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Abstract: Crohn’s disease and ulcerative colitis, two major forms of inflammatory bowel disease (IBD)
in humans, afflicted in genetically predisposed individuals due to dysregulated immune response
directed against constituents of gut flora. The defective immune responses mounted against the
regulatory mechanisms amplify and maintain the IBD-induced mucosal inflammation. Therefore,
restoring the balance between inflammatory and anti-inflammatory immunepathways in the gut
may contribute to halting the IBD-associated tissue-damaging immune response. Phenotypic and
functional characterization of various immune-suppressive T cells (regulatory T cells; Tregs) over
the last decade has been used to optimize the procedures for in vitro expansion of these cells for
developing therapeutic interventional strategies. In this paper, we review the mechanisms of action
and functional importance of Tregs during the pathogenesis of IBD and modulating the disease
induced inflammation as well as role of mouse models including humanized mice repopulated
with the human immune system (HIS) to study the IBD. “Humanized” mouse models provide
new tools to analyze human Treg ontogeny, immunobiology, and therapy and the role of Tregs in
developing interventional strategies against IBD. Overall, humanized mouse models replicate the
human conditions and prove a viable tool to study molecular functions of human Tregs to harness
their therapeutic potential.

Keywords: humanized mice; inflammatory bowels disease; Crohn’s disease; ulcerative colitis; human
immune system; regulatory T cells

1. Introduction

Inflammatory bowel disease (IBD) is a complex inflammatory chronic and pathological
condition that includes Crohn’s disease (CD) and Ulcerative colitis (UC). CD primarily af-
fects the small and large intestine whereas the prime targets for UC are colon and rectum [1].
Clinical manifestations of IBD are characterized by abdominal pain, rectal bleeding, bloody
stools, tenesmus, diarrhea, weight loss, and the urgency to evacuate [1,2]. Pathogenesis
of IBD involves various environmental, genetic and bacterial factors with dysregulated
mucosal immune-mechanisms resulting in the disrupted intestinal homeostasis [3,4], and
dysregulated mucosal immune response provokes robust inflammatory response against
intestinal flora [2,5].

Immune sentinel subsets of CD4+ T cells such as Th (T helper cells)-1, Th2, Th17,
and regulatory T cells (Tregs) play a crucial role in the pathogenesis of IBD. Immuno-
logical balance between effector Th cells and Trges is essential for maintaining immune-
homeostasis [6,7]. Immunoregulatory Trges are characterized by the expression of transcrip-
tion factor Forkhead box P3 (Foxp3), and surface marker CD25 [8,9], and are functionally
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immunosuppressive & important for immune tolerance [10]. Therapeutic arrangement
based on Tregs is important to address the systemic inflammatory and autoimmune dis-
eases such as IBD and rheumatoid arthritis [11–13]. Further, decreased number of Trges
was seen in the patients with IBD than healthy control [14–16]. Inhibited generation of
functionally impaired Trges contribute to the intestinal inflammation leading to colitis
and other biological complications [17,18]. Functionally immune-suppressive Trges have
reportedly shown to ameliorate the IBD-induced immune responses [19,20]. Reduced
intestinal inflammation drives the control of IBD pathogenesis [21], and increased number
of functional Tregs experimentally confirmed their “therapeutic potential” during IBD
pathogenesis [22–24].

Present article is an orchestrated attempt to validate the functional aspects of Trges dur-
ing the IBD pathogenesis for developing interventional therapeutic strategies. Further, role
of Trges in the maintenance of peripheral immune tolerance with an emphasis on mucosal
immunity has been discussed at length. Additionally, various transgenic and immunodefi-
cient mice repopulated with the human immune system; mouse-human chimeric models
and their importance to study of IBD pathogenesis and associated biological phenomena
have been discussed.

2. IBD Pathogenesis

The epithelial layer of the human gut consists of goblet cells, columnar cells, paneth
cells, endocrine cells, M cells, tuft cells, and epithelial resident intestinal stem cells. These
cells are responsible for the differentiation of gut microbiota and secretion of various
mucus-containing antimicrobial peptides [25–27]. The intestinal barrier contains innate
immune cells such as dendritic cells (DCs), neutrophils, macrophages and innate lymphoid
cells (ILCs) which reside in the state of hypo-responsiveness in a healthy human gut [28,29].
The mucosal macrophages prevent the inter-conversion of Th1 and Th17 cells by producing
anti-inflammatory cytokines and thus promoting the differentiation of Trges [30–32]. The
immune cells’ balance in intestinal mucosa and luminal content is crucial for the normal
functioning of the mucosal immune system since dysregulated immune effecters result in
the IBD pathogenesis [33–35]. The impaired innate immune system is responsible for the
functional abnormalities of the adaptive immune system, and interconversion of effector
Th cells and Trges causing IBD pathogenesis [35,36]. Therefore, balanced gut mucosal
immunity to maintain immune homeostasis and protection is inevitably critical to fighting
IBD.

Activated lamina propria (intestinal mucous membrane) secrete a large number of
soluble immune mediators, including pro-inflammatory cytokines viz. tumor necrosis
factor (TNF), interferon-gamma (IFN-γ), Interleukin (IL)-6, IL-12, IL-21, IL-23, IL-17 and
anti-inflammatory cytokines such asIL-10, transforming growth factor (TGF-β) and IL-35in
local tissues [37]. The imbalance between these secreted soluble mediators especially
inflammatory and anti-inflammatory cytokines secreted by immune system results in IBD
pathogenesis [3,37–39] (Figure 1). The exogenous administration of TNF and TNF-like
cytokine 1Acytokines (TLA1) regulates the balance between Th1 and Th17 cell population
in the inflamed colonic tissues [40]. Further, TLA1 modulates Foxp3 expression in Tregs
and its function, and murine model of colitis has seen the alleviation of colitis when treated
with Tregs expressing low levels of TLA1.TLA1 may promote the maintenance of Treg
suppressor function in a death domain receptor 3 (DR3) dependent manner [41]. Passive
administration of anti-TLA1 antibodies prevents the development of 2,4,6-trinitrobenzene
sulfonic acid (TNBS)-induced colitis in mice, partially improves dextran Sulfate sodium
(DSS)-induced colitis and decreases the intestinal fibrosis in a chronic colitis model [42–44].

A meta-analysis has identified more than 200 genomic loci associated with IBD patho-
genesis, and 68% of loci have been shared by the UC and CD disease [45]. Genome-wide
association studies (GWAS) have helped the scientific community to find out genes respon-
sible for IBD pathology and nucleotide-binding oligomerization domain 2 (NOD2) is the
first gene found to be associated with IBD [46]. The associated mutations in NOD2 and
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polymorphisms within autophagy-related 16-like 1 (ATG16L1) genes have disseminated
the pivotal role of autophagy in the pathogenicity of IBD [47–49]. NOD2 knockouts ex-
hibited excessive intestinal inflammation as compared to NOD2 sufficient mice [50], and
selective deletion of ATG16L1 in T cells ends with spontaneous intestinal inflammation,
characterized by a decrease in Foxp3+ Tregs and aberrant expression of Th2 cells [51].
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Figure 1. Regulation of the intestinal homeostasis in healthy and IBD inflamed gut. A healthy intestinal epithelial barrier 
(IEB) in presence of TGF-β, retinoic acid (RA) and IL-2 promote dendritic cells (DCs) and macrophages (mφ) to stimulate 
the generation of inducible Trges (iTregs). TGF-β and IL-10 are markers that contribute to the generation of iTregs, and 
establish and maintain the tolerogenic environment in a healthy gut. On the contrary, IBD induced inflammation induces 
intestinal epithelial barriers and secrete TGF-β, IL-6 and IL-8, stimulating DCs and mφ to produce the inflammatory Th-
17 (IL-17A, IL-22, IL-21), Th-1 (IFN-γ, TNF-α, IL-6) and Th-2 type cells (IL-5, IL-6, IL-13) creating an inflammation focus 
and diseased intestine. 

3. Regulatory T Cells (Tregs) 
Tregs are heterogeneous cell populations of CD4+ T cells and possess immunosup-

pressive attributes. CD4+ Trges expressing high levels of IL-2 receptor α chain (CD25) and 
master transcription factor Foxp3 are the best-characterized populations with the immu-
nosuppressive phenotype [57]. Foxp3 is essentially required for maintaining their immu-
nosuppressive activity against infections, tumors, intestinal inflammation, allergy, and 
autoimmunity [8–10,58]. The absence of CD127 (IL-7 receptor α-chain) is considered as 
another feature of Tregs and up-regulates CD25 and Foxp3 expression upon activation. 
Thus a lower expression of CD127 is important alongwith elevated CD4, CD25, and Foxp3 
expression to confirm the functional phenotype of immunoregulatory T cells [59,60]. Two 

Figure 1. Regulation of the intestinal homeostasis in healthy and IBD inflamed gut. A healthy intestinal epithelial barrier
(IEB) in presence of TGF-β, retinoic acid (RA) and IL-2 promote dendritic cells (DCs) and macrophages (mϕ) to stimulate
the generation of inducible Trges (iTregs). TGF-β and IL-10 are markers that contribute to the generation of iTregs, and
establish and maintain the tolerogenic environment in a healthy gut. On the contrary, IBD induced inflammation induces
intestinal epithelial barriers and secrete TGF-β, IL-6 and IL-8, stimulating DCs and mϕ to produce the inflammatory Th-17
(IL-17A, IL-22, IL-21), Th-1 (IFN-γ, TNF-α, IL-6) and Th-2 type cells (IL-5, IL-6, IL-13) creating an inflammation focus and
diseased intestine.

The contribution of gut homing or migration associated molecules such as α4b7
integrin, αEb7 integrin, CD62L, chemokine receptor (CCR)-4 (CCR4), CCR5, CCR7 and
CCR9 in the pathogenesis of IBD is well known [52]. Defective or loss of expression of these
molecules leads to the impaired Tregs trafficking to the target organs and thus inducing
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IBD. Loss of CCR7 and CCR4impairs the functions of Tregs in experimental colitis [53,54],
and further CCR7 regulates the balance between Th1, Th17, and Trges in Crohn’s-like
Murine ileitis [55]. b7 integrin deficiency impaired Tregs homing in IL-10 deficient mice
and spontaneously increased IBD-induced inflammation [56]. In essence, all findings
indicate the crucial role played by the number of functional Tregs since a compromised
number of Tregs contribute to the pathogenesis of IBD and other associated biological
impairments.

3. Regulatory T Cells (Tregs)

Tregs are heterogeneous cell populations of CD4+ T cells and possess immunosup-
pressive attributes. CD4+ Trges expressing high levels of IL-2 receptor α chain (CD25)
and master transcription factor Foxp3 are the best-characterized populations with the
immunosuppressive phenotype [57]. Foxp3 is essentially required for maintaining their
immunosuppressive activity against infections, tumors, intestinal inflammation, allergy,
and autoimmunity [8–10,58]. The absence of CD127 (IL-7 receptor α-chain) is considered
as another feature of Tregs and up-regulates CD25 and Foxp3 expression upon activation.
Thus a lower expression of CD127 is important alongwith elevated CD4, CD25, and Foxp3
expression to confirm the functional phenotype of immunoregulatory T cells [59,60]. Two
main subsets of Trges are characterized as Foxp3 positive Trges and Foxp3 negative type 1
Treg (Tr1) cells.

3.1. tTregs and pTre

Depending on generation, Foxp3+ Trges are further categorized as naturally occurring
thymus-derived Treg (tTreg) cells and Trges developed from conventional CD4+ T cells
in the periphery (pTreg). These cells possess immunosuppressive functions and maintain
peripheral tolerance [61,62]. tTregs are produced by the thymus at an early stage after
birth and maintain tolerance toward self-antigens [63,64]. TGF-β1 directly enhances the
Foxp3 promoter and encourages the generation of tTregs [65]. Besides, exposure of naive
T-cells to its cognate-antigen leads to the differentiation of pTregs under tolerogenic con-
ditions [66–68], and differentiation of pTregs is facilitated by the higher concentrations of
TGF-β and higher levels of Foxp3 [69–71]. Therefore, TGF-β1 is a key cytokine and plays a
crucial role in the differentiation of both subsets of Trges. The induction of Foxp3 in periph-
eral naive T cells is achieved by a higher concentration of TGF-β, retinoic acid, and CD28
co-stimulation [70,72–74]. Both, tTreg and pTregs show similar expression levels of FoxP3,
CD25, CTLA-4, GITR, ICOS, CD103, CD127 and a broad T-cell receptor (TCR) repertoire
to deploy various suppressive mechanisms to control effector cells [8,59,75,76]. Foxp3+

Trges are also known to secrete IL-10, TGF-β, and IL-35 [77,78] along with granzyme A
and B [79–81]. Furthermore, tTregs express higher levels of neuropilin-1(Nrp1), TF Ikzf2
(Helios), PD-1, and ecto nucleotidase CD73 than pTregs [82,83]. Helios and Nrp1 are con-
sidered as markers for tTregs since their greater expression is seen in tTregs as compared to
pTregs [83–85]. Interestingly, under in-vivo conditions, pTregs could express helios [86], and
a fraction of the human tTreg population did not express helios [87]. Moreover, tTregs are
not differentiated based on helios and Nrp1 expression in mice [88]. Treg specific demethy-
lated region (TSDR) is highly demthylated in tTregs, and partially demethylated along
with an unstable expression of Foxp3 and CD25 in pTregs [69,89,90]. Apart from TSDR, Ig
superfamily surface protein GPA33along with other Treg cell markers was recently used to
identify Trges of thymus origin since this molecule is stably expressed on tTregs [91].

3.2. Type 1 T regulatory (Tr1) Cells

Tr1 cells are unique Foxp3− regulatory T cells that develop in the periphery and secrete
elevated levels of immunosuppressive cytokines such as IL-10 and TGF-β [92,93]. tTreg
and pTregs constitutively express Foxp3 and CD25 but these markers are expressed by
Tr1 cells only in the activated state [94]. Tr1 cells are characterized by the co-expression of
surface markers, CD49b and LAG-3 [95], and can be distinct due to the cytokine expression
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of IL-2, IL-10, IFN-γ, IL-5 and Il-17 [94] as well as granzyme B and perforin via cell death
mechanism [93]. And, experimental evidences have confirmed the immunosuppressive
function of Tr1 cells mediated by IL-10 [96,97].

4. Role of Tregs in IBD

Trges play a vital role in maintaining gut immune homeostasis and regulate pro-
inflammatory responses elicited by the adaptive and innate immune effectors [52]. Scurfy
mouse strain showing the severe autoimmune phenotype with a genetic defect in the
Foxp3 gene and inhibit the Tregs development and leads to the dysregulated activation
of the gut immune system [98], which mounts inflammation primarily in the gut. Fur-
ther, the mutation in the human Foxp3 gene leads to a rare autoimmune dysregulation,
polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome along with other severe au-
toimmune diseases including arthritis, diabetes, allergy and IBD. This syndrome was
seen due to impaired immune response mediated inflammation [17,99,100]. Furthermore
Foxp3 expressing Trges are essential for maintaining the balance at the intestinal mucosal
surface because intestinal inflammation gets chronic with the decreasing number of Foxp3+

Tregs [101]. DSS induced colitis in mice showings pontaneous depletion of Foxp3+ Tregs
leading to an increase in the disease severity [15]. However, adoptive transfer of Tregs
in Treg depleted mice (DEREG) showed a decrease in the severity and improved tissue
conditions of experimental colitis [15].

Although patients with IBD showed an increased number of Tregs in the inflamed
intestinal mucosa than un-inflamed mucosal part [102–104]. The phenotype and function
of Tregs present in the inflamed mucosa or periphery of IBD patients or in experimental
animals differ from those present in peripheral lymphoid organs of healthy control. Patients
with IBD showed an increase in the number of peripheral Th17 cells, and a reduction in the
peripheral Trges [105]. While in some cases patients with IBD showed higher expression of
Foxp3 along with elevated levels of pro-inflammatory cytokines including IL-17A, IL-1β
and IL-6 [105]. Moreover, the highest frequency of Foxp3+ IL-17 T-cells (Th17 and Treg
intermediate cells) was seen in the inflamed mucosal tissues of patients with IBD [106,107]
(Figure 2).

Foxp3+ Trges express effector T cell-specific transcription factor retinoic acid receptor-
related orphan receptor gamma t (RORγt) and differentiate into Th-17 cells. These cells
inhibit the immunosuppressive function of Tregs in patients with IBD [108]. Further, Tregs
upregulate the expression of T-bet and express pro-inflammatory cytokine IFN-γ. Regu-
latory T cells are characterized as IFN-γ-expressing Th1 like Tregs and mount intestinal
inflammation in patients with IBD. Th1 like Trges evoke inflammation since the IFN-γ-
expressing cells accumulate at the site of inflammation in CD and UC and contribute
to the IBD pathogenesis [109]. The accumulation of IFN-γ expressing Th1 like Trges is
also observed in the inflamed colon in the DSS-induced colitis animal model [109]. The
acquisition of pro-inflammatory behavior of Tregs in IBD most likely contributes to the un-
controlled inflammation in vivo. Furthermore, Tregs suppress the colonic inflammation by
downregulating Th1 and Th17 responses in the adoptive transfer model of colitis [110–112],
and passively transferred Trges have shown the ability to control inflammatory lesions in
the experimental model of IBD [113].

Trges have been seen to be involved in the tissue repair mechanism of the intestine.
Among the different populations of intestinal Treg i.e., Tr1 cells have been shown to
mediate repair of the intestinal mucosa that co-expressed Th2 and master transcription
factor GATA binding protein 3 (GATA3). Therefore, elevated expression of IL-33R, ST2,
and amphiregulin (AREG), an epidermal growth factor receptor ligand was reported [114].
Furthermore, these factors are generally involved in tissue repair and are phenotypically
characterized and expressed by GATA3+ Tregs [114]. Tissue repair and protection of gut
is rendered by the human Tr1 Trges suppress the proliferation of T effector cells, elicit
TNF and IL-1β based innate immune response and secret IL-22 to regulate the repairing of
epithelium and promote barrier function [115].
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fliximab, adalimumab, and certolizumab) have shown remarkable progress toreducethe 
need for surgery and hospitalization of IBD patients [116,117]. However, meta-analysis 
conducted by Ford et al., suggested that usage of anti-TNF agents may increase the risk 
of getting opportunistic infections in IBD patients [118]. Other recent reports also suggest 
the higher chance of getting infections such as histoplasmosis, aspergillosis and cytomeg-
alovirus infection [119] and anti-TNF monotherapy was found to be responsible for higher 
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Figure 2. Role of natural and inducible regulatory T cells (iTregs) involved in the pathogenesis of IBD. Inflammation
(IL-6) dependent interconversion of regulatory and effector T cell phenotype and role in dol 2, 3 dioxygenases (IDO) in
the generation of inducible Tregs (iTregs). Inflammatory (IL-17A, IL-21, IL-22) and immunosuppressive (TGF-β, IL-10)
conditions following antigenic stimulation were seen during the conversion of Th17 to iTreg phenotype. This interconversion
plays a crucial role in maintaining tolerance towards IBD.

5. Therapeutic Role of Tregs in IBD

Several patients with IBD showed tolerance to the current therapeutic arrangements.
Therefore, the need for developing effective, safe and novel therapies for IBD is both
attractive and urgent. Newer and effective immunotherapies involving anti-TNF agents
(infliximab, adalimumab, and certolizumab) have shown remarkable progress toreducethe
need for surgery and hospitalization of IBD patients [116,117]. However, meta-analysis
conducted by Ford et al., suggested that usage of anti-TNF agents may increase the risk
of getting opportunistic infections in IBD patients [118]. Other recent reports also sug-
gest the higher chance of getting infections such as histoplasmosis, aspergillosis and
cytomegalovirus infection [119] and anti-TNF monotherapy was found to be responsi-
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ble for higher mycobacterial and bacterial infection; however, in a combination therapy
with thiopurine will increase the risk of getting serious infections [119,120]. The REFUR-
BISH study was reported that the risk of getting T-cell non-Hodgkin’s lymphoma in IBD
patients is higher during combinational therapy with compare to anti-TNF monother-
apy [121] whereas the another cohort study delineate that even the ant–TNF monotherapy
is associated with lymphoma formation in small number but have the higher statistical
significant. And, it put on more on risk during the combinational therapy [122]. Other
than this other paradoxical side effects such as psoriasis/psoriasiform skin, development
of sarcoidosis-like lesions, late occurrence of arthritis/synovitis and lupus-like syndrome
(0.5 to 1% of patients) can also be developed [123–127]. Additionally, novel therapies
including JAK inhibitor [128–130], anti-MAdCAM-1 [131–135], an anti-SMAD7 antisense
oligonucleotide (mongersen) [136–138], S1P1 [128,139] and anti-interleukin (IL)-12/23
(ustekinumab) [140–146] have been under investigation for safety and other purposes.

Recently, cellular therapies have been used as potential therapeutic strategies for IBD
patients [147]. The role of Tregs in the preclinical models of colitis has been well understood,
and recent investigations and phase 1 clinical trials have proven the safety and efficacy of
Trges. A marked difference in the number of Tregs in patients (the inflamed mucosa or
peripheral blood) and experimental animal models of IBD have been observed [101,148].
Experimental model of IBD showed an increase in Tregs percentage in the inflamed ileum
with a reduced immunosuppressive function and IL-10 production. The dysregulated
expression between Th17 cells and Tregs was also observed in UC animal model with
downregulated mRNA expression of Foxp3 and IL-10 levels in Trges [149]. In UC patients,
a significant increase of IL-17 and Th17 cells and a simultaneous decrease of TGF-β and
Trges in serum as compared to healthy control was seen [150]. Th-17 cells and associated
cytokines IL-17 and IL-23 were found to be decreased in patients with IBD along with a
decrease in the Tregs and associated cytokines IL-10 and TGF-β [151]. IL-10 is known to
induce Treg mediated suppression of Th-17 cells in a STAT-3 dependent manner [152]. The
improvement in the clinical and histological parameters was observed when Trges were
adoptively transferred in Rag−/− or severe combined immunodeficient (SCID) mice [153].
Rapamycin-expanded Trges (Th cells cultured in presence of rapamycin) were shown to
suppress colitis in SCID mice [154]. And, ovalbumin (OVA) induced Tregs from DO11.10
mice prevented colitis together with increased TGF-β and IL-10 secretion in SCID-bg
mice [155]. The safety and efficacy of OVA-Treg therapy were assessed for refractory CD in
an open-labeled multicenter phase I/II clinical trial. This study showed the dose-related ef-
ficacy because infusion of ova-specific Tregs treatment was well-tolerated, and 40%patients
showed a reduced CD activity on 5 and 8-week post-treatment [156]. In vitro expanded
CD45RA+ Tregs cells were shown to express stable Foxp3 locus, which enhanced their
suppressive ability and prevented their conversion to Th17 phenotype in the SCID xeno-
transplant model [24]. Additionally, CD45RA− and CD45RA+ expanded Tregs expressed
a high level of gut homing receptor α4β7 integrin, CD62L, and CCR7 to facilitate their
intestinal homing [24]. In an active CD mucosa, CD45RA+ Tregs healed the inflammation
of lamina propria and mesenteric lymph nodes [24]. Tregs isolated from the lamina propria
of active IBD patients and in experimental model (DSS induced colitis) express T-bet and
IFN-γ (Th-1 like Tregs) and stimulates the early stages of inflammation. Further, T-bet KO
showed the development of less severe colitis with the dysregulated Th1 immune response.
It suggests that T-bet expression in Tregs is required for the development of colitis [109]. In
the end, Treg immunotherapy with in vitro expanded Tregs (NCT03185000) for treating the
Crohn’s disease (TRIBUTE trial) is underway.

6. Animal Models to Study IBD

Numerous animal models have been used to study many immune-effecters such
as inflammatory mediators, chemokines and cytokines, pathogenic bacteria and effector
Tregs. The experimental animal models of IBD produce the wealth of information to de-
velop further understanding of the pathogenesis of IBD [52,157–159]. Genetically modified
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(GM) mice play an instrumental role to study of gastrointestinal (GI) tract disorders. GM
mice including knockout, transgenic and mutant animals have proven a tool to unravel
mechanisms underlying the intestinal inflammation and pathogenesis of systemic inflam-
matory diseases such as colitis and RA. Therefore, experimental induction of colitis in the
mouse models has been developed by different chemicals including DSS, TNBS, oxazolone
or acetic acid [100,160,161]. Furthermore, adoptive transfer models are being currently
used and T-cell deficient mice reconstituted with Trges and depleted naïve T-cells were
selected from congenic donor mice (Table 1) [52]. Moreover, few spontaneous and hu-
manized mouse models have been developed to understand the pathogenesis to devising
therapeutic treatments against colitis [162].
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Table 1. The different types of animal model induced through various methods are summarized with their implication and role in IBD pathogenesis ([52,162]) (the generation of different
genetically engineered mice are reviewed in detailed in [162,163]).

Sr. No. Group Animal Model Information

1. Chemically Induced

Acetic acid (rat)
• Reduced inflammation and myeloperoxidase activity (MPO) activity, restoration of contraction of isolated colon.
• Conclusion: Cyclo-oxygenase (COX) and lipo-oxygenase-mediated proinflammatory products mediated IBD pathogenesis.

DSS
• CD4+ T-cell transfer colitis model (Rag−/−) and acute DSS-induced IBD used for identifying the function of Foxp3+ Tregs.
• Conclusion: Isolated CD4+ T-cells from Foxp3+ Tregs-depleted mice secrete IL-13, IL-17A, and IFN-γwith severe IBD.
• Foxp3+ Tregs establish mucosal homeostasis, a therapeutic option for patients with IBD.

TNBS

• Depletes colon-specific Foxp3+ Tregs but with no effect on spleen, mesenteric lymph nodes, and ileum.
• Higher expression of Fas ligand in colitis mice; no depletion of colon-specific Tregs in DNBs-induced colitis in Fas−/−

deficient mice.
• Conclusion: Fas/FasL pathway mediates depletion of Foxp3+ Tregs in the colon.

Oxazolon
• Experimental colitis induced in SJL/J mice.
• Th2-driven production of IL-4 and IL-5.
• Conclusion: Higher similarity with human UC, and Th2 response helps better understand UC.

PG/PS polymer
(Peptidoglycan
polysaccharide)

• Elevates plasma nitrite and nitrate levels, higher colonic mucosal permeability, and MPO activity.
• Conclusion: PG-PS induces chronic colitis in rats confirmed by higher NO production.

Auer
• Experimental colitis was induced by Auer with increased vascular permeability.
• Conclusion: Induced colitis helps better understand the injury mechanism as well as the pathogenic mechanism.

Carrageenan (CGN)
• Degrades CGN, induces ulcers in mice, rats, rabbits, and guinea-pigs.
• Changes spleen lymphocytes activity, suppresses immune system to cause IBD.
• Conclusion: CGN-based colitis follows the NF-κB signalling pathway, upregulate TNF-α and ICAM-1.

Indomethacin
• Inhibition of prostaglandin E1 and E2.
• Conclusion: Higher production of reactive oxygen species (ROS) and other free radicals, as well as apoptosis mediated by

caspase-3, which causes IBD.
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Table 1. Cont.

Sr. No. Group Animal Model Information

2. Adaptive Cell Transfer

CD45RB

• Naïve and memory CD4+ T-cell populations (Th1 and Th2 clone) are included in CD45RBhigh and CD45RBlow fractions.
Adoptively transferred CD4+ CD45RBhigh T-cells extracted to SCID mice from wild-type mice developed colitis in 6 to 12
weeks.

• Conclusion: It helps unravel earlier immune–inflammation events.

ECOVA

• BALB/c and SCID mice received CD4 T-cells purified from Rag−/−mice crossed to Tg mice expressing ovalbumin
(ova)-specific TCR.

• Conclusion: Predominant production of IL-4 in the early stage and IL-10 in the later stage in ova-specific CD4 T-cells was
observed.

• Additionally, co-transfer of IL-10 secreting ova-specific CD4 T-cells prevented the development of colitis, and expanded
ova-specific CD4 T-cells induced lymphadenopathy and caused colitis.

CD8 Transfer
• DNBS causes colitis, IFN-γ-producing cytotoxic CD8+ T-cell (Tc1) recruitment.
• Colitis was prevented by the antibody depletion of CD8+ and not with CD4+ T-cells.
• Conclusion: Relapse of colitis in normal mice with Ag-specific CD8 T-cells reveals TC1′s role in intestinal inflammation.

3. Bacteria-Infected Model
Citrobacter rodentium

• Model for human infectious colitis induced by E. coli.
• Transfer of CD4+ T-cells induced the secretion of IFN-γ, IL-17, IL-2 and ameliorates the activity of IL-10.
• Conclusion: CD4+ population generated in C. rodentium infection mice renders protection to the non-infected recipient via

Th1-induced species-specific immune response (mainly IL-17), elevated secretion of systemic IgG, and fecal IgA.

Helicobactor
hepaticus

• Homozygous SCID mice (with CD45RB cells) infected with H. hepaticus and CD4+ CD45RBhigh T-cells.
• Conclusion: Allows the investigation of abnormal immune response and disease.

4. Conogenic Model

C3H/HeJBir
• C3H/HeJBir (C3Bir) mice cause a missense mutation in the third exon of the Tlr4 gene, resulting in the spontaneous

development of inflammation in the colon and cecum.
• Conclusion: Helpful in understanding the immune system and formal genetic studies of the disease.

SAMP1/Yit

• A new senescence-accelerated mouse (SAM) P1/Yit strain was established that spontaneously developed enteric
inflammation under specific pathogen-free conditions.

• Develops CD-like ileitis, with higher levels of IFN-γ and TNF-α.
• Inflated levels of IL-13 and IL-5 point out the role of Th2 in causing chronic inflammation.
• Conclusion: Validates the role and interaction of gut microbiota in IBD pathogenesis.

SAMP1/YitFc
• Developed by mating brother–sister for over 20 generations.
• Conclusion: Ileitis was developed at the earlier age of 10 weeks.
• Useful in understanding the chronic pathological conditions of CD to help design novel therapeutic regimens.
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Table 1. Cont.

Sr. No. Group Animal Model Information

5. Spontaneous Cotton-top tamarin

• Small unique primate group that develops spontaneous colitis, similar to human UC.
• Develops secondary complications of sclerosing cholangitis, colon-based adenocarcinoma, and elevated fecal TNF-α, seen in

human UC.
• Conclusion: Role of anti-TNF-α in human UC under investigation.
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6.1. Bacteria-Infected Models

Studies carried out in the experimental mouse models of IBD suggested sensitivity of
Treg cell compartment towards the changes occurred in the microbial environment [19].
Germ-free, pathogen-free, and gnotobiotic mice generally express a lower level of Foxp3
with reduced colonic Tregs compared to the Tregs extracted from wild-type mice. Treg pop-
ulation showed an increase with the decreased bacterial load upon receiving vancomycin
treatment [164], and mice infected with Citrobactor rodentium were used to mimic the acute
intestinal inflammation. Further, Helicobacter-infected mice are preferred as bacterial infec-
tion models over combination models to see the synergistic effect of drugs. Inflammatory
signals emanating from bacterial DNA play an important role and inhibit the inducible
Tregs, and their differentiation in Toll-like receptor 9 (TLR9) deficient mice showing a
higher number of Tregs in small intestine [19,165]. Mice receiving DSS treatment showed a
significant increase in the members of Bacteroidaceae and Clostridium spp. from Bacteroides
distasonis and Clostridium ramosum families in the intestine [166]. Subsequent studies
showed the elevated 16s rRNA gene copy numbers of mucin-degrading Gram-negative
bacterium Akkermansia muciniphilia and Enterobacteriaceae to establish a correlation with the
disease severity in DSS treated mice [167]. The increased number of microorganisms such
as Enterobacteriaceae and adherent-invasive E. coli develops colitis in IL-10 deficient mice
and provokes induction of inflammation leading to the cancer development [168,169]. Sim-
ilarly, an increased number of Bacteroides and Porphyromonas genera in Apc∆468/IL-10−/−

mice mounts inflammation and colon polyposis [170]. Furthermore, increased inflamma-
tion with the increased number of Enterobacteriaceae and Bacteriodes was seen in the TNBS
induced colitis animals [171].

6.2. Genetically Modified Animal Models

A variety of gene knockout models are available to study the innate and adaptive
immune responses elicited by the IBD pathogenesis or other intestinal infections. The
modified genetic lines produce phenotypes that investigate the immunological aspects of
intestinal infection and inflammation [52]. Commonly knockout (KO) genes used in the
murine model of intestinal inflammation are IL-10, IL-23R, CD4+CD25+, NOD2/CARD15,
TGF-β1, RAG, ATG16L1, APCmin/+, IL-2, TNF-α, STAT3, NFκB, Muc2, IFN-γ, MyD88
and TLR [163]. A reduced number of Tregs with compromised functional activity was ob-
served due to the genetic modification by knocking out IL-2-/, IL-2R-/, and IL-10-/ genes
in some immunodeficient mice to develop IBD models [52,172,173]. Innate or mucosal
immunity-related gene-deficient mice such as NOD2-/, myeloid differentiation primary
response 88 (MYD88)-/, nuclear factor-kB (NF-kB)−/−, cytokine-deficiency induced colitis
susceptibility 1 (CDCS1)-/, multidrug resistance gene 1a (MDR1a)-/, and TLR5-/ showed
inflammatory lesions in colon [52,174–177]. T-cell receptor TCR−/− mice have been used
to study various immunobiological phenomena taking place during IBD pathogenesis, and
the development of IBD-like lesions are seen due to the over-expression of TNF-α and
signal transducer and activator of transcription4 (STAT4) gene in TCR−/− mice [178,179].
Overall, there are various gene-manipulated models wherein epithelial barriers and im-
mune regulation-associated genes are manipulated by knockdown, knock-in, conditional
knockout, or transgenic mice [52], and reduced Treg cell number and their impaired func-
tions were observed in these animals. The different animal models used to study IBD
pathogenesis is depicted in Figure 3.

6.3. Humanized Mouse Models

Characterization and pre-clinical therapeutic applications are being explored by study-
ing the immune response of patients with IBD in the experimental animal model(s) without
putting human life at risk. Evaluation of hematopoietic stem cells (HSCs) with mutations in
Foxp3 and bone-marrow-derived CD34+ HSCs received from a patient with mutations and
impaired function of IL-10Rshowed severe medical-refractory infantile-onset of IBD.HSCs
administration inNOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ(NSG) mice lacking murine MHC-II and
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expressing HLA-DR1hardly showed the mounted intestinal inflammation as was seen in
mice and humans carrying mutations in IL-10 or IL-10R genes [180,181]. The increased fre-
quency of CD19+ B cells was assessed in spleen and mesenteric lymph nodes compared to
the control in peripheral lymphoid cells reconstituted mice. Some patients with deleterious
IL-10R mutations showed the development of B cell lymphoma and presented a barrier in
assessing the potential role of this pathway in the regulation of B cell development [182,183].
Human immune cells recovered from reconstituted NSG mice were found non-responsive
to the exogenous IL-10 treatment, and these observations were consistent with the results
obtained by using peripheral blood mononuclear cells (PBMCs) from IBD patients [184].
Interestingly, NSG mice harboring transgene encoding human KITLG, GM-CSF, and IL3
(NSG-SGM3) injected with IL-10R1deficient PBMCs were seen susceptible to DSS-induced
colitis compared to those receiving healthy control PBMCs. These experimental observa-
tions paved the ways to facilitate the development of therapeutic interventional approaches
against patients with IL-10R mutations. Fully reconstituted immunodeficient mice with
CD34+ HSCs isolated from patients with IL-10R mutations are not suitable for assessing the
therapeutic biologics aiming at developing interventional approaches against IBD. Human
immune system repopulated mice (humanized mice) would be appropriate to screen gene
therapy-based approaches for restoring IL-10R signaling [184,185].

Interleukin-2 is a key cytokine that controls the differentiation, survival and function
of Tregs [185–187]. Moreover, low dose IL-2 is known to activate Tregs in the peripheral
blood and colonic lamina propria isolated from IBD patients in culture as well as HIS mice.
And, Tyagi et al., 2021 explored the role of low dose IL-2 in expanding functional Tregs
in HSC reconstituted NSG humanized mice [185]. NSG mice reconstituted with healthy
donor PBMCs receiving rectal anema with TNBS on day 5 following immune reconstitution
to induce colitis. Mice receiving low-dose (10K) IL-2 were shown to reduce the weight loss
and histology scores compared to those receiving treatment with a higher (50K) dose of
IL-2 [180,185].

Further, the percentage of Foxp3+ IL-10+ TGF-β+ natural Tregs, Foxp3− IL-10+ TGF-
β− induced Tregs, CD127− induced Tregs and CD8+ Tregs was measured at different time
points in DSS-induced experimental colitis model in murine lamina propria lymphocytes,
mesenteric lymph nodes and peripheral blood [148]. %age of Foxp3+ IL-10+ TGF-β+ natural
Tregs show a decrease during chronic inflammation induced by IBD in humans and mice
and proliferated significantly during remission. The intestinal inflammation exhibited a
decrease in the percentage of CD8+ Tregs and remained lower in the remittent stage of
human IBD. Only enhanced proliferation of lamina propria lymphocytes derived CD8+
Treg was reported on day 7in DSS-induced murine colitis. Furthermore, results suggest that
Foxp3+ IL-10+ TGF-β+ natural Tregs might be crucial for the suppression and protection
from immune-related mucosal injury during the chronic stages in IBD [148].

Local delivery of low numbers of human Treg by intradermal injection was shown to
prevent skin inflammation in a humanized mouse model (huPBL-SCID-huSkin allograft
model) [188]. A dose of only 1× 105 freshly isolated, non-expanded Tregs injected intrader-
mally close to the transplanted human skin prevented the inflammation induced by the
grafted tissue, and intraperitoneal injection of human allogeneic PBMCs and Tregs used
were used as 400:1. Inhibition of epidermal thickening sustained Keratin-10 expression,
absence of Keratin-16 up-regulation and prevention of human CD3+ T cell influx was
observed following the cell administration [188]. Also, concomitant reduction of human T
cells was observed in the lymph nodes and spleen of mice. Moreover, injection of Tregs at
the contralateral side inhibits the skin inflammation which advocates for the reduction of
local and systemic inflammation. In brief, local application of Treg might be an attractive
strategy to suppress inflammation in vivo without requiring prior ex-vivo expansion [188].
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The simplest way to reconstitute immunodeficient mice with human immune cells is
through intravenous or intraperitoneal injection of HSC-CD34 cells, and immunodeficiency
is a prerequisite to increase the receptivity of immunodeficient/transgenic mice for human
cells or tissues engraftment and repopulation [189]. The extent of immunodeficiency
influences survival and function of transplanted human cells, and thus SCID mice lacking
T and B cells supported the engraftment followed by repopulation of human immune
cells for several weeks [190,191]. However, due to residual innate immunity and leakiness
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(development of adaptive immune cells in aged mice), SCID mice did not fully support
the engraftment of human cells. Reduced natural killer (NK) cells in non-obese diabetic
NOD-SCID mice showed significantly improved human cell engraftment [192] due to the
reduced production of IFN-γ in NOD/SCID. Profound and long-lasting impairment in
adaptive and innate immunity by targeted mutation of IL-2R gamma-chain gene in NSG or
BALB/c recombination activating gene (Rag)2−/−IL-2Rγ−/− mice exhibited stable and
long-term survival of transplanted human cells and tissues [193–197] (Figure 4).

7. Discussion

Different studies concluded that during the progression of IBD, T-lymphocytes exhibit
a tremendous role in maintaining intestinal homeostasis and reducing tissue damage by
inhibiting immune cell responsiveness with the help of Tregs [198,199]. Furthermore,
defects in the number and distribution of functional Tregs and their impaired trafficking
ability in the gastrointestinal tract have been examined in patients with IBD [18,104].
Recently, many studies have shown that IBD is ameliorated by restoring anti-inflammatory
pathways, which mainly include increased Tregs numbers or maintaining Treg/Th17
balance by suppressing Th1/Th17 cells tipping the immune balance towards the generation
of sizeable functional Tregs in IBD [21,200–202].

Unmet need for discovery of the novel therapeutic approaches prompt scientists to
come up with alternative arrangements since many patients do not respond to treatment
with approved drugs [203]. Despite the similarity between mouse and human flora,
significant differences make it difficult to study all immune pathways responsible for IBD
pathogenesis in one animal model. Therefore, extensive research and seamless efforts
to design an ideal animal model aiming at developing a viable therapeutic strategy and
selective treatment like small molecules, biologics, traditional and emerging modified
therapies with minimal adverse reaction would establish the mouse-human chimeras
a better platform to study autoimmune and chronic inflammatory disease. We believe
humanized mouse models shall revolutionize the translational biomedical research to
study inflammatory diseases.

Chemical induction, adoptive cell transfer, congenital models for IBD have been
prominently utilized to study IBD pathogenesis. Further, genetically engineered murine
models have been used to experimentally induce colitis to understand the mechanisms
underlying intestinal inflammation and preclinical trials for developing novel therapeutic
strategies [162]. Nearly 9 groups of IBD mouse models are developed based on gene target-
ing strategy which includes conventional, cell-specific, inducible, conventional, cell-specific
transgenic, dominant-negative, mutagen induced, knock-in and innate [162]. Dysregu-
lated innate and adaptive immune responses drive about 40 different immune-specific KO
mice that spontaneously induce intestinal inflammation. The defective mucosal barriers,
deregulated necroptosis/apoptosis, antibacterial peptide depletion and endoplasmic retic-
ulum stress induce colitis spontaneously in 18 intestinal epithelial cell-specific KO mice.
Although 74 types of genetically engineered mouse strains [163] and 160 IBD susceptible
genes in humans indicating complex mechanism of IBD and diverse disease conditions,
IBD remains elusive and needs to be studied. Out of 140 susceptible genes responsible for
CD and UC, only a few had been identified as NOD2 CD-specific genes [163]. NOD2-KO
and Atg16L1 mutant mice comprise of IL-10RA or IL-10RB mutation leading to the severe
onset of complicated IBD pathogenesis [204]. Goettel et al. conducted studies on human
immune cells reconstituted immunodeficient mice to ameliorate colitis by the expansion of
Tregs following low dose IL-2 treatment and test therapeutic molecules [180].
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Figure 4. Schematic presentation of the development of the human immune system (HIS)-repopulated mice by the
transplantation of CD34+ human hematopoietic stem cells (HSCs) in NOD.PrkdcscidIl2rg−/− (NSG) immunodeficient
mice and the induction of experimental colitis by TNBS to assess the pathology and immunopathogenesis of colitis.

Relevance of efficiency of Tregs as a therapeutic regime to control IBD has been
demonstrated in experimental animal models and IBD patients [14,19,22,205]. The induced
inflammation and severity of colitis was subsided by the adoptive transfer of Tregs [19],
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and promising results were observed with the use of ovalbumin (OVA)-specific Tregs in
IBD [93,155,156]. The existing therapies to address IBD are based on broad suppression
of inflammation that results in variable clinical advantages and unwanted adverse effects.
However, passive transfer of Trges is a potential therapeutic regime aiming at promoting
immune tolerance in the developed animal models, including humanized model with
reconstituted human immune system mice (HIS) that supports the expansion of Tregs. Thus,
induction of Tregs generation and re-establishment of immune tolerance leading to immune
homeostasis is a potential approach for the long-term treatment of IBD since this regime
might minimize the deleterious side effects associated with in-use immunosuppressive
approaches.

8. Conclusions

The vital role played in IBD is evident since functional and phenotypic defects along
with the compromised numbers and functions of Tregs. These cells significantly subside
the intestinal inflammation mounted by the colitis. Therefore, future research concerning
IBD progression and its treatment should focus on developing new clinical approaches
to increase their regulatory effects including enhancing their homing to inflammation
sites, expansion, or enhancing their differentiation, stability, and tissue repair properties.
Further, enhancing their survival and anti-inflammatory property to maintain immune
homeostasis in the gut is an important aspect. The engineered mouse-human chimera
with the repopulated human immune system might be a stepping stone towards studying
IBD, its biology and pathogenesis and help developing Tregs-based newer interventional
strategies for IBD (Table 2).
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Table 2. Developed humanized mouse models to study IBD pathogenesis.

Genetic Background of Mice Induction of Colitis Human Cells Transplanted Remarks References

NOD-SCID IL2Rγ−/− (NSG) Allergen (Birch, grass, Hazelnut) PBMCs from allergic and
non-allergic subjects

The amplified extent of colitis was seen in allergic donors
isolated PBMCs engrafted micecompared to healthy donors. [206]

NSG Oxazolone PBMCs from healthy, UC and AD
subjects

The described model showed the potential to study the
efficacy of therapeutics targeting human lymphocytes in a
model closely mimicking human ulcerative colitis.

[207]

NSG
TNBS HLA-matched human CD4+ T cells

Adoptive transfer of human CD4+ T cells in humanized
animals with TNBS induced small bowel enteropathy and
promoted colonic inflammation.

[208]

HLA-matched CD34+ human HSCs from healthy and IPEX subjects
The study established the use of human HSCs to transfer
disease phenotype in humanized mice to study human
immune effectors and pathogenesis of IBD.

[209]

NSG TNBS HLA-matched human CD4+ T cells
isolated from a healthy donor

The study developed an experimental humanized murine
model to investigate human CD4+ T responses in vivo and
identify the ITE (a non-toxic AHR agonist) as a potential
therapy to achieving the immune tolerance in the intestine.

[210]

NSG TNBS PBMCs isolated from healthy
donors

Low-dose IL-2 helped in expanding Trges for using as a
therapeutic strategy against colitis in humanized mice. [180]

NSG PBMCs from UC donors were reconstituted in NSG mice and treated with
oxelumab

NSG-UC mice treated with oxelumab significantly reduced
clinical, colon and histological scores and reduced serum
levels of IL-6.

[211]

NSG TNBS Antisense+ CD4 cells isolated from
a healthy donor

Silencing the endogenous antisense long non-coding RNA
restores CD39 levels with enhancing Treg-suppressive
function.

[212]

NSG TNBS CD34+ human HSCs
Low-dose (LD) IL-2 reduced the severity of TNBS induced
in HSC CD34+ reconstituted NSG mice and paved the way
for developing future therapeutic strategy based on LD IL-2

[185]

Abbreviations: NOD-SCID IL2Rγ−/−, non-obese diabetic mice with severe combined immunodeficiency and null mutation in the interleukin 2 (IL-2) receptor gamma chain; PBMCs, peripheral blood
mononuclear cells; UC, ulcerative colitis, AD, atopic dermatitis; TNBS, tri-nitro-benzene-sulfonic acid; HSCs, hematopoietic stem cells; IPEX, immuno-dysregulation polyendocrinopathy enteropathy X-linked
syndrome; ITE,2-(1′H-indole-3′-carbonyl) thiazole-4-carboxylic acid methyl ester; AHR, aryl hydrocarbon receptor.
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Abbreviations

IBD Inflammatory bowel disease
Tregs Regulatory T-cells
CD Crohn’s disease
UC Ulcerative colitis
Th cells T-helper cells
HIS Human immune system
DCs Dendritic cells
ILCs Innate lymphoid cells
TNF Tumor necrosis factor (TNF)
IFN-γ Interferon-gamma
TGF-β Transforming growth factor
TLA1 TNF like cytokine 1A
DR3 Death domain receptor 3
TNBS 2,4,6-trinitrobenzene sulfonic acid
DSS Dextran sulfate sodium
NOD2 Nucleotide-binding oligomerization domain 2
ATG16L1 Aumiddlehagy-related 16-like 1
CCR Chemokine receptor
RA Retinoic acid
iTregs Inducible Treg cells
Foxp3 Forkhead box P3
tTregs Thymus-derived Treg cells
pTregs Peripheral Treg cells
Nrp1 Neuropilin-1
TSDR Treg specific demethylated region
Tr1 Type 1 T-regulatory cells
GATA3 GATA binding protein 3
GM Genetically modified
TLR Toll-like receptor
HSCs Hemamiddleoietic stem cells
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