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Abstract: Busulfan has been used as a conditioning regimen in allogeneic hematopoietic cell stem
transplantation (HSCT). Owing to a large inter-individual variation in pharmacokinetics, therapeutic
drug monitoring (TDM)-guided busulfan dosing is necessary to reduce graft failure and relapse rate.
As there exists no TDM of busulfan administration for HCT in Taiwan, we conducted a pilot study
to assess the TDM-dosing of busulfan in the Taiwanese population; Seven patients with HCT from
The Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan, received conditioning regimens
consisting of intravenous busulfan and other chemotherapies. After the initial busulfan dose, blood
samples were collected for busulfan TDM at 5 min, 1 h, 2 h, and 3 h. Busulfan was extracted and
detected by performing stable-isotope dilution LC–MS/MS. Plasma busulfan concentration was
quantified and used for dose adjustment. Potential adverse effects of busulfan, such as mucositis
and hepatic veno-occlusive disease (VOD), were also evaluated; The LC–MS/MS method was
validated with an analyte recovery of 88–99%, within-run and between-run precision of <15%, and
linearity ranging from 10 to 10,000 ng/mL. Using TDM-guided busulfan dosing, dose adjustment
was necessary and performed in six out of seven patients (86%) with successful engraftments in
all patients (100%). Mild mucositis was observed, and VOD was diagnosed in only one patient;
This single-center study in Taiwan demonstrated the importance of busulfan TDM in increasing the
success rate of HCT transplantation. It is also necessary to further investigate the optimal busulfan
target value in the Taiwanese population in the future.

Keywords: busulfan; therapeutic drug monitoring; hematopoietic cell transplantation

1. Introduction

Allogeneic hematopoietic cell transplantation (HCT) is a therapeutic approach used for
managing several hematopoietic or genetic diseases [1]. For example, successful allogeneic
HCTs have been reported in the treatment of malignancies, such as acute myeloid leukemia
(AML) [2], neuroblastoma [3,4], and inborn genetic errors such as adrenoleukodystrophy
(ALD) [5] and Lesch–Nyhan syndrome (LNS) [6,7].

Before HCT is conducted in recipients, conditioning regimens are administered to
reduce the occurrence of tumors and immune ablation. Traditionally, a high dose of total
body irradiation has been used for HCT conditioning; however, patients usually present
with immediate or delayed toxicities [1]. Alternatively, chemotherapy-based conditioning
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was introduced in the 1980s to replace total body irradiation [2]. Currently, busulfan, an
alkylating agent, combined with other chemotherapeutic agents, such as fludarabine, is the
most widely used conditioning regimen for allogeneic HCT [8–10].

Since the 1950s, oral busulfan has been used as an effective treatment for chronic myel-
ogenous leukemia and other hematopoietic malignancies [11]. Owing to the differences
in absorption, administration of the oral form of busulfan often results in substantial vari-
ability in plasma levels between patients, thereby limiting its use as an HCT conditioning
agent [12]. With the introduction of intravenous busulfan, the pharmacokinetic variations
between patients have reportedly reduced; therefore, the safety of the regimen has in-
creased [13]. However, a considerable inter-individual variation of busulfan concentration
in plasma, especially in children and young adults, has been reported [14].

In addition, drug–drug interactions (DDIs) may affect the clearance of busulfan or
co-administered drugs [15–17]. Using the pharmacokinetic (PK) interaction network-based
molecular structural similarity, Hao et al. predicted six clinically relevant and literature-
reported DDIs for busulfan, including voriconazole, fludarabine, itraconazole, cyclophos-
phamide, metronidazole, and melphalan [15]. For example, a combination of busulfan
with fludarabine, cyclophosphamide, or melphalan has been reported as a standard con-
ditioning regimen for HCT [18,19]. The considerably decreased clearance of melphalan
or cyclophosphamide results in potentially lethal toxicity when pre-administered with
busulfan [20]. Therefore, administration of busulfan after cyclophosphamide or melphalan
may prevent a decrease in the clearance of both drugs and reduce the risk of hepatotoxicity.
Although the DDIs between busulfan and fludarabine have not been consistently estab-
lished, fludarabine is also administered before busulfan. Itraconazole, voriconazole, or
metronidazole can either be replaced by other drugs that do not have DDIs with busulfan
or be administered after completion of busulfan treatment, thus preventing a reduction in
busulfan clearance.

To further reduce the busulfan pharmacokinetic variations between patients and
potential DDIs, therapeutic drug monitoring (TDM) was prescribed to guide the adminis-
tration of intravenous busulfan doses [21,22]. Since steady-state busulfan concentrations
in plasma can be predicted from first-dose kinetics, TDM-based busulfan dosing in HCT
conditioning substantially improves event-free survival in children [23–26]. In Taiwan,
busulfan combined with other chemotherapies [26] is commonly used for HCT condition-
ing. However, whether TDM-guided busulfan administration can increase the success rate
of transplantation and event-free survival in patients remains unknown. In this study, we
demonstrated that busulfan pharmacokinetics differed between patients, and nearly all
patients were subjected to dose adjustment using TDM data obtained from the analysis of
the first dose of busulfan. With TDM-guided busulfan dosing, the success rate of stem cell
engraftment substantially increased. Our data suggest the need for busulfan TDM for HCT
conditioning in Taiwan.

2. Results
2.1. Recovery and Matrix Effect

Several LC–MS/MS methods have been reported for the quantitation of busulfan in bi-
ological fluids [27–32]. Recently, Punt et al. developed an LC–MS/MS method for the simul-
taneous quantitation of busulfan, clofarabine, and fludarabine in plasma [28]. This method
has been applied to study the population PKs of fludarabine and clofarabine [33–35].
The combination of busulfan and fludarabine, with or without clofarabine, is currently
emerging as an HCT conditioning regimen [36]. In this study, we also performed HCT
conditioning by combing busulfan with fludarabine; therefore, we decided to adopt Punt’s
method [28] and focus on busulfan TDM.

First, the elution profile of both busulfan and busulfan-D8 internal standards showed
good peak shapes (Figure 1). Subsequently, the recovery and matrix effects were assessed.
Table 1 depicts the recoveries of QC low (LQC) and QC high (HQC) levels as 92.34%
and 99.54%, respectively. Additionally, the matrix effect, as evaluated using the matrix
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factor procedure, ranged from 88.53% to 99.32% (Table 1). Together, these data suggest the
efficient extraction of busulfan from plasma/serum with minimal matrix interference.
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Figure 1. Representative elution chromatograms of busulfan and busulfan-D8 at different levels
using newborn calf serum. (A) Lower limit of quantitation (LLOQ) at 10 ng/mL busulfan, and (B)
medium QC (MQC) at 4000 ng/mL busulfan. The SRM transitions were busulfan (264 > 151 m/z,
264 > 151 m/z) and busulfan-D8 (272 > 159 m/z, 272 > 62 m/z).

Table 1. Recovery and matrix effect tests in QC low (LQC) and high (HQC) levels.

Busulfan Level Concentration
(ng/mL) Recovery (%) n = 2 Matrix Factor (%)

n = 2

LQC 25 92.34 88.53
HQC 8000 99.54 99.32

2.2. Linearity

A calibration curve of busulfan ranging from 10 to 10,000 ng/mL has been shown in
Figure 2. The equation of the calibration curve was y = 0.0030x − 0.1059, where y represents
the area ratio and x the busulfan concentration. The coefficient of determination R2 was
0.997 in the linear range, which is considered enough for the analysis of clinical sample
concentrations empirically ranging from 200 to 5000 ng/mL [29,37].
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Figure 2. Linearity of busulfan analysis using newborn calf serum with 10, 50, 250, 1000, 5000,
7500, and 10,000 ng/mL busulfan. For each concentration, mean values from 10 repeated results
were plotted. The region of the dashed-line box was enlarged in a small plot. The coefficients of
determination R2 of the trend line have been also presented.

2.3. Precision and Accuracy

The precision and accuracy of LQC, MQC, and HQC are listed in Table 2. The
within-run and between-run precision and accuracy rates were <15%, which were within
acceptable levels. Since the busulfan concentration in patients obtaining conditioning
regimens was considerably higher than the LOQ, we used a calibration curve of busulfan
concentrations ranging from 50–7500 ng/mL in clinical samples.

Table 2. Validation results for accuracy and precision.

Busulfan Level Concentration
(ng/mL)

Within-Run CV
(%)

Between-Run CV
(%) Overall CV (%) Overall Bias (%)

LQC 25 9.70 1.08 9.76 1.04
MQC 4000 2.54 1.19 2.78 2.18
HQC 8000 2.87 0.88 2.97 7.58

2.4. Proficiency Test

Plasma samples from three patients were analyzed in parallel by two laboratories
(UMC Utrecht in The Netherlands [28] and FJCU in Taiwan) to estimate inter-laboratory
differences. As shown in Table 3, differences in busulfan concentrations at the four
time points in three patients were between 11.53 and 6.73%, and the average differences
(mean ± standard deviation) were 0.71 ± 6.17% in patient A, 3.49 ± 3.88% in patient B,
and 7.77 ± 3.14% in patient C. The difference in the calculated cumulative area under the
concentration–time curve (cAUC) for the patients was also less than 7% between the two
laboratories. The results demonstrate the robustness of the method.

2.5. Clinical Samples

In this study, a total number of seven patients requiring HCT were included. Their
disease, age, sex, and clinical information have been summarized in Table 4. The initial
busulfan dose in co-conditioning regimens was administered according to the EBMT/ESID
guidelines for ablative HSCT [26], and the following conditioning on day 4 was adjusted
based on the busulfan PK from the calculated cAUC data on day 1 (Table 4). The target value
of busulfan exposure was 90 mg × h/L, which was based on a multicenter retrospective
cohort analysis [25]. Busulfan dose adjustments were advised for all patients except patient
6 because a cAUC difference of <5% from the optimal cAUC (90 mg × h/L) does not
require a dose adjustment (Table 4) [25]. With personalized busulfan-based conditioning,
all patients (100%) showed successful neutrophil and platelet engraftments, which were
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defined as an absolute neutrophil count over 0.5 × 109/L in the first 3 consecutive days
and platelet counts over 2 × 1010/L without platelet transfusion in the first 7 consecutive
days, respectively.

Table 3. Proficiency test between two laboratories.

Patient Laboratory
Measured Busulfan Concentration (ng/mL)

cAUC 4 (mg × h/L)
5 min 1 h 2 h 3 h

A
UMC 1 5216 3886 3186 2479 29.2
FJCU 2 4836 3995 3226 2658 29.3

%Difference 3 −7.86 2.73 1.24 6.73 0.34

B
UMC 3946 2982 2318 1804 22.4
FJCU 3871 3182 2398 1925 23.9

%Difference −1.94 6.29 3.34 6.29 6.28

C
UMC 5127 3247 2458 1935 23.8
FJCU 4729 3124 2293 1735 22.4

%Difference −8.42 −3.94 −7.20 −11.53 −6.25
1 UMC: University Medical Center, Utrecht. 2 FJCU: Fu Jen Catholic University. 3 %Difference was determined by (FJCU-UMC)/UMC × 100%.
4 cAUC, cumulative area under the concentration–time curve.

Table 4. Clinical patient data.

No. Underlying
Diseases 1

Age
(yrs)/Gender

Conditioning
Regimen 1

BW
1-Guided
Dose (mg)

[26]

TDM
1-Guided
Dose (mg)

[25]

Difference 2

(%) Mucositis VOD 1

1 AML, relapsed 21/F Flu + Bu 804 617 −5.2 Grade 2 None
2 LNS 1.5/M Flu + Bu 178 142 −20.3 Grade 2 None
3 AML, relapsed 55/M Flu + Bu + Clo 876 1047 19.5 Grade 1 None
4 AML 50/F Flu + Bu 696 762 9.5 Grade 1 None
5 ALD 5/M Flu + Bu 400 300 −25.0 Grade 2 None
6 AML 16/M Flu + Bu 240 240 0.0 Grade 3 None
7 NB 7/M Bu + Mel 360 420 16.7 Grade 2 Yes
1 Abbreviations: AML, acute myeloid leukemia; LNS, Lesch–Nyhan syndrome; ALD, adrenoleukodystrophy; NB, neuroblastoma; Flu,
fludarabine; Bu, busulfan; Clo, clofarabine; Mel, melphalan; BW, body weight; TDM, therapeutic drug monitoring; VOD, veno-occlusive
disease. 2 %Difference was determined by (TDM-BW)/BW × 100%.

Additionally, we determined potential and acute adverse effects after three weeks
of successful engraftment, such as mucositis [38] and hepatic veno-occlusive disease
(VOD) [39]. Most patients had mild mucositis (grade 1 or 2), and VOD was only di-
agnosed in patient 7 (Table 4). We also monitored the endpoint of survival, which was
determined by a minimum follow-up of six months [25]. All patients, except patient 2,
were alive without presentation of major organ complications after six months. Collectively,
the data demonstrated that TDM-guided busulfan-based conditioning is important for
successful engraftment in Taiwan.

3. Discussion

When used in HCT conditioning, the busulfan cAUC has an extremely narrow ther-
apeutic window. For example, a target busulfan cAUC (100 mg × h/L) in combination
with fludarabine is necessary for the US adult population and a higher cAUC results in
worse clinical outcomes [40]. On the other hand, a low busulfan cAUC is associated with
graft rejection and disease relapse, especially in pediatric HCT transplantation [24,41].
Based on a recent comprehensive, retrospective study in children and young adults, the
busulfan cAUC of 78–101 mg × h/L showed the best clinical outcome [25]. These data are
in agreement with a target cAUC of 90 mg × h/L for myeloablative exposure, as suggested
by the EBMT/ESID [42]. Therefore, it is important to perform busulfan TDM to achieve an
optimal HCT outcome.
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Based on the analysis of clinical samples, to the best of our knowledge, this is the
first busulfan TDM study to report the application of personalized busulfan conditioning
for HCT in Taiwan. Currently, there are no PK studies of busulfan in Taiwan. Although
the busulfan target cAUC of 90 mg × h/L used in this study was originally intended for
children and young adults in Western populations [25,42], we found that HCT engraftments
were successful in all patients receiving this target value (Table 4). For adult patients (nos. 3
and 4), patient no. 4 had the best event-free prognosis up to February 2021. The other
patient (no. 3) succumbed to pneumonia, which was not directly associated with busulfan
exposure. As for the children (patient nos. 2, 5, 6, and 7) and young adults (patient no. 1),
patient no. 4 had the best event-free survival up to February 2021.

It was noted that patient 2, with LNS, developed infection-associated multi-organ
failures, which may have resulted from an interaction between germline defects and DDIs.
It was further noted that patient 7 had many risk factors associated with VOD, including
underlying relapsed/refractory neuroblastoma, serologically positive anti-hepatitis B core
antibody, high dose melphalan use, as well as prior partial hepatectomy. Therefore, po-
tential DDIs were suspected. He developed liver VOD according to the EBMT diagnostic
criteria [43,44], although this was resolved by supportive management.

This study had some limitations. Owing to the limited number of patients investigated
in this study, we could not determine whether the busulfan target cAUC of 90 mg × h/L
was optimal for event-free survival in the Taiwanese population. TDM-guided busulfan
conditioning is only part of the regimen for successful treatment. Knowledge of the
underlying diseases in patients and highly specialized care are required to achieve the best
event-free outcomes for patients with HCT [45]. Nevertheless, the clinical results presented
in this study highlight the importance of busulfan TDM in HCT transplantation, especially
in Taiwan. Further studies are warranted to obtain a potentially optimal busulfan target
cAUC for the Taiwanese population.

4. Materials and Methods
4.1. Chemicals and Reagents

Busulfan-D8 stock solution (100 µg/mL in methanol) was purchased from Cerilliant
(Round Rock, TX, USA). Newborn calf serum was obtained from Thermo Fisher Scientific
(Waltham, MA, USA). All other chemicals were purchased from Sigma-Aldrich (St. Louis,
MO, USA).

4.2. Patients and Samples

Patients included in this study were admitted at The Koo Foundation Sun Yat-Sen
Cancer Center (KFSYSCC), Taipei, Taiwan, from December 2015 to June 2017. The patients
received an HCT conditioning regimen consisting of intravenous, pharmacokinetically
dosed busulfan combined with fludarabine, melphalan, or fludarabine/clofarabine. The ini-
tial busulfan dose in co-conditioning regimens was administered according to the European
Society for Blood and Marrow Transplantation/European Society for Immunodeficiencies
guidelines for ablative HSCT [26]. Blood samples from each patient were collected for
busulfan TDM at the indicated times (5 min, 1 h, 2 h, and 3 h) after busulfan infusion [28].
After centrifugation, plasma samples were obtained, aliquoted, and stored at −80 ◦C until
analysis. Potential adverse effects of busulfan, such as mucositis and hepatic VOD, were
evaluated as per previously described methods [43,44].

4.3. Preparation of Standards Internal Standard and Quality Control (QC) Samples

Calibration standards and QC samples were prepared in newborn calf serum accord-
ing to a previously described method [28]. Although it is preferred to use blank human
plasma, the busulfan-D8 internal standard (ISTD) in new calf serum and normal human
plasma showed comparable internal standard matrix factors [28], which is acceptable based
on the European Medicines Agency (EMA) guidelines. In brief, a busulfan stock solution
(1 mg/mL) was freshly prepared in a 2 mL volumetric flask with N, N-dimethylacetamide,



Pharmaceuticals 2021, 14, 613 7 of 10

which is a solvent used in the preparation of intravenous busulfan [13,28]. Calibration
standards at concentrations of 10, 50, 250, 1000, 5000, 7500, and 10,000 ng/mL busulfan
were prepared by diluting the busulfan stock solution with the newborn calf serum in 2 mL
volumetric flasks [28]. Different levels of quality control (QC) at low (25 ng/mL) (LQC),
medium (4000 ng/mL) (MQC), and high (8000 ng/mL) (HQC) concentrations were also
prepared in the newborn calf serum with 2 mL volumetric flasks [28]. Separate busulfan
stock solutions were prepared to calibrate standards and QC samples. The calibration
standards and QC samples were aliquoted and stored at −80 ◦C until use. The busulfan-D8
ISTD working solution was prepared by diluting the stock solution to 1 µg/mL in 50%
acetonitrile (ACN) in a 2 mL volumetric flask and stored at 4 ◦C.

4.4. Sample Preparation

In a 1.5 mL microcentrifuge tube, 50 µL plasma samples (standards, QC, and patient
samples) were mixed with the following reagents in sequence: 12.5 µL ISTD working
solution, 12.5 µL of 50% ACN, and 25 µL of 20% trichloroacetic acid (20%), as per previously
described methods [28]. The mixtures were vortexed for 60 s and centrifuged for 5 min at
10,000× g. The supernatant (60 µL) was transferred into a new glass vial containing 540 µL
of 5% ACN. The samples were analyzed by performing LC–MS/MS 24 h after preparation.

4.5. LC–MS/MS

The prepared samples were analyzed using the TSQ Quantiva triple quadrupole mass
spectrometer (Thermo Fisher Scientific), which was coupled on-line with the UltiMate
3000 Open Sampler XRS System (Thermo Fisher Scientific). LC separation was performed
as per methods previously described [28]. Eight microliters of the sample were loaded
into an ACQUITY UPLC BEH C18 Column (130 Å, 1.7 µm, 2.1 × 50 mm; Waters, Milford,
MA, USA). Mobile phase A comprised 0.1% formic acid in water, and mobile phase B
included acetonitrile with 0.1% ammonium acetate. The elution program was conducted
0–2.4 min in isocratic 5% B, 2.4–2.75 min from 5% to 95% B, 2.75–3.5 min in isocratic
95% B, 3.5–4.0 min from 95% to 5% B, and 4.0–4.5 min in isocratic 5% B, with a flow rate
0.7 mL/min throughout the analyses. The ion source parameters were as follows: sheath
gas of 38, aux gas of 12, ion transfer tube temperature of 250 ◦C, and vaporizer temperature
of 279 ◦C. Busulfan and Busulfan-D8 were analyzed in the selected reaction monitoring
mode with the following transitions: Busulfan 264 > 151 m/z (quantifier) and 264 > 151 m/z
(qualifier) (CE: 10 V, RF: 50 V), as well as Busulfan-D8 272 > 159 m/z (quantifier) (CE: 11 V,
RF: 48 V) and 272 > 62 m/z (qualifier) (CE: 23 V, RF: 48 V). A dwell time of 50 ms was
observed for both Q1 and Q3 resolutions (FWHM) of 0.7 Da, CID gas of 1.5 mTorr, source
fragmentation of 10 V, and chrom filter of 3 s.

4.6. Method Validation

Method validation was performed according to the EMA guidelines. Recovery was
tested by comparing the amount of busulfan in the plasma before and after extraction
(before/after). The matrix effect was evaluated using the matrix factor procedure by adding
the same amount of busulfan to plasma or water (neat) followed by sample extraction. Both
recovery and matrix effects were tested in duplicate at the LQC and HQC. The freeze-and-
thaw (five cycles) sample stability was assessed in triplicate at LQC and HQC. For accuracy
and precision testing, six replicate QC samples at LQC, MQC, and HQC were assayed in
one batch, and three batches on consecutive days were assayed. For the proficiency test,
aliquots of plasma samples obtained from the same patient (total patient number = 3) were
both assayed in Taiwan and The Netherlands within 3 days.

4.7. Busulfan Exposure Calculation and Dose Adjustment

Busulfan exposure in individual patients was calculated as cAUC using a Bayesian
fitting procedure with the PK Software (MW Pharm, Mediware, Zuidhoorn, The Nether-
lands) and a validated population PK model, as per previously described methods [25]. A
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dosing nomogram was used to determine the initial dose for each patient. Blood samples
were collected for busulfan TDM at the indicated time points (t = 5 min, 1 h, 2 h, and
3 h after busulfan infusion) on day 1, and the cAUC was calculated using the validated
population PK model. Further dose adjustment was based on the cAUC determined by the
PK data to attain a target cAUC of 90 mg × h/L [25].

5. Conclusions

In conclusion, we applied LC–MS/MS-based busulfan TDM to personalized busulfan
conditioning for HCT in seven patients. This pilot, single-center study demonstrated
the importance of busulfan TDM for the optimal success rate of HCT transplantation.
Expansion of the cohorts for busulfan TDM, establishment of the pharmacokinetic model,
and the optimal busulfan exposure in the Taiwanese population are vital.
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