train and test a SVM classifier

and obtain the corresponding average validation accuracy. At each stage of the experiments,

the number of used features was increased until all of the features were used for training and

validation. The best number of features corresponding to the classifier with the highest average

validation accuracy was selected and employed for testing in the outer loop.

We found 95% confidence intervals for the classifier performance using the Wilson score

interval method [79, 80]. Among the four types of activity measures (i.e. ALFF, fALFF, ReHo

and VMHC), the best average test accuracy of 94.57% is achieved by using the ReHO activity

measure with 83 discriminative features as shown in Table 3.

We investigated the fusion of decisions and features based on Rs-fMRI activity in order to

improve the classification performance. The decision-fusion scheme, shown in Fig 2, com-

putes the ReHo, VMHC, and fALFF features, classifies each feature type using a SVM, and

fuses the three decisions. Then, a majority vote is carried among the three classifiers to get the

final decision. Table 3 shows the results of the decision-level fusion scheme of Fig 2. Table 3

shows the sensitivity, specificity, and accuracy measures on the test set for each feature type.

Our accuracy based on fALFF (92.71%), in Table 3, is significantly better than the 75% accu-

racy reported by Guo et al. [56]. Moreover, we achieved better results than those obtained by

Chyzhyk et al. [57] based on the 4 features types as shown in Table 3. Furthermore, we investi-

gated feature-level fusion schemes. Table 4 shows schizophrenia detection results with differ-

ent pairwise, triple, and quadruple combinations of the ALFF, fALFF, ReHo and VMHC

feature types. Feature selection was applied after combining the features, and the number of

features associated with the minimum validation error was selected for each combination. The

pairwise combination of the ALFF and fALFF feature types resulted in the best accuracy

(97.71%), specificity (97.80%), and sensitivity 98.80%. The ALFF, fALFF, and VMHC combi-

nation achieves the best performance among all triple combinations. As well, feature-level

Table 2. Classification accuracy (%) with feature selection algorithms and feature types.

Algorithms / Feature type ALFF fALFF VMHC ReHo

FSV 93.57 95.71 95.00 96.42

L0 92.85 92.56 93.57 95.71

Relief 80.14 81.42 80.00 82.14

Wilcoxon 81.42 82.14 83.57 82.14

https://doi.org/10.1371/journal.pone.0265300.t002

Table 3. Schizophrenia detection results with single-feature-type classifiers and decision-level classifiers. Feature selection was applied to each of the four single feature

types (ALFF, fALFF, ReHo and VMHC). The decision-level classifier used all feature types except for the ALFF one, which has the worst performance. For comparison, the

last column shows the corresponding accuracies obtained by Chyzhyk et al. [57].

Type of Features # Features Sensitivity (%) Specificity (%) Accuracy (%) Accuracy (%) in [57]

ALFF 84 81.33±0.04 99.50± 0.008 90.71±0.03 87.67

fALFF 73 91.56±0.03 93.36±0.028 92.71±0.03 82.19

VMHC 75 94.25± 0.027 93.89±0.027 93.85±0.027 84.19

ReHo 83 94.08±0.027 95.78±0.023 94.57±0.027 91.19

Decision-fusion classifier (fALFF, ReHo and VMHC) N.A 98.33±0.06 96.83± 0.10 97.85 ±0.09 N.A

https://doi.org/10.1371/journal.pone.0265300.t003
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Fig 2. Average accuracy calculation for the decision-level fusion scheme.

https://doi.org/10.1371/journal.pone.0265300.g002

Table 4. Schizophrenia detection results with feature-level fusion of different pairwise, triple, and quadruple combinations of single feature types.

Type of Features # Features Sensitivity (%) Specificity (%) Accuracy (%)

Pairwise features ALFF+fALFF 91 98.80± 0.12 97.80±0.0.017 97.71±0.017

ALFF+ReHo 72 97.40±0.018 97.64±0.017 97.42±0.018

ALFF+VMHC 71 96.93±0.020 96.86±0.020 96.71±0.021

fALFF+ReHo 73 95.08±0.025 98.51±0.014 97.42±0.018

fALFF+VMHC 84 96.85±0.020 98.00±0.016 97.57±0.017

ReHo+VMHC 75 95.61±0.023 99.77±0.005 97.57±0.017

Triple features ALFF+fALFF+ReHo 82 98.62± 0.013 98.62±0.013 97.85±0.016

ALFF+fALFF+VMHC 70 97.21±0.019 98.72±0.013 97.85±0.016

ALFF+ReHo+VMHC 77 92.46±0.030 95.26±0.024 93.85±0.027

fALFF+ReHo+VMHC 85 95.22±0.024 97.35±0.018 95.71±0.023

Quadruple features ALFF+fALFF+ReHo+VMHC 95 99.71±0.006 97.66±0.016 98.71±0.013

https://doi.org/10.1371/journal.pone.0265300.t004
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fusion of the four feature types leads clearly to the best overall performance metrics with an

accuracy of 98.71% and a sensitivity of 99.71%.

3.2 Statistical significance testing

In order to test the statistical significance of the performance differences between the classifiers

listed in Tables 3 and 4, we computed t-statistics based on Eq (4). The classifier based on the

ReHo activity measure was employed as the reference algorithm since it provided the highest

accuracy in the case of single-feature-type classifiers. The resulting p-values for all significance

tests associated with single-feature-type classifiers and the decision-level classifier are listed in

Table 5. On the one hand, the statistical results show that the difference in accuracy between

the ReHo-based and VMHC-based classifiers is not statistically significant. On the other hand,

the differences in accuracy between the ReHo-based classifier and the fALFF-based classifier,

the ALFF-based classifier, and the decision-level fusion classifier are statistically significant.

For the feature fusion classifiers, the p-values listed in Table 6 show statistically significant

improvements for all classifiers (except for two classifiers: the ALFF-ReHo-VMHC and fALF-

F-ReHo-VMHC classifiers) over the ReHo-based classifier.

3.3 ROC analysis

Receiver operating characteristic (ROC) curves were generated for each of the 10 folds of each

experiment. An average ROC curve can be obtained by projecting curves from two-dimen-

sional space onto a single dimension and averaging them traditionally. However, this projec-

tion raises questions of appropriateness and conservation of the characteristics of interest. The

Table 5. P-values for test of significance of the outcomes of the classifiers based on single-feature-type classifiers and decision-level classifier. Statistical comparison

is made with respect to the ReHo-based classifier.

Type of Features Sensitivity Specificity Accuracy

ALFF 0.01 0.001 0.003

fALFF 0.003 0.005 0.006

VMHC 0.06 0.10 0.08

ReHo Ref Ref Ref

Decision-fusion classifier (fALFF, ReHo and VMHC) 0.02 0.005 0.006

https://doi.org/10.1371/journal.pone.0265300.t005

Table 6. P-values for test of significance of the outcomes of the classifiers based on feature-level fusion of different pairwise, triple, and quadruple combinations of

single feature types. Statistical comparison is made with respect to the ReHo-based classifier.

Type of Features Sensitivity Specificity Accuracy

Pairwise features ALFF+fALFF 0.001 0.004 0.003

ALFF+ReHo 0.004 0.006 0.003

ALFF+VMHC 0.02 0.04 0.012

fALFF+ReHo 0.004 0.005 0.003

fALFF+VMHC 0.001 0.001 0.002

ReHo+VMHC 0.005 0.003 0.002

Triple features ALFF+fALFF+ReHo 0.006 0.004 0.008

ALFF+fALFF+VMHC 0.007 0.006 0.008

ALFF+ReHo+VMHC 0.10 0.07 0.08

fALFF+ReHo+VMHC 0.02 0.03 0.14

Quadruple features ALFF+fALFF+ReHo+VMHC 0.005 0.006 0.001

https://doi.org/10.1371/journal.pone.0265300.t006
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vertical averaging [81] is employed to plot the ROC curvse, where the FP rates are fixed and

the corresponding TP are averaged.

We reported the results of vertical averaging method which achieves the best performance

in comparison with the threshold averaging method. Fig 3(a)–3(c) shows the results based on

vertical averaging for single, pairwise, triple and quadruple combinations of features,

respectively.

3.4 Discriminative feature mapping

The discriminative ALFF, fALFF, ReHo and VMHC connectivity maps were constructed

using a two-sample t-test to statistically verify the significance of the difference between

healthy subjects and schizophrenic patients. The significance level was set at the corrected

p< 0.05 for multiple testing using the false discovery rate (FDR) method [82] (min z> 2.3,

cluster significance: p< 0.05). The most discriminative features for classification are shown in

Table 7. Moreover, these regions are highlighted using BrainNet Viewer [83] in Fig 4. The top

features are listed in descending order of their weights. The highly activated regions include

the lingual gyrus (LING), Precuneus (PCUN), anterior cingulate and paracingulate gyri

(ACG), parahippocampal gyrus (PHG), precental gyrus (PreCG), cerebelum_6 (CRBL6), tem-

poral pole: middle temporal gyrus (TPOmid), vermis_10 (VER10), middle frontal gyrus,

orbital part (ORBmid), cerebelum_Crus2 (CERcr2), superior parietal gyrus (SPG), anterior

cingulate and paracingulate gyri (ACG), cerebelum_7 (CER7) and postcentral gyrus (PoCG).

In comparison to healthy controls, the schizophrenic patients showed significant ReHo

increases in the right LING and the right PCUN. Also, ALFF increases in the right PHG and

the left PreCG, while fALFF increases in VER10 and the left ORBmid. As will, VMHC

increases in the left PHG and the left ACG. Schizophrenic patients showed significant ReHo

decreases in the left PCUN and the right ACG. Also, ALFF decreases in the right CERcr2 and

Fig 3. ROC curves for schizophrenia classification using different feature combinations and ROC vertical averaging

where the numbers in brackets denote the area under the curve (AUC): (a) Single feature types. (b) Pairwise feature

type combinations. (c) Triple and quadruple combinations of features.

https://doi.org/10.1371/journal.pone.0265300.g003
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Table 7. The most discriminative measures and corresponding AAL regions.

Feature Anatomical Location (AAL� areas) Hemisphere Peak MNI Coordinate Peak Value

X (mm) Y (mm) Z (mm)

ReHo Lingual gyrus R 7 -46 5 3.078

Precuneus R 5 -46 7 3.078

Precuneus L -9 -46 72 -2.318

Anterior cingulate and paracingulate gyri R 3 37 7 -1.949

ALFF Parahippocampal gyrus R 21 13 -29 2.402

Precental gyrus L -16 -6 69 2.243

Cerebelum_6 L -37 -39 -31 -1.925

Temporal pole: middle temporal gyrus R 40 13 -43 -0.804

fALFF Vermis_10 - 2 -41 -39 2.597

Middle frontal gyrus, orbital part L -14 71 -4 2.291

Cerebelum_Crus2 R 17 -82 -47 -1.679

Superior parietal gyrus R 17 -62 64 -1.643

VMHC Parahippocampal gyrus L -18 -24 -14 2.665

Anterior cingulate and paracingulate gyri L 2 37 7 1.949

Cerebelum_7 R 18 -81 -49 -1.679

Postcentral gyrus L -65 -19 31 -1.181

�Automated Anatomical Labeling (90 Regions)

https://doi.org/10.1371/journal.pone.0265300.t007

Fig 4. Localization of the areas in the AAL atlas. Circles represent AAL nodes. The blue circles represent the areas

with higher discriminability between healthy and schizophrenia groups and the green circles represent unaffected

areas.

https://doi.org/10.1371/journal.pone.0265300.g004
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the right TPOmid, while fALFF decreases in the right CERcr2 and the right SPG. In addition,

VMHC decreases in the right CER7 and the left PoCG.

3.5 Robustness to noise

We performed some additional experiments to investigate the robustness of the proposed

method with different feature combinations. In particular, we added Rician noise with two dif-

ferent levels of σ = 1 and σ = 2 to the test data. The performance outcomes under these noise

conditions are summarized in Tables 8 and 9 for the single-feature-type classifiers and fused-

feature classifiers, respectively. Moreover, the performance outcomes under the noise condi-

tions are visualized for the best classifiers with single, pairwise, triple, and quadruple feature

combinations as well as decision-fusion classifier in Fig 5.

For the best single-feature-type classifier, namely the ReHo-based classifier, the 95.57%

detection accuracy dropped by 2.11% and 6.11% with the two noise levels, respectively. For the

decision-level fusion classifier, the 97.85% detection accuracy dropped by 2.07% and 9.31%

with the two noise levels, respectively. The best pairwise-feature-type classifier, i.e. the classifier

based on the ALFF and fALFF features, the 97.71% detection accuracy dropped by 1.85% and

10% with the two noise levels, respectively. For the best triple-feature-type classifier, that is the

one based on the ALFF-fALFF-VMHC feature combination, the 97.85% detection accuracy

dropped by 2.13% and 9.92% with the two noise levels, respectively. Finally, for the classifier

with the quadruple feature combination, the 98.71% detection accuracy dropped by 2.50% and

8% with the two noise levels, respectively. These results show that all classifiers essentially

Table 8. Effects of Rician noise on schizophrenia detection performance with single-feature-type and decision-level fusion schemes for fMRI data contaminated

with Rician noise levels of σ = 1 and σ = 2.

Feature type Sensitivity (%) Specificity (%) Accuracy (%)

Noiseless σ = 1 σ = 2 Noiseless σ = 1 σ = 2 Noiseless σ = 1 σ = 2

ALFF 81.33 79.89 78.36 99.50 97.23 83.89 90.71 87.95 83.36

fALFF 91.56 89.43 87.78 93.36 91.32 82.57 92.71 89.86 84.85

VMHC 94.25 92.64 85.26 93.89 92.43 84.35 93.85 90.63 85.22

ReHo 94.08 92.33 88.26 95.78 93.66 86.62 94.57 92.46 86.46

Decision-fusion classifier 98.33 96.43 88.42 96.83 94.53 86.65 97.85 95.78 88.54

https://doi.org/10.1371/journal.pone.0265300.t008

Table 9. Effects of Rician noise on schizophrenia detection performance with feature-level fusion of different pairwise, triple, and quadruple combinations of single

feature types for fMRI data contaminated with Rician noise levels of σ = 1 and σ = 2.

Feature type Sensitivity (%) Specificity (%) Accuracy (%)

Noiseless σ = 1 σ = 2 Noiseless σ = 1 σ = 2 Noiseless σ = 1 σ = 2

Pairwise features ALFF+fALFF 98.80 96.32 86.85 96.32 94.82 88.57 97.71 94.67 87.71

ALFF+ReHo 97.40 94.83 85.77 97.64 95.54 86.40 97.42 95.52 86.57

ALFF+VMHC 96.93 93.45 84.21 96.86 93.27 83.85 96.71 94.55 85.42

fALFF+ReHo 95.08 93.91 85.85 98.51 96.54 86.57 97.42 95.62 86.61

fALFF+VMHC 96.85 94.32 84.46 98.00 96.08 83.86 97.57 95.33 84.93

ReHo+VMHC 95.61 92.66 83.80 99.77 96.54 84.77 97.57 95.86 85.71

Triple features ALFF+fALFF+ReHo 98.62 96.64 84.66 98.62 96.53 85.51 97.85 95.41 86.85

ALFF+fALFF+VMHC 97.21 95.34 86.08 98.72 96.74 85.72 97.85 95.92 87.93

ALFF+ReHo+VMHC 92.46 89.45 83.40 95.26 92.34 82.86 93.85 91.68 83.42

fALFF+ReHo+VMHC 95.22 92.46 84.21 97.35 94.23 83.22 95.71 92.55 84.64

Quadruple features ALFF+fALFF+ReHo+VMHC 99.71 97.64 89.62 97.66 96.32 88.93 98.71 96.21 90.71

https://doi.org/10.1371/journal.pone.0265300.t009
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experience similar degradation rates under the Rician noise conditions. While the degradation

rate is small for a noise level of σ = 1, this rate becomes understandably severe for the high

noise level of σ = 2. Nevertheless, the classifier with the quadruple combination shows better

robustness with the the highest accuracy under the noise-free condition and the smallest per-

formance drop (8%) under the high noise condition σ = 2. Similar degradation patterns can be

observed for the other performance metrics.

4 Discussion

In this paper, we investigated different fusion schemes of resting-state functional activity mea-

sures for discriminating between schizophrenic and healthy subjects. The improvements in

classification performance can be ascribed to the choice of the feature selection and fusion

approaches. For the decision fusion scheme in Table 3, the results outperformed those of the

single-feature-type schemes. This shows that the fusion of the decisions of weak classifiers

leads to more accurate classification performance [84]. Further, the feature fusion schemes in

Table 4 show even better performance enhancements. This additional improvement can be

ascribed to the fact that the feature-fusion schemes combine and optimize the selection of fea-

tures, while the decision-level fusion scheme classifies samples by merely conducting a vote

among only three single-feature-type classifiers.

We can understand the improvements obtained by different variants of the feature fusion

classifiers by looking at the contributions of the single feature types to each of these classifiers.

Specifically, Fig 6 shows the selected percentages of each of the ALFF, fALFF, ReHo, and

VMHC feature types for optimizing the performance of the classifiers with pairwise, triple,

and quadruple feature combinations. Obviously, each combination has different selections of

individual feature types. For example, for pairwise combinations, the ALFF feature type is

dominated by the other features; the fALFF type is dominated by the ReHo and VMHC ones;

and the ReHo type is slightly dominated by the VMHC one. For triple combinations, the

Fig 5. Schizophrenia detection performance outcomes under the Rician noise conditions for the best classifiers

with single, pairwise, triple, and quadruple feature combinations as well as the decision-fusion classifier.

https://doi.org/10.1371/journal.pone.0265300.g005
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ALFF type consistently shows zero or marginal contributions, while the fALFF features are

generally dominated by the ReHo and VMHC features. For the quadruple feature combination

associated with the best performance, the same pattern is observed where the ALFF type has

no contribution, while the VMHC type has the highest contribution followed by the fALFF

and ReHo types.

To put our results in context with other relevant studies, we examined the schizophrenia

detection results in some of these studies. Firstly, the high performance metrics of our method

agree with the high accuracies reported by other studies on the COBRE dataset. For example,

Qureshi et al. [85] achieved an accuracy of 100% on the COBRE dataset with 10-fold cross-val-

idation scheme and extreme learning machines (ELM). Also, Chyzhyk et al. [86] attained a

100% accuracy in the classification of healthy subjects and schizophrenic patients with and

without auditory hallucinations. Juneja et al. [87] obtained a 98% accuracy on a multisite data-

set from the Function Biomedical Informatics Research Network (FBIRN). Other schizophre-

nia detection methods achieved lower accuracies ranging from 62% to 94% for different

variations of the schizophrenia classes, the image modalities and the collected datasets [88].

Furthermore, the performance metrics of the schizophrenia detection systems rank differ-

ently compared to other brain diseases [88]. On the one hand, the inter-quartile range of the

reported overall accuracies for schizophrenia (76%-92%) is generally higher than those associ-

ated with stroke (67%-87%), ADHD (67%-76%) and depression (77%-86%). On the other

hand, the inter-quartile range for schizophrenia is generally lower than those of the Alzhei-

mer’s disease (AD) (86%-97%) and Parkinson’s disease (PD) (87%-98%).

The vertical averaging method was employed to plot the ROC curves as shown in Fig 3. We

noticed that the AUC values of the combinations of features are slightly better than those

based on single feature types.

The significant regions that are shown in Table 7 are in agreement with the previous find-

ings. Studies based on ReHo features reported an increase in ReHo values in the right LING,

the right PCUN and a decrease in ReHo values in the left PCUN and the right ACG [89, 90].

ALFF-based studies reported significant ALFF increases in the right PHG and decreased ALFF

values in the right PHG and the left PreCG [91]. Also, fALFF-based studies demonstrated sig-

nificant fALFF increases in VER10 and the left ORBmid and decreased fALFF values in the

right CERcr2 and the right SPG [91, 92]. Finally, VMHC-based studies reported significant

Fig 6. Contribution percentage of each of the ALFF, fALFF, ReHo, VMHC feature types in the performance of the

classifiers with pairwise, triple, and quadruple feature combinations.

https://doi.org/10.1371/journal.pone.0265300.g006
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VMHC increases in the left PHG and the left ACG and decreased VMHC values in the right

CER7 and the left PoCG [93]. As shown in Table 3, the standard deviation of the accuracy

results for the outer 10-fold cross-validation scheme is considered small, and this demonstrates

the low bias and high robustness of the proposed system for schizophrenia diagnosis. More-

over, the extracted features can be employed as biological markers that may help identify sub-

jects at increased risk of disease development, and hence improve disease prognosis.

Furthermore, the localization of the affected regions, in Table 7, can be employed in further

research to localize and understand how the different regions are affected and changed

through the progression of the disease.

5 Conclusion

In this paper, we introduced different feature-level and decision-level fusion schemes for dis-

criminating between schizophrenic and healthy subjects and identifying schizophrenia-

affected brain regions using whole-brain Rs-fMRI analysis. The highest average test accuracy

of 98.71% was obtained with feature fusion of the four types of features considered in this

paper. In summary, our work employs optimized feature selection algorithms, explores differ-

ent fusion schemes, and exploits a large-scale dataset for schizophrenia detection. For future

work, we seek to address this detection problem with deep learning and graph-theoretic tech-

niques for two main reasons. Firstly, in practical applications for schizophrenia detection, the

actual test data may be contaminated by noise and artifacts. Under these conditions, the hand-

crafted features may be not quite robust. This is why other graph-theoretic or deep learning

methods with better noise robustness measures should be sought. Secondly, although the

employed COBRE dataset is considered big compared to the other available datasets, a larger

dataset is still needed with few hundreds of MRI volumes, acquired from different centers,

with different MRI machines, and at different specifications. With these large real-world data

variations, our current handcrafted-feature method may not achieve the same performance

outcomes, and hence deep learning architectures would be needed to effectively capture the

increasing data complexity.
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