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In this work, the antimicrobial resistance profile of Escherichia coli strains (n =

248) isolated from bovine feces and carcass samples from Tamaulipas, Mexico, was

evaluated. Susceptibility to 12 antibiotics conventionally used in human and veterinary

treatments was determined according to Clinical and Laboratory Standards Institute

guidelines. Genes encoding resistance to tetracycline (tetA and tetB), streptomycin

(strA), aminoglycoside (aadA), and β-lactamase (blaTEM and blaSHV) were investigated by

PCR. Also, stx1, stx2, eae, bfp, and hlyA encoding virulence factors were determined.

Of the isolates, 85.9% were confirmed as E. coli strains. Among the 213 E. coli

isolates tested, 94.8% (202/213) showed resistance for at least one antimicrobial, mainly

ampicillin (83.0%; 177/213), cephalothin (76.0%; 162/213), and tetracyclines (69.0%;

147/213). In all the other antibiotics tested, the resistance percentage was below 36%.

A multidrug-resistant phenotype was found in 72.7% of the tested strains. The presence

of the tet gene (tetA or tetB) was detected in 43.1% of the isolates, the strA gene in

17.3%, and aadA1 in 51.6%. The blaTEM and blaSHV genes were found in 10.3 and

0.4% of the isolates, respectively. stx1 was detected in 4.2% of isolates, stx2 in 7.0,

and hlyA in 2.8%. The virulence genes, eae and bfp, were not detected in any strain.

These results indicate that Tamaulipas food products of bovine origin can be a source of

multiresistant E. coli strains for the environment and exposure for consumers.

Keywords: bovine, antimicrobial resistance, MDR, Escherichia coli, ESBL

INTRODUCTION

Antimicrobial resistance (AMR) is a complex multifactorial process driven by numerous
and varied factors (1). A causal relationship has been demonstrated with the increased
use of antimicrobials in veterinary medicine for treating and preventing disease and for
growth promotion (2). Antibiotic-resistant bacteria can be transferred directly from animals
to humans and can spread to the soil, food, and groundwater by the application of manure
to agricultural fields (3–5). The emergence of AMR in food-producing animals is of concern
since these zoonotic bacteria pose a risk to human health via the food chain (6, 7).
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Resistant proportions in the sentinel organism Escherichia coli
are often referred to as “prevalence” of resistance (8). E. coli is
known as a dangerous pathogen to human health. It contributes
to the dissemination of AMR, and it is a good indicator of
transmission pathways because it is ubiquitous, shares the same
niche as other enteric pathogens, and can be transferred by the
same route (7, 9, 10). E. coli strains can colonize cattle at any age
(11), and bovine carriers are often asymptomatic. Consequently,
these enteric pathogens, when shed in the feces, are a source
of contamination of water and food products (12). Analysis
of antibiotic resistance in microbial isolates from agricultural
and other environments could help us recognize resistance
gene reservoirs that may be present in bacterial populations
associated with food production animals (13). Monitoring of
AMR in E. coli may provide information on antimicrobial abuse
and the dynamics of transmission and development of AMR
pathogens. Only a few reports from México about the AMR
profiles of E. coli isolates in food-producing animals are available.
Amezquita et al. (14), in northwestern Mexico, examined the
AMR profiles of Shiga toxin-producing E. coli (STEC) O157 and
non-O157 from cattle, sheep, and poultry. Multidrug resistance
profiles were identified in 42% of the non-susceptible STEC
strains. However, in northeast Mexico, no information has been
generated regarding the possible multidrug resistance in cattle
(feces or carcasses) and its potential risk for human health. The
objective of this work was to investigate the AMR profile in E. coli
isolated from cattle in northeast Mexico.

MATERIALS AND METHODS

Sample Collection
Samples were collected from 124 cattle from a bovine
slaughterhouse located in the center of the state of Tamaulipas,
Mexico. This slaughterhouse receives cattle from nearby
municipalities. One specimen was randomly selected per farm for
the fecal sample and the carcass sample later to be taken.

Fecal Samples
A total of 124 bovine fecal samples were collected by direct rectal
retrieval using disposable gloves. Each glove was inverted and
sealed immediately after collection.

Carcass Samples
A total of 124 carcass samples were collected by sterile sponge

from each carcass 12 h after evisceration: a minimum of 100
cm2 from inside the round area from the navel–plate–brisket–
foreshank areas. All carcass samples were collected according
to the national regulations described in NOM-SSA1-1994 (15).
All samples were placed in separate sterile plastic bags to
prevent cross-contamination, labeled, and transported in ice to
the laboratory.

Isolation and Identification of E. coli
Twenty-five grams of each sample was enriched by inoculation
in 225ml of peptone water. They were then homogenized and
incubated at 37◦C. After 24 h, the samples were plated onto

TABLE 1 | Prevalence of phenotypical antimicrobial resistance in E. coli recovered

from bovine feces and carcasses.

Antibiotic Bovine feces,

n = 109 (%)

Bovine

carcasses,

n = 104 (%)

Total

n = 213 (%)

Streptomycin 44 (40.3) 20 (19.2) 64 (30.0)

Cefepime 66 (60.5) 0 66 (30.9)

Gentamicin 17 (15.5) 1 (0.9) 18 (8.4)

Cefotaxime 48 (44.0) 1 (0.9) 49 (23.0)

Trimethoprim/

sulfamethoxazole

41 (37.6) 11 (10.5) 52 (24.4)

Tetracycline 78 (71.5) 69 (66.3) 147 (69.0)

Ampicillin 75 (68.8) 102 (98.0) 177 (83.0)

Levofloxacin 11 (10.0) 2 (1.9) 13 (6.1)

Cephalothin 81 (74.3) 81 (77.8) 162 (76.0)

Netilmicin 8 (7.3) 8 (7.6) 16 (7.5)

Amikacin 13 (11.9) 11 (10.5) 24 (11.2)

Ceftriaxone 33 (30.2) 25 (24.0) 58 (27.2)

Antimicrobial resistance

to at least one

antimicrobial

99 (90.8) 103 (99.0) 202 (94.8)

Multidrug-resistant 73 (66.9) 82 (78.8) 155 (72.7)

eosin methylene blue and were incubated at 37◦C for 18–
24 h. Six colonies of presumptive E. coli strains were randomly
picked from each sample, and each was subsequently transferred
separately to tryptic soy agar and incubated for 24 h at 37◦C to
obtain a pure culture. All suspect colonies were confirmed by
biochemical identification, including the sugar fermentation test,
the indole production test, and the citrate test (16).

Antimicrobial Susceptibility Testing
Antimicrobial susceptibility was tested by the agar disc
diffusion method, following the Clinical and Laboratory
Standards Institute guidelines (17). The antimicrobials
used were tetracycline (TE; 30 µg), ampicillin (AM; 10
µg), levofloxacin (LEV; 5 µg), cephalothin (CF; 30 µg),
cefotaxime (30 µg), gentamicin (GE; 10 µg), cefepime (30 µg),
trimethoprim/sulfamethoxazole (25 µg), netilmicin (NET, 30
µg), amikacin (30 µg), ceftriaxone (30 µg), and streptomycin
(STR, 30 µg) (Sensi-disc BBL). These antimicrobials represent
the major classes of antimicrobial drugs relevant in both
veterinary and human medicine. Each E. coli strain colony was
evaluated based on the diameter of the clear inhibition zone, and
the results were interpreted following the criteria provided by
the CLSI. E. coli ATCC 25922 was used as a control.

Antibiotic-Resistant Gene Detection
Bacterial DNA was obtained from a pure culture on tryptic
soy agar (BD Becton Dickinson & Co., Cuautitlán Izcalli,
Mexico) by lysis of a bacterial cell suspension at 95◦C for
15min, followed by centrifugation at 13,000 × g for 3min.
Six antibiotic resistance genes were screened by PCR: genes
encoding tetracycline efflux pump (tetA and tetB), streptomycin
phosphotransferases (strA), aminoglycoside adenyltransferase

Frontiers in Veterinary Science | www.frontiersin.org 2 April 2021 | Volume 8 | Article 643802

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Martínez-Vázquez et al. MDR E. coli From Cattle

TABLE 2 | Some resistance profiles of bovine feces and carcasses.

Sample Number of antibiotics Patterns of resistance phenotypes Isolates

AM CF TE STR CRO STX CTX FEP AK NET GE LEV

Bovine feces 3 AM CF STR 2

3 AM CF CTX 2

3 CF TE STR 3

3 CF TE FEP 2

4 AM CF TE STR 3

4 AM TE STR CRO 1

5 AM CF TE CRO CTX 2

5 AM CF CRO CTX FEP 2

6 AM CF TE STR CTX FEP 2

6 AM CF TE STR STX CTX 2

6 AM CF CRO STX CTX FEP 4

7 AM CF TE CRO STX CTX FEP 3

7 CF TE STR CRO STX CTX FEP NET 2

8 AM CF TE STR CRO STX CTX FEP 3

Bovine carcasses 3 CF TE CRO 9

4 TE CRO 2

5 AM CF TE CRO SXT 24

6 AM TE 2

6 AM CF TE STR CRO SXT AK GE 6

6 AM TE LEV 1

6 AM CF TE STR CRO SXT NET 8

6 AM CF TE CRO AK 2

7 AM CF TE STR CRO SXT FEP AK 2

7 AM TE STR CRO SXT 3

7 AM CF TE CRO CTX AK LEV 1

(aadA), and beta-lactamase resistance (blaTEM and blaSHV) (18–
20). PCR conditions were performed in a total volume of 25 µl
containing 1× buffer, 25mM MgCl2, 10mM dNTPs (Bioline),
10mM of each primer, 5U of Taq polymerase (Uniparts), and
sterile water. PCR amplification was conducted following these
conditions: initial denaturation at 95◦C for 7min, followed by
30 cycles of denaturation at 95◦C for 45 s, annealing at 42 at
59◦C for 45 s, and extension at 72◦C for 45 s and a final cycle of
amplification at 72◦C for 7min. The PCR products were analyzed
by gel electrophoresis in 2.5% agarose (Sigma Aldrich, Germany),
followed by visualization on a transilluminator.

Detection of Virulence Factors
The detection of virulence factor genes was performed according
to the method described by Canizalez et al. (21). PCR was carried
out using target gene-specific primers, including shiga toxin
(stx1 and stx2), intimin (eaeA), bundle-forming pilus (bfp), and
enterohemolysin A (hlyA). The PCR reaction mixture contained
buffer 1X, MgCl2 25mM, dNTPs 10mM, primer 10mM, and
Taq DNA polymerase 5U. The volume of this mix was adjusted
to 25 µl with sterile water. The PCR amplification conditions
were as follows: initial denaturation at 95◦C for 1min, followed
by 30 cycles of denaturation at 95◦C for 45 s, annealing at 54–
60◦C for 45 s, and extension at 72◦C for 45 s and a final cycle of

amplification at 72◦C for 7min. Verification of PCR products was
performed in horizontal electrophoresis using 2.5% agarose gel
with 0.5× TBE and Sybr gold at 100V for 45min. A molecular
marker was run concurrently (100 pb Promega). The negative
control consisted of all contents of the reactionmixture excluding
template DNA, which was substituted with 1 µl sterile water. The
DNA bands were visualized and photographed under UV light.

RESULTS

Isolation and Identification of E. coli
Out of 248 samples tested, E. coli strains were detected in 85.9%
(213/248); 87.9% (109/124) were confirmed as E. coli strains in
fecal samples, and 83.8% (104/124) were from carcass samples
(Table 1).

Antimicrobial Susceptibility Testing
Among the 213 E. coli isolates tested, 94.8% (202/213) showed
resistance for at least one antimicrobial, mainly AM (83.0%;
177/213), CF (76.0%; 162/213), and TE (69.0%; 147/213)
(Table 1). The percentage of resistance to the other antimicrobial
agents was in all cases below 36%. The results showed resistance
to AM in 68.8% of fecal strains (75/109) and 98.0% of carcass
strains (102/104). Phenotypic resistance to CF E. coli was
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confirmed in 74.3% of fecal isolates (81/109) and 77.8% of
carcass isolates (81/104). The isolates that showed resistance to
TE were 71.5% of fecal strains (78/109) and 66.3% of carcass
strains (69/104). The percentage of sensitivity to LEV (90.6%;
193/213), GE (85.9%; 183/213), andNET (80.7%; 172/213) shown
in this work was higher than 80%. Fifty-seven antibiogram
resistance patterns were detected in this study (46 fecal and
11 carcasses; Table 2). The detection of 72.7% (155/213) strains
which showed a MDR phenotype (104 fecal and 82 carcasses)
is remarkable.

Antibiotic-Resistant Gene Detection
Of the isolates, 19.2% (41/213) were negative for all the
resistant genes tested. The tet(A) and tet(B) genes were
detected in 43.1% of isolates (92/213; 35 fecal and 57
carcasses). Both tet genes were detected in 12.6% (27/213)
of isolates (17 fecal and 10 carcasses). The strA and aadA1
genes were detected in 17.3% (37/213; eight fecal and 29
carcasses) and 51.6% (110/213; six fecal and 104 carcasses)
of isolates, respectively. β-Lactamic genes were detected in
10.3% (22/213; 18 fecal and four carcasses) from blaTEM
and in 0.4% (1/213; one fecal and zero carcasses) from
blaSHV (Table 3).

Detection of Virulence Factors
Of the isolates, 14.0% (30/213) showed one or two genes
encoding a virulence factor (stx1, stx2, or hlyA). The stx genes
were carried by 11.2% (24/213; 12 fecal and 12 carcasses) of
the studied isolates. From these stx positives, 4.2% (9/213;
three fecal and six carcasses) were stx1, and 7.0% (15/213;
nine fecal and six carcasses) were stx2. Only three strains
showed both genes stx1 and stx2 (1.4%; 3/213). However,
hlyA was detected in only 2.8% (6/213; four fecal and two
carcasses). None of the isolates contained the virulence genes
eaeA and bfp.

DISCUSSION

Previous studies show that antimicrobial resistance varies
widely depending on the countries or animal from which the
microorganisms have been isolated. In this study, E. coli strains
with resistance to AM (83.0%), CF (76.0%), and TE (69.0%) were
the most prevalent. Overall, other studies with E. coli strains from
bovine samples showed a range of antimicrobial resistance to
AM between 6.0 and 95.7% and to TE between 10.6 and 95%
(8, 22–26). Globally, TE and AM are widely used in animal
production, disease prevention, and growth promotion. Their
combined resistance is often due to the colocation of different
determinants in the same mobile genetic elements (plasmids,
transposons, and/or integrons), and this has contributed to the
selection of multidrug-resistant isolates worldwide (23). Fifty-
seven antibiogram patterns of resistance were detected in this
study (46 fecal and 11 carcasses) (Table 2). In the current study,
an overall prevalence ofMDR among the isolates (72.7%;Table 1)
was high compared to previous studies worldwide, for example,
an MDR of 44.4% in Egypt (27), 69.0% in Portugal (28), 56.0% in
France (29), 13.7% in South Africa (30), and 37.1% in Jordan (24). T
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In Mexico, an AMR study in the northwest reported an MDR
of 42% (14). This might be due to inappropriate or excessive
use of antibiotics for therapeutic and prophylactic treatment
(31, 32). These results suggest that bovines may represent an
important reservoir of antibiotic-resistant bacteria, be a route
of spread, and represent a health risk. Of the 147 E. coli strains
with phenotypic resistance to TE, 38.0% (56/147) showed the
gene tetA and 24.4% (36/147) the gene tetB. While the tetA
gene had a similar prevalence in both types of samples (fecal,
27/109 and carcasses, 29/104) for the tetB gene, the prevalence
was markedly higher in carcass samples compared to that in
fecal samples (fecal, 8/109 and carcasses, 28/104). Of the 64
strains with phenotypic resistance to STR, 57.8% (37/64) have
the resistance gene strA and 100% (64/64) the resistance gene
aadA-IV. The 46 strains identified with the aadA-IV gene did not
show phenotypic resistance to STR (Table 3). These resistance
genes may be transferable from E. coli to other bacteria in the
gut and subsequently disseminated into the environment. The
virulence factors of E. coli strains were frequently associated with
MDR. In the association between antimicrobial resistance and
virulence factors, the most remarkable was resistance to AM,
CF, TE, and STR in all strains with stx1 virulence factors (9/9);
100% (15/15) of strains stx2 showed resistance to at least one
antimicrobial. Of these, 40% (6/15) showed resistance to four.
One strain harboring hlyA was not resistant to any antibiotic
tested (6.6%; 1/15), and the rest of the hlyA-harboring strains
had antimicrobial resistance to two or more antibiotics (93.3%;
14/15). E. coli harboring stx and eae genes might represent a
high zoonotic risk, as these genes are often found in human
pathogenic enterohemorrhagic E. coli strains (26, 33, 34). In
this study, the stx genes and the hlyA gene were present in our
isolates, whereas aea and bfp were not detected. The gene stx2
codes for a potent toxin, often associated with the development of
hemorrhagic colitis and hemolytic uremic syndrome in humans

and was frequently associated with more severe human diseases
than stx1 (26, 35).

CONCLUSIONS

In this study, we detected a high prevalence of E. coli strains
with resistance (82.0%) and MDR (72.7%) with AM, CF,
and TE being the least effective antibiotics. Although the
prevalence of virulence factors was low, the strains harboring
the virulence factors were frequently associated with MDR.
These results suggest that bovines may represent an important
reservoir of antibiotic-resistant bacteria and show the need to
enforce the regulations in the use of antimicrobials in food-
producing animals.
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