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Abstract

Background: Genetic variants can be used to prioritize risk factors as potential therapeu-

tic targets via Mendelian randomization (MR). An agnostic statistical framework using

Bayesian model averaging (MR-BMA) can disentangle the causal role of correlated risk

factors with shared genetic predictors. Here, our objective is to identify lipoprotein meas-

ures as mediators between lipid-associated genetic variants and coronary artery disease

(CAD) for the purpose of detecting therapeutic targets for CAD.

Methods: As risk factors we consider 30 lipoprotein measures and metabolites derived

from a high-throughput metabolomics study including 24 925 participants. We fit multi-

variable MR models of genetic associations with CAD estimated in 453 595 participants

(including 113 937 cases) regressed on genetic associations with the risk factors. MR-

BMA assigns to each combination of risk factors a model score quantifying how well the
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genetic associations with CAD are explained. Risk factors are ranked by their marginal

score and selected using false-discovery rate (FDR) criteria. We perform supplementary

and sensitivity analyses varying the dataset for genetic associations with CAD.

Results: In the main analysis, the top combination of risk factors ranked by the model

score contains apolipoprotein B (ApoB) only. ApoB is also the highest ranked risk factor

with respect to the marginal score (FDR <0.005). Additionally, ApoB is selected in all

sensitivity analyses. No other measure of cholesterol or triglyceride is consistently

selected otherwise.

Conclusions: Our agnostic genetic investigation prioritizes ApoB across all datasets

considered, suggesting that ApoB, representing the total number of hepatic-derived

lipoprotein particles, is the primary lipid determinant of CAD.

Key words: Lipoproteins, blood lipids, metabolomics, coronary artery disease, Mendelian randomization, risk factor

selection, apolipoprotein B

Introduction

Genetic variants have the potential to contribute greatly to

our understanding of mechanisms underlying disease pro-

cesses, and to guide target validation for pharmacological

and clinical interventions that reduce disease risk.1

Coronary artery disease (CAD) is the most common cause

of death globally. Whereas it has been shown that genetic

variants predisposing individuals to higher levels of low-

density lipoproteins (LDL)-cholesterol also associate with

increased CAD risk,2 genetic variants predisposing individu-

als to higher levels of high-density lipoproteins (HDL)-cho-

lesterol are not associated with CAD risk3 after accounting

for other lipid traits. These genetic analyses may suggest

that LDL-cholesterol is a causal risk factor for CAD risk,

but HDL-cholesterol is not—as has generally been observed

in clinical trials of lipid-altering therapies.4–6 Genetic studies

have also suggested that triglyceride levels are an indepen-

dent risk factor for CAD risk.7 Triglycerides are another

component of body fat which are transported by lipoprotein

particles, and in particular by very low-density lipoproteins

(VLDL). However, two recent studies showed that genetic

associations with CAD risk are proportional to the change

in apolipoprotein B (ApoB), the primary protein component

of VLDL, LDL and intermediate-density lipoprotein (IDL)

particles, and that LDL-cholesterol and triglycerides do not

appear to be independent risk factors for CAD after ac-

counting for ApoB.8,9

Genome-wide association studies (GWAS) are increas-

ingly used to combine genomic profiling with high-

throughput molecular measures on a large scale, including

tens of thousands of samples, to explore the genetic regula-

tion of molecular processes. For example, Kettunen

Key Messages

• It is a common consensus that certain lipoproteins increase cardiovascular disease risk, yet the exact mechanisms

are unclear.

• We use genetic associations with high-throughput metabolomics features to draw a detailed picture of lipid traits and

characteristics, allowing for an unprecedented resolution when considering lipids as risk factors for cardiovascular

disease.

• This study integrates genetic data from a large-scale metabolomics study including 25 000 samples and the largest

study on cardiovascular disease risk including 113 937 cases and 339 658 controls.

• Mendelian randomization-Bayesian model averaging (MR-BMA), a novel algorithm for multivariable Mendelian ran-

domization, is used to identify the most likely causal lipid determinants of cardiovascular disease from a large set of

candidate risk factors with shared genetic predictors.

• Our agnostic genetic investigation prioritizes apolipoprotein B across all datasets considered, suggesting that apolipo-

protein B, representing the total number of hepatic-derived lipoprotein particles, is the primary lipid determinant of

cardiovascular disease risk.

894 International Journal of Epidemiology, 2021, Vol. 50, No. 3



et al. have combined high-throughput metabolomics with

genomic profiling on nearly 25 000 individuals.10 Given

the large sample size, these studies are well powered to ex-

plore the causal role of molecular mechanisms. The metab-

olomics study by Kettunen et al. was conducted using

nuclear magnetic resonance (NMR) spectroscopy to pro-

vide a detailed characterization of lipid-related traits, in-

cluding 14 size categories of lipoprotein particles ranging

from small HDL to extra-extra-large VLDL. For each lipo-

protein category, measurements are available of choles-

terol, triglycerides, cholesterol ester and phospholipid

content. Additional mean diameter of the lipoprotein par-

ticles is measured for some lipoprotein size categories.

Measurements also include apolipoprotein A1 and ApoB,

sphingomyelins, fatty acids and phosphoglycerides

(Supplementary Table S1, available as Supplementary data

at IJE online).

Previous MR studies on lipid determinants for CAD

risk have included only a few curated lipid traits at a

time.8,9 In this study, we build on a high-throughput

metabolomics data resource10 to investigate a much wider

set of lipoprotein measurements as candidate risk factors

for CAD. We use a recently published algorithm called

Mendelian randomization with Bayesian model averaging

(MR-BMA)11 that applies principles from high-

dimensional data analysis and machine learning to detect

causal risk factors from a large set of candidate risk fac-

tors. Our goal is to select the lipoprotein measures that are

the most likely causal risk factors for CAD.

Methods

Variable selection method for finding likely causal

risk factors

We provide a brief outline of the MR-BMA method here.

More details are given in the Supplementary Material,

available as Supplementary data at IJE online, and a dia-

gram illustrating the method is shown in Figure 1.

We consider each set of risk factors in turn: all single

risk factors, all pairs of risk factors, all triples and so on.

For each set of risk factors, we undertake a multivariable

MR analysis using weighted regression based on summa-

rized genetic data. We assess goodness-of-fit in the regres-

sion model, and assign a score to the risk factor set that is

the model posterior probability of that set being the true

causal risk factors. We repeat this to get a posterior proba-

bility for all models (i.e. all sets of risk factors). Then, for

each of the candidate risk factors, we sum up the posterior

probability over models including that risk factor to com-

pute the marginal inclusion probability for the risk factor,

representing the probability of that risk factor being a

causal determinant of disease risk. We also calculate the

model-averaged causal effect, representing the average

causal effect across models including that risk factor. P-

values are calculated for each risk factor using a permuta-

tion method, with adjustment for multiple testing via the

Benjamini and Hochberg false-discovery rate (FDR)

procedure.12

Study design

A summary of our study design is given in Figure 2. The

three key steps in designing a two-sample multivariable

MR study are instrument selection, risk factor selection

and the choice of outcome data, including main and sensi-

tivity analysis.

Selecting lipid-associated variants as instrumental variables

We took an initial list of 185 variants associated with

blood lipids (LDL-cholesterol, HDL-cholesterol or trigly-

cerides) in the Global Lipid Genetics Consortium at a

genome-wide level of significance (P < 5� 10�8)7 which

was pruned at a linkage disequilibrium threshold of

r2 < 0:05, and further refined by genomic distance, ex-

cluding variants that are less than one megabase pair apart,

to provide a list of n¼ 150 genetic variants. We selected

these lipid-associated genetic variants as instrumental vari-

ables because we wanted to investigate lipid determinants

of CAD risk. This is important to keep in mind when inter-

preting the results, as the prioritization of risk factors by

MR-BMA is conditional on the genetic variants selected as

Figure 1 Diagram illustrating multivariable Mendelian randomization

for selecting causal risk factors for coronary artery disease (CAD) from

a large number of candidate risk factors, e.g. metabolites measured us-

ing nuclear magnetic resonance (NMR) spectroscopy. G, genetic var-

iants; M1; . . . ;M30, metabolites as risk factors; CAD, coronary artery

disease as outcome; U, confounders
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instrumental variables. There are two direct consequences

of this choice. First, this choice of instrumental variables

will downweight non-lipid risk factors, and so results

should not be interpreted as evidence that those risk factors

are not on the causal path to CAD. Second, basing the se-

lection of instrumental variables on an external dataset

(e.g. the Global Lipid Genetics Consortium) reduces the

risk of winner’s curse.13

We performed supplementary analysis, with n¼ 55 ge-

netic variants derived from the NMR GWAS as instrumen-

tal variables, to investigate how much the results depend

on the choice of instruments.

Lipoprotein measures as risk factors

Genetic associations with lipoprotein measures and metab-

olites are taken from Kettunen et al.10 who measured 118

variables on 24 925 European individuals using the high-

throughput Nightingale NMR platform. The contributing

cohorts are mainly Finnish (around 50%), with several

other Belgian (10%), Dutch (16%), Estonian (14%) and

German (10%) cohorts contributing. The majority of sam-

ples for measuring the biomarkers were collected after

overnight fasting, otherwise the analyses were adjusted for

time to last meal.10 Estimates were obtained by linear re-

gression of each NMR measurement on each of the genetic

variants in turn, with adjustment for age, sex, time from

last meal (if non-fasting) and 10 genomic principal compo-

nents. NMR measurements were inverse rank-based nor-

mal transformed, so that association estimates are

presented in standard deviation units for the relevant risk

factor throughout.

Several measurements from the Nightingale platform

were highly correlated, judged by the correlation between

the genetic associations for the 150 genetic variants. MR-

BMA was able to identify the causal risk factors reliably in

a simulation study when risk factors were highly correlated

(up to jrj ¼ 0:99),11 but several risk factors were more

highly correlated than this. We therefore pruned the set of

risk factors to avoid inaccurate results due to collinearity.

For each lipoprotein diameter category representing the

size of lipoproteins, we retained only the measurement of

cholesterol and/or triglyceride content and mean particle

diameter where available. We also included only total fatty

acid content and not other fatty acid measurements, as ge-

netic predictors that were able to distinguish reliably be-

tween these risk factors were not included as instruments.

Figure 2 Schematic diagram of the study design and results for the main, supplementary and sensitivity analyses. Selected risk factors are those

which had a empirical P-value of less than 0.05 after correction for multiple testing
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Other non-lipoprotein metabolite measurements were

retained in the analysis as they had substantially weaker

correlations with lipoprotein measurements, and so would

only be selected by MR-BMA if they mediated CAD risk

from the genetic predictors included in the model. No pair

of risk factors included in the final analysis was more

highly correlated than jrj ¼ 0:99 (see correlation heatmap

in Supplementary Figure S1, available as Supplementary

data at IJE online). Finally, we only included into the MR

analysis those risk factors that had at least one genetic vari-

ant that was a strong predictor (genome-wide significant).

The final list of 30 lipoprotein measures and metabolites

included in the analysis is provided in Supplementary

Table S1.

Coronary artery disease as outcome

Our primary analysis was based on genetic associations with

CAD risk taken from the 2017 CARDIoGRAMplusC4D

data release meta-analysed together with UK Biobank14 in-

cluding 453 595 individuals mostly of European descent, of

whom 113 937 had a CAD event. Genetic association esti-

mates with CAD risk were obtained in each study of the

CARDIoGRAMplusC4D consortium by logistic regression

with adjustment for at least five genomic principal compo-

nents, and then meta-analysed across studies. There was one

rare genetic variant (rs1998013, effect allele frequency

0.8%, in the PCSK9 gene region) and one common inter-

genic genetic variant (rs894210, effect allele frequency

43.5%) for which there was no association estimate with

CAD available. After excluding the missing genetic variants,

we performed MR-BMA with 148 variants and 30 risk

factors.

As supplementary analyses, we repeated the same analy-

sis steps on the 2017 CARDIoGRAMplusC4D data release

except: (i) we omitted the variant in the APOB gene region

from the analysis, to assess whether this variant was overly

influential in determining the top ranked models; and (ii)

we omitted the ApoB measurement from the list of risk fac-

tors to see if any other risk factor reached a similar level of

evidential support. If it is the case that ApoB was selected

as representative for a group of highly correlated traits,

then upon removal of ApoB another risk factor of this

group should be selected as representative instead.

As sensitivity analyses, we considered: (i) an earlier re-

lease of CARDIoGRAMplusC4D consortium15 including

60 801 CAD cases and 123 504 controls of European de-

scent, but not including UK Biobank participants; and (ii)

a UK Biobank GWAS which includes 29 278 cases and

338 425 controls of European descent (defined by self-

report and genomic principal components). Quality con-

trol procedures were performed and related individuals

were excluded from the analysis as described previously.16

For the main and the two sensitivity analyses, we report

the results including all variants and after excluding genetic

variants that are influential points and outliers.

An overview of the data sources used to derive genetic

associations with CAD risk is provided in Supplementary

Table S2, available as Supplementary data at IJE online.

Results

Main analysis using outcome data from

CARDIoGRAMplusC4D and UK biobank

Results are provided in Table 1. We show the top 10 mod-

els (i.e. sets of risk factors) ranked according to their model

posterior probability, and the top 10 risk factors according

to their marginal inclusion probability. We also present the

model-averaged causal effect estimate for each risk factor.

The top-ranked model contains ApoB and no additional

risk factors (model posterior probability 0.464). ApoB is

also the risk factor with the strongest overall evidence

(marginal inclusion probability 0.868, FDR <0.005). A di-

agnostic scatterplot of the genetic associations with the

outcome against the genetic associations with ApoB is

given in Figure 3. Our primary analysis was performed af-

ter model diagnostics, which removed influential genetic

variants (Supplementary Table S3 and Supplementary

Figure S2, available as Supplementary data at IJE online)

and outlying genetic variants (Supplementary Table S4 and

Supplementary Figure S3, available as Supplementary data

at IJE online) from the analysis. Similar results were

obtained including all variants in the analysis

(Supplementary Table S5, available as Supplementary data

at IJE online).

Supplementary analysis

As supplementary analyses, we first repeated the primary

analysis excluding the genetic variant in the APOB gene re-

gion, to ensure that this variant was not driving the selec-

tion of ApoB as a risk factor. This exclusion did not affect

the results (Supplementary Table S6, available as

Supplementary data at IJE online)—ApoB remained the

highest ranking individual model (model posterior proba-

bility 0.455) and the risk factor with the strongest marginal

evidence (marginal inclusion probability 0.862). Second,

we repeated the primary analysis excluding ApoB from the

list of risk factors (Supplementary Table S7, available as

Supplementary data at IJE online). No alternative risk fac-

tor had similar strength of evidence, suggesting that ApoB

is indeed the most important risk factor and not just a rep-

resentative of a group of highly correlated lipoprotein

measures with similar evidence. On exclusion of ApoB, the
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Table 1 Main analysis: top 10 models (combination of risk factors) ranked by the model posterior probability and top 10 risk fac-

tors ranked by the marginal inclusion probability in the primary analysis based on n¼138 genetic variants after model diagnos-

tics. Causal effects are log odds ratios for coronary artery disease per 1 standard deviation increase in the risk factor. Empirical

P-values are computed using 1000 permutations and adjusted for multiple testing using false-discovery rate (FDR) procedure

CARDIoGRAMplusC4D and UK Biobank

Model Posterior

probability

Causal

effect

Risk

factor

Marginal inclusion

probability

Model-averaged

causal effect

Empirical

P-value

FDR

1 ApoB 0.480 0.464 ApoB 0.868 0.392 0.0001 0.003

2 ApoB, S.HDL.TG 0.043 0.349, 0.175 S.HDL.TG 0.136 0.033 0.0165 0.247

3 LDL.C, S.HDL.TG 0.021 0.276, 0.301 LDL.C 0.075 0.015 0.0882 0.882

4 ApoB, M.HDL.C 0.020 0.437, -0.111 XXL.VLDL.TG 0.047 0.010 0.4823 0.995

5 ApoB, S.LDL.C 0.014 0.570, -0.121 Serum.C 0.045 0.011 0.2295 0.995

6 ApoB, XXL.VLDL.TG 0.014 0.419, 0.112 IDL.C 0.042 0.008 0.2401 0.995

7 ApoB, XS.VLDL.TG 0.011 0.375, 0.099 S.LDL.C 0.040 0.001 0.3745 0.995

8 ApoB, S.VLDL.C 0.011 0.480, -0.017 M.HDL.C 0.038 �0.005 0.2885 0.995

9 ApoB, LDL.C 0.011 0.522, -0.062 HDL.C 0.036 �0.006 0.2266 0.995

10 ApoB, HDL.C 0.011 0.453, -0.073 Serum.TG 0.035 0.006 0.7583 0.995

Figure 3 Estimates of genetic associations with coronary artery disease (CAD) risk (y-axis) against genetic associations with apolipoprotein B (ApoB,

x-axis) for each genetic variant from the primary analysis using CARDIoGRAMplusC4D and UK Biobank. Outliers removed from the analysis are

highlighted as diamonds (�) and their annotated gene-region is displayed
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top risk factors were triglycerides content in small HDL

particles (marginal inclusion probability 0.461, FDR

<0.05) and LDL cholesterol (marginal inclusion probabil-

ity 0.417, FDR <0.05). Yet, the evidence for these two li-

poprotein measures is much weaker compared to the

evidence for ApoB in the main analysis.

As final supplementary analysis we used n¼ 55 genetic

variants derived from the NMR GWAS as instrumental varia-

bles. After removing influential variants and outlying genetic

variants, ApoB is the risk factor with the strongest evidence

(Supplementary Table S8, available as Supplementary data at

IJE online). This supplementary analysis has less power than

the main analysis; this is due to a smaller number of genetic

variants used as instrumental variables (n¼ 55 based on

NMR GWAS, n¼ 148 based on Global Lipids Genetics

Consortium), yet it confirms ApoB as the highest ranked risk

factor. It is important to consider here the different interpreta-

tion which depends on the selection of instruments. For the

main analysis, instrumental variables were selected based on

the Global Lipids Genetics Consortium with the aim to define

lipid-related risk factors for CAD. The supplementary analy-

sis in contrast allows for a wider panel of NMR metabolites

as risk factors for CAD.

Sensitivity analysis

As sensitivity analysis, we used genetic associations

with CAD risk from two alternative datasets. Results are

shown in Supplementary Table S9, available as

Supplementary data at IJE online. For the earlier release of

CARDIoGRAMplusC4D,15 the top-ranked model includes

ApoB alone (model posterior probability 0.455), and ApoB

is the top-ranked risk factor overall (marginal inclusion

probability 0.673, FDR <0.005). For UK Biobank, ApoB

(marginal inclusion probability 0.325, FDR <0.05) was

ranked second after triglycerides in very small VLDL-

cholesterol (marginal inclusion probability 0.456, FDR

<0.01). When looking at the individual models, triglycer-

ides content in very small VLDL-cholesterol particles is

ranked first, followed by models including both ApoB and

a measure of triglycerides content, suggesting an additional

causal pathway via triglycerides when deriving genetic

associations from UK Biobank analysis.

Discussion

Our results add to the growing evidence that ApoB is the

primary causal determinant for CAD risk among lipopro-

tein measurements.8,17,18 Cholesterol underlies the devel-

opment of atherosclerosis.19 It enters the arterial wall

within those ApoB-containing lipoprotein particles that are

small enough to enter the tunica intima from the

circulation; these particles include small VLDL, IDL and

LDL particles as well as lipoprotein(a). The recent genetic

evidence, together with the results in this work, strongly

point towards the direction that the lipid content of the

particles is secondary to ApoB.8,18,20

These results do not invalidate LDL-cholesterol as a

causal risk factor for CAD risk. Indeed, LDL particles con-

tain an apolipoprotein B molecule, as do IDL and VLDL

particles. ApoB (in particular ApoB-100) represents the to-

tal number of hepatic-derived lipoprotein particles.21

However, this investigation suggests that the clinical

benefit of lowering triglyceride and LDL-C levels is pro-

portional to the absolute change in ApoB. ApoB measure-

ments are independent of particle density, and are not

affected by heterogeneity of particle cholesterol content.22

This is particularly important for accurately capturing the

number of small dense LDL particles, which are believed

to be associated with atherosclerosis. ApoB has been

shown to be a superior measure to LDL-cholesterol in the

prediction of CAD risk23 and in prediction of coronary ar-

tery calcification.24 From a clinical perspective, statins tar-

get LDL-cholesterol levels rather than ApoB, suggesting

that greater benefit might be obtained from lipid-lowering

drugs that target lipoprotein particle number.25 When ana-

lysing data from UK Biobank only, there was also some ev-

idence for triglyceride content measures as an additional

risk factor. This was not evident in the main analysis or the

sensitivity analysis including data from the earlier

CARDIoGRAMplusC4D release. This finding should

therefore be interpreted with some caution.

There are some caveats to the interpretation of the

results of this study. Although we were able to distinguish

between measures of cholesterol content and triglyceride

content for some categories of lipoprotein particles, we

were not able to distinguish between other lipoprotein

measures, such as cholesterol ester and phospholipid con-

tent, which correlated almost perfectly with cholesterol

content. Previous studies have suggested that the ApoB/

ApoA1 ratio may be a relevant risk factor for CAD.26

However, working on summary-level data we were not

able to investigate any other relevant risk factors than

those provided by the original data, such as the ratio

ApoB/ApoA1 or the ratio of LDL/HDL particles. A further

limitation is that there is overlap between individuals in

the outcome datasets for the main and sensitivity analyses.

For this reason, we refer to them as sensitivity analyses

rather than replication analyses, as they assess the robust-

ness of the variable selection algorithm to variations in the

outcome dataset, rather than providing an independent

replication of the findings.

One key strength of the study is that the genetic associa-

tions were derived on mainly fasting samples, which
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facilitates the interpretation of the results. Fasting meas-

urements represent hepatic-derived lipid traits whereas

non-fasting samples also partly reflect gut-derived contri-

butions from chylomicron particles and their remnants.

This means that our analysis is well placed to answer

causal questions about endogenous lipid pathways, but is

less able to answer questions about lipoproteins from die-

tary sources.

In conclusion, our agnostic investigation to identify risk

factors for CAD strongly prioritized ApoB, suggesting that

ApoB, representing the number of hepatic-derived lipopro-

tein particles, is the key determinant of CAD risk among

lipid-related measurements. This analysis demonstrates the

potential of publicly available genetic association data

from high-throughput experiments combined with modern

data-adaptive statistical learning techniques, for obtaining

biological insights into disease aetiology.

Supplementary Data

Supplementary data are available at IJE online.
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